用户名: 密码: 验证码:
羧基化单壁碳纳米管对端粒酶及端粒的生物医学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
端粒位于染色体的末端,在保护染色体的完整性,使其免受异常的重组,降解以及末端融合中发挥重要的作用。端粒由含有很多重复单元的富G和富C的双链DNA组成,此外还有一个富G的单链3′-末端。其富G序列可以形成分子内或分子间的G-quadruplex四链结构,其互补的富C序列可以形成i-motif四链结构。已知端粒的富G序列和富C序列都可以作为癌症治疗的靶点,G-quadruplex结构的形成和稳定已经证实能够显著抑制端粒酶的活性,而且目前也有很多通过稳定G-quadruplex结构以抑制端粒酶活性的配体。但是,由于i-motif结构的不稳定性,以及缺乏其特异性的结合配体,i-motif结构的生物学活性还没有得到充分地阐明,特别是其结构的形成和稳定能否抑制端粒酶的活性还未知。
     近年来,碳纳米管由于其独特的性质,其作为一种特异性的配体与DNA的相互作用已经得到越来越多的关注。我们课题组就此也开展了很多工作,我们发现SWNTs可以去稳定双链DNA,而且诱导序列特异性的B-A转换,而且SWNTs也可以诱导单链的RNApoly(rA)自组装成A·A~+双链结构。特别的是,我们观察到单壁碳纳米管而不是多壁碳纳米管,可以选择性的稳定人端粒i-motif结构。这使SWNTs成为第一个可以选择性结合i-motif的配体,并可以用来分析i-motif结构的形成在体内外的生物学活性。
     在本论文中,我们应用TRAP-G4assay,传统的TRAP assay,免疫荧光,免疫印迹,免疫沉淀,染色质免疫沉淀以及端粒荧光原位杂交分析SWNTs作用后对端粒酶的活性,端粒结构及细胞增殖的影响。本论文的主要观点如下:
     1.通过对SWNTs进行PEG修饰,之后再进行FITC标记,我们观察到SWNTs可以进入细胞核,而且可以定位在端粒,因为它与端粒定位的标志物TRF1蛋白实现了共定位,这为SWNTs在细胞内的生物学活性特别是在端粒的可能活性提供了依据;
     2.通过TRAP-G4assay,我们发现SWNTs可以在细胞外抑制端粒酶的活性,这可能是由于SWNTs诱导端粒富C链形成i-motif结构,而使其互补的富G链形成G-quadruplex结构,进而抑制端粒酶的活性。SWNTs对端粒酶活性的抑制作用也在细胞内得到证实。而且,进一步分析发现这种端粒酶的抑制作用并不依赖于其定位的变化或者表达的变化;
     3.虽然SWNTs不诱导急性细胞毒性,但是在较高浓度下,经过稍长时间的作用还是可以诱导细胞的生长抑制的,这种生长抑制可能与端粒结构的紊乱相关,而不仅仅是依赖端粒酶活性的抑制。而且进一步研究发现SWNTs诱导的生长抑制通常与DNA损伤反应的产生密切相关。而且,进一步证实这种DNA损伤反应是发生在端粒上的;
     4. SWNTs可以诱导端粒结构的紊乱,引起后期桥,微核的形成及端粒的融合等染色体的异常。而且,通过端粒-末端脱氧核糖核酸转移酶(TdT)的共定位分析可以直接观察到SWNTs作用之后端粒的去保护状态;
     5.通过免疫荧光和染色质免疫沉淀分析,SWNTs可以促进端粒相关蛋白(TRF2,POT1和PCBP1)从端粒上解离,这也为细胞内G-quadruplex及i-motif结构的形成提供间接的证据。而且,进一步研究发现,SWNTs可以促进端粒3′-悬端的快速的降解,但是却不影响整体端粒的长度;
     6. SWNTs可以诱导细胞周期的阻滞,凋亡以及衰老,这可能是由于端粒结构的紊乱所造成的,而且这些生物学效应也p16和p21蛋白的上调密切相关。本研究第一次证明了,稳定端粒i-motif结构可以抑制端粒酶的活性,并影响端粒的功能,这为理解SWNTs在癌细胞中的生物医学效应,以及i-motif结构在细胞内的生物学活性都具有重要的意义。
Telomeres play important roles in chromosome structural integrity to cap and protecttheir extremities from illegitimate recombination, degradation and end-to-end fusion.In humans, the telomere is composed of G-rich and C-rich duplex with asingle-stranded3′-overhang, the G-rich strand can form a four-stranded G-quadruplexstructure, and its complementary C-rich strand may adopt intercalated i-motifstructures. Both human telomeric G-rich and C-rich DNA have been considered asspecific drug targets for cancer therapy. G-quadruplex formation can inhibittelomerase activity. Many compounds that can stabilize G-quadruplex structure andinhibit telomerase activity have been reported. However, due to i-motif structureunstable and lack of i-motif specific binding agents, it remains unclear whetherstabilization of i-motif structure can inhibit telomerase activity.
     Single-walled carbon nanotubes (SWNTs) have been considered as the leadingnanodevice candidate, whose interactions with nucleic acids has attracted muchattention. A series of DNA interactions with SWNTs have been studied by our group.We found that SWNTs can destabilize duplex DNA and induce a sequence-dependentDNA B-A transition, and can facilitate self-structuring of single-stranded RNApoly(rA) to form A·A~+duplex structure. Intriguingly, SWNTs, not multi-walledcarbon nanotubes (MWNTs), can selectively stabilize human telomeric i-motif DNAand induce i-motif structure formation by binding to the5′-end major groove underphysiological conditions, and even under molecular crowding conditions. Furtherstudies indicate that SWNTs do not stabilize G-quadruplex DNA, and can causehuman telomeric duplex to disassociate by forming i-motif and G-quadruplexDNA. This makes SWNTs as the first selective i-motif DNA binding agent andsuitable probe to study the biological function of i-motif both in vitro and in livingcells.
     In this report, we applied TRAP-G4assay, conventional TRAP assay,immunofluorescence, immunoblot, immunoprecipitation, ChIP and telomere-FISH toanalyze the effects of SWNTs on telomerase activity, telomere structure and cellproliferation. The main results are as follows:
     1. SWNTs can enter the nucleus and localize at telomere when modified with PEG and labeled with FITC, which is clarified by the co-localization with interphasetelomere marker TRF1protein. This result may provide the possible biologicalactivities of SWNTs in living cells, especially at telomere.
     2. Based on TRAP-G4assay, SWNTs can inhibit telomerase activity in vitro throughthe indirect G-quadruplex stabilization on the telomeric G-rich strand induced by theformation of i-motif on the complementary C-rich strand. This has been confirmed inliving systems. Furthermore, the decreased telomerase activity in living cells was notassociated with the alteration of its localization or expression.
     3. Although SWNTs did not induce acute cytotoxicity, after a long time exposure,SWNTs can inhibit cell growth, which may be related to the telomere dysfunction, butnot merely to the telomerase activity inhibition. Furthermore, growth arrest inducedby SWNTs was associated with the production of DNA damage response, which wasfurther clarified to occur at telomere.
     4. SWNTs can induce telomere dysfunction characterized by the formation ofanaphase bridges, micronuclei and telomere fusion. SWNTs also induced the directunprotection of telomere visualized by the telomere-TdT assay.
     5. SWNTs can induce the reveal of telomere binding protein TRF2, POT1and PCBP1from telomere, which may provide the indirect evidence for G-quadruplex and i-motifformation in living cells. Moreover, SWNTs treatment caused the rapid degradationof telomeric3′-overhang from telomere without affecting the total telomere length.
     6. SWNTs induced the cell cycle arrest, apoptosis and senescence as consequence oftelomere dysfunction. This growth suppression maybe associated with theupregulation of p16and p21proteins.
     This is the first example that stabilization of i-motif structure can inhibit telomeraseactivity and interfere with the telomere functions in cancer cells. Our work mayprovide new insights into understanding the biomedical effects of SWNTs in cancercells and the biological importance of i-motif structure in vivo.
引文
[1]. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature1991,354,56-58.
    [2]. Ebbesen, T. W., Carbon nanotubes. Phys. Today1996,49,26-32.
    [3]. Zhang, M.; Li, J., Carbon nanotube in different shapes. Mater. Today2009,12,12-18.
    [4]. Iijima, S.; Ichihashi, T., Single-Shell Carbon Nanotubes of1-Nm Diameter.Nature1993,363,603-605.
    [5]. Tans, S. J.; Verschueren, A. R. M.; Dekker, C., Room-temperature transistorbased on a single carbon nanotube. Nature1998,393,49-52.
    [6]. Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C., Carbon nanotubeintramolecular junctions. Nature1999,402,273-276.
    [7]. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C.M., Carbon nanotube-based nonvolatile random access memory formolecular computing. Science2000,289,94-97.
    [8]. Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C., Logic circuits withcarbon nanotube transistors. Science2001,294,1317-1320.
    [9]. Coleman, J. N.; Dalton, A. B.; Curran, S.; Rubio, A.; Davey, A. P.; Drury, A.;McCarthy, B.; Lahr, B.; Ajayan, P. M.; Roth, S.; Barklie, R. C.; Blau, W. J.,Phase separation of carbon nanotubes and turbostratic graphite using afunctional organic polymer. Adv. Mater.2000,12,213.
    [10]. Wang, Z. H.; Liang, Q. L.; Wang, Y. M.; Luo, G. A., Carbonnanotube-intercalated graphite electrodes for simultaneous determination ofdopamine and serotonin in the presence of ascorbic acid. J. Electroanal.Chem.2003,540,129-134.
    [11]. Henning, T.; Salama, F., Carbon-Carbon in the Universe. Science1998,282,2204-2210.
    [12]. Crespi, V. H., Relations between global and local topology in multiplenanotube junctions. Phys. Rev. B1998,58,12671-12671.
    [13]. Ebbesen, T. W.; Hiura, H.; Fujita, J.; Ochiai, Y.; Matsui, S.; Tanigaki, K.,Patterns in the Bulk Growth of Carbon Nanotubes. Chem. Phys. Lett.1993,209,83-90.
    [14]. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R., Physics of Carbon Nanotubes.Carbon1995,33,883-891.
    [15]. Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C.,Electronic structure of atomically resolved carbon nanotubes. Nature1998,391,59-62.
    [16]. Hirsch, A., Functionalization of single-walled carbon nanotubes. Angew.Chem. Int. Ed.2002,41,1853-1859.
    [17]. Bahr, J. L.; Tour, J. M., Covalent chemistry of single-wall carbon nanotubes.J. Mater. Chem.2002,12,1952-1958.
    [18]. Sinnott, S. B., Chemical functionalization of carbon nanotubes. J. Nanosci.Nanotech.2002,2,113-123.
    [19]. Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M.E.; Haddon, R. C., Chemistry of single-walled carbon nanotubes. Acc. Chem.Res.2002,35,1105-1113.
    [20]. Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M., Soluble carbonnanotubes. Chem. Eur. J.2003,9,4001-4008.
    [21]. Banerjee, S.; Hemraj-Benny, T.; Wong, S. S., Covalent surface chemistry ofsingle-walled carbon nanotubes. Adv. Mater.2005,17,17-29.
    [22]. Tagmatarchis, N.; Prato, M., Functionalization of carbon nanotubes via1,3-dipolar cycloadditions. J. Mater. Chem.2004,14,437-439.
    [23]. Bianco, A.; Prato, M., Can carbon nanotubes be considered useful tools forbiological applications? Adv. Mater.2003,15,1765-1768.
    [24]. Pastorin, G.; Kostarelos, K.; Prato, M.; Bianco, A., Functionalized CarbonNanotubes: Towards the Delivery of Therapeutic Molecules. J. Biomed.Nanotech.2005,1,133-142.
    [25]. Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M., Biomedicalapplications of functionalised carbon nanotubes. Chem. Comm.2005,571-577.
    [26]. Guo, Z. J.; Sadler, P. J.; Tsang, S. C., Immobilization and visualization ofDNAand proteins on carbon nanotubes. Adv. Mater.1998,10,701-703.
    [27]. Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.;Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G.G.; Semke, E. D.; Usrey, M.; Walls, D. J., Structure-based carbon nanotubesorting by sequence-dependent DNA assembly. Science2003,302,1545-1548.
    [28]. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S.R.; Richardson, R. E.; Tassi, N. G., DNA-assisted dispersion and separationof carbon nanotubes. Nat. Mater.2003,2,338-342.
    [29]. Strano, M. S.; Zheng, M.; Jagota, A.; Onoa, G. B.; Heller, D. A.; Barone, P.W.; Usrey, M. L., Understanding the nature of the DNA-assisted separationof single-walled carbon nanotubes using fluorescence and Ramanspectroscopy. Nano Lett.2004,4,543-550.
    [30]. Chou, S. G.; Ribeiro, H. B.; Barros, E. B.; Santos, A. P.; Nezich, D.;Samsonidze, G. G.; Fantini, C.; Pimenta, M. A.; Jorio, A.; Plentz, F.;Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Zheng, M.; Onoa, G. B.;Semke, E. D.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B., Opticalcharacterization of DNA-wrapped carbon nanotube hybrids. Chem. Phys. Lett.2004,397,296-301.
    [31]. Chou, S. G.; Son, H.; Kong, J.; Jorio, A.; Saito, R.; Zheng, M.; Dresselhaus,G.; Dresselhaus, M. S., Length characterization of DNA-wrapped carbonnanotubes using Raman spectroscopy. Appl. Phys. Lett.2007,90.
    [32]. Huang, X. Y.; McLean, R. S.; Zheng, M., High-resolution length sorting andpurification of DNA-wrapped carbon nanotubes by size-exclusionchromatography. Anal. Chem.2005,77,6225-6228.
    [33]. Gigliotti, B.; Sakizzie, B.; Bethune, D. S.; Shelby, R. M.; Cha, J. N.,Sequence-independent helical wrapping of singles-walled carbon nanotubesby long genomic DNA. Nano Lett.2006,6,159-164.
    [34]. Zhao, W.; Gao, Y.; Brook, M. A.; Li, Y. F., Wrapping single-walled carbonnanotubes with long single-stranded DNA molecules produced by rollingcircle amplification. Chem. Comm.2006,3582-3584.
    [35]. Hughes, M. E.; Brandin, E.; Golovchenko, J. A., Optical absorption ofDNA-carbon nanotube structures. Nano Lett.2007,7,1191-1194.
    [36]. Meng, S.; Wang, W. L.; Maragakis, P.; Kaxiras, E., Determination ofDNA-base orientation on carbon nanotubes through directional opticalabsorbance. Nano Lett.2007,7,,2312-2316.
    [37]. Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; Mclean, R. S.;Brus, L. E., Racemic single-walled carbon nanotubes exhibit circulardichroism when wrapped with DNA. J. Am. Chem. Soc.2006,128,9004-9005.
    [38]. Zheng, M.; Rostovtsev, V. V., Photoinduced charge transfer mediated byDNA-wrapped carbon nanotubes. J. Am. Chem. Soc.2006,128,7702-7703.
    [39]. Johnson, R. R.; Johnson, A. T. C.; Klein, M. L., Probing the structure ofDNA-carbon nanotube hybrids with molecular dynamics. Nano Lett.2008,8,69-75.
    [40]. Lu, G.; Maragakis, P.; Kaxiras, E., Carbon nanotube interaction with DNA.Nano Lett.2005,5,897-900.
    [41]. Zhao, X.; Johnson, J. K., Simulation of adsorption of DNA on carbonnanotubes. J. Am. Chem. Soc.2007,129,10438-10445.
    [42]. Li, X.; Peng, Y. H.; Qu, X. G., Carbon nanotubes selective destabilization ofduplex and triplex DNA and inducing B-A transition in solution. NucleicAcids Res2006,34,3670-3676.
    [43]. Cathcart, H.; Nicolosi, V.; Hughes, J. M.; Blau, W. J.; Kelly, J. M.; Quinn, S.J.; Coleman, J. N., Ordered DNA wrapping switches on luminescence insingle-walled nanotube dispersions. J. Am. Chem. Soc.2008,130,12734-12744.
    [44]. Heller, D. A.; Jeng, E. S.; Yeung, T. K.; Martinez, B. M.; Moll, A. E.; Gastala,J. B.; Strano, M. S., Optical detection of DNA conformational polymorphismon single-walled carbon nanotubes. Science2006,311,508-511.
    [45]. Gao, X. Y.; Xing, G. M.; Yang, Y. L.; Shi, X. L.; Liu, R.; Chu, W. G.; Jing, L.;Zhao, F.; Ye, C.; Yuan, H.; Fang, X. H.; Wang, C.; Zhao, Y. L., Detection oftrace Hg2+via induced circular dichroism of DNA wrapped aroundsingle-walled carbon nanotubes. J. Am. Chem. Soc.2008,130,9190.
    [46]. Li, X.; Peng, Y. H.; Ren, J. S.; Qu, X. G., Carboxyl-modified single-walledcarbon nanotubes selectively induce human telomeric i-motif formation. Proc.Natl Acad. Sci. USA2006,103,19658-19663.
    [47]. Zhao, C.; Peng, Y. H.; Song, Y. J.; Ren, J. S.; Qu, X. G., Self-assembly ofsingle-stranded RNAon carbon nanotube: Polyadenylic acid to form a duplexstructure. Small2008,4,656-661.
    [48]. Peng, Y. H.; Wang, X. H.; Xiao, Y.; Feng, L. Y.; Zhao, C.; Ren, J. S.; Qu, X.G., i-Motif Quadruplex DNA-Based Biosensor for Distinguishing Single-andMultiwalled Carbon Nanotubes. J. Am. Chem. Soc.2009,131,13813-13818.
    [49]. Zhao, C.; Song, Y. J.; Ren, J. S.; Qu, X. G., ADNA nanomachine induced bysingle-walled carbon nanotubes on gold surface. Biomaterials2009,30,1739-1745.
    [50]. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J. P., Prato, M., Bianco, A. and Kostarelos, K. Binding andcondensation of plasmid DNA onto functionalized carbon nanotubes: towardthe construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc.,2005(127),4388-4396.
    [51]. Lovat, V., Pantarotto, D., Lagostena, L., Cacciari, B., Grandolfo, M., Righi,M., Spalluto, G., Prato, M. and Ballerini, L. Carbon nanotube substrates boostneuronal electrical signaling. Nano Lett.,2005(5),1107-1110.
    [52]. Foley, S., Crowley, C., Smaihi, M., Bonfils, C., Erlanger, B.F., Seta, P. andLarroque, C. Cellular localisation of a water-soluble fullerene derivative.Biochem. Biophys. Res. Commun.,2002(294),116-119.
    [53]. Lam, C. W., James, J. T., McCluskey,R. and Hunter, R. L. Pulmonary toxicityof single-wall carbon nanotubes in mice7and90days after intratrachealinstillation. Toxicol. Sci.,2004(77),126-134.
    [54]. Pantarotto, D., Briand, J. P., Prato, M. and Bianco, A. Translocation ofbioactive peptides across cell membranes by carbon nanotubes. Chem.Commun.,2004,16-17.
    [55]. Sato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y.,Kohgo, T., Tamura, K., Akasaka, T., Uo, M.et al.Influence of length oncytotoxicity of multi-walled carbon nanotubes against human acute monocyticleukemia cell line THP-1in vitro and subcutaneous tissue ofrats in vivo. Mol.Biosyst.,2005(1),176-182.
    [56]. Prato, M., Kostarelos, K. and Bianco, A. Functionalized carbon nanotubes indrug design and discovery. Acc. Chem. Res.,2008(41),60-68.
    [57]. Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J.P., Gennaro, R., Prato, M. and Bianco, A. Targeted delivery of amphotericinB to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed.,2005(44),6358-6362.
    [58]. Pastorin, G., Wu, W., Wieckowski, S., Briand, J. P., Kostarelos, K., Prato, M.and Bianco, A. Double functionalisation of carbon nanotubes for multimodaldrug delivery. Chem. Commun.,2006,1182-1184.
    [59]. Zanello, L. P., Zhao, B., Hu, H. and Haddon, R. C. Bone cell proliferation oncarbon nanotubes. Nano Lett.,2006(6),562-567.
    [60]. Mattson, M. P., Haddon, R. C. and Rao,A. M. Molecular functionalization ofcarbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci.,2000(14),175-182.
    [61]. Ren, J. S.; Qu, X. G.; Trent, J. O.; Chaires, J. B., Tiny telomere DNA. NucleicAcids Res.2002,30,2307-15.
    [62]. Bearss, D. J.; Hurley, L. H.; Von Hoff, D. D., Telomere maintenance[20].Ren, J. S.; Qu, X. G.; Trent, J. O.; Chaires, J. B., Tiny telomere DNA. NucleicAcids Res.2002,30,2307-15.
    [63]. Bearss, D. J.; Hurley, L. H.; Von Hoff, D. D., Telomere maintenancemechanisms as a target for drug development. Oncogene2000,19,6632-41.
    [64]. Souiden, Y.; Bouraoui, A.; Chaieb, K.; Mahdouani, K., Telomeres andtelomerase as targeted therapies in cancer treatment. Bull. Cancer2010,97,1087-104.
    [65]. Mergny, J. L.; Riou, J. F.; Mailliet, P.; Teulade-Fichou, M. P.; Gilson, E.,Natural and pharmacological regulation of telomerase. Nucleic Acids Res.2002,30,839-65.
    [66]. Sue, S. C.; Hsiao, H. H.; Chung, B. C. P.; Cheng, Y. H.; Hsueh, K. L.; Chen, C.M.; Ho, C. H.; Huang, T. H., Solution structure of the Arabidopsis thalianatelomeric repeat-binding protein DNA binding domain: A new fold with anadditional C-terminal helix. J. Mol. Biol.2006,356,72-85.
    [67]. Marciniak, R.; Guarente, L., Human genetics-Testing telomerase. Nature2001,413,370-3.
    [68]. Mitchell, J. R.; Wood, E.; Collins, K., A telomerase component is defective inthe human disease dyskeratosis congenita. Nature1999,402,551-5.
    [69]. Sun, D.; Lopez-Guajardo, C. C.; Quada, J.; Hurley, L. H.; Von Hoff, D. D.,Regulation of catalytic activity and processivity of human telomerase.Biochemistry1999,38,4037-44.
    [70]. Cathers, B. E.; Han, H. Y.; Sun, D.; Hurley, L. H., Telomerase kinetics andmechanism: Using G-quadruplex interactive compounds as mechanistic probes.Abst.r Pap Amer. Chem. Soc.1997,214,197-MEDI.
    [71]. Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, P.L. C.; Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W., Specificassociation of human telomerase activity with immortal cells and cancer.Science1994,266,2011-5.
    [72]. Balasubramanian, S.; Neidle, S., G-quadruplex nucleic acids as therapeutictargets. Curr. Opin. Chem. Biol.2009,13,345-53.
    [73]. Brachner, A.; Sasgary, S.; Pirker, C.; Rodgarkia, C.; Mikula, M.; Mikulits, W.;Bergmeister, H.; Setinek, U.; Wieser, M.; Chin, S. F.; Caldas, C.; Micksche, M.;Cerni, C.; Berger, W., Telomerase-and alternative telomerelengthening-independent telomere stabilization in a metastasis-derived humannon-small cell lung cancer cell line: Effect of ectopic hTERT. Cancer Res.2006,66,3584-92.
    [74]. Reddel, R. R., Alternative lengthening of telomeres, telomerase, and cancer.Cancer Lett.2003,194,155-62.
    [75]. Xu, Y., Chemistry in human telomere biology: structure, function andtargeting of telomere DNA/RNA. Chem. Soc. Rev.2011.
    [76]. Oganesian L, Bryan TM. Physiological relevance of telomeric G-quadruplexformation: a potential drug target. BioEssays,2007,29:155–165.
    [77]. Huppert JL. Structure, location and interactions of G-quadruplexes. FEBS J,2010,277:3452–3458.
    [78]. Williamson JR, Raghuraman MK, Cech TR. Monovalent cation-inducedstructure of telomeric DNA: the G-quartet model. Cell,1989,59:871–880.
    [79]. Gellert M, Lipsett MN, Davies DR. Helix formation by guanylic acid. ProcNatl Acad Sci USA,1962,48:2013–2018.
    [80]. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA:sequence, topology and structure. Nucleic Acids Res,2006,(34):5402-5415.
    [81]. Huppert JL. Four-stranded nucleic acids structure function and targeting ofG-quadruplex. Chem Soc Rev,2008,37:1375–1384.
    [82]. Neidle S, Parkinson GN. The structure of telomeric DNA.. Curr Opin StrucBiol,2003,(13):275-283.
    [83]. Lane AN, Chaires JB, Gray RD, et al. Stability and kinetics of Gquadruplexstructures. Nucleic Acids Res,2008,36:5482-515.
    [84]. Todd AK, Johnston M, Neidle S.2005. Highly prevalent putative quadruplexsequence motifs in human DNA. Nucleic Acids Res2005,33:2901–2907.
    [85]. Stegle O, Payet L, Mergny JL, et al. Predicting and understanding the stabilityof G-quadruplexes. Bioinformatics,2009;25: i374-82.
    [86]. Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the humangenome. Nucleic Acids Res,2005,33:2908–2916.
    [87]. Balasubramanian S, Neidle S. G-quadruplex nucleic acids as therapeutictargets. Curr Opin Chem Bio,2009,13:345–353.
    [88]. Zakian VA.The ends have arrived. Cell,2009,13:1038-1040
    [89]. O'Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes againstgenome instability. Nat Rev Mol Cell Biol.2010,11:171-181.
    [90]. Shore D, Bianchi A. Telomere length regulation: coupling DNA endprocessing to feedback regulation of telomerase. EMBO J2009,28:2309-2322.
    [91]. Shippen-Lentz D, Blackburn EH. Functional evidence for an RNA template intelomerase. Science,1990,247:546–552.
    [92]. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, HarleyCB, Shay JW, Lichtsteiner S, Wright WE Extension of Life-Span byIntroduction of Telomerase into Normal Human Cells. Science,1998,279:349–352.
    [93]. Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway:Recombination-mediated telomere maintenance mechanism in human cells. JBiochem.2011,149(1):5-14
    [94]. Harley CB. Telomerase and cancer therapeutics. Nat Rev Cancer,2008,8:167-179
    [95]. Palm W, de Lange T. How shelterin protects Mammalian telomeres. AnnuRev Genet2008,42:301–334.
    [96]. Martínez P, Blasco MA. Role of shelterin in cancer and aging. Aging Cell2010,9:653-66.
    [97]. Dai JX, Carver M, Yang DZ. Polymorphism of human telomeric quadruplexstructures. Biochimie,2008,(90):1172-1183.
    [98]. Wang Y, Patel DJ. Solution structure of the human telomeric repeatd[AG3(T2AG3)3] G-tetraplex. Structure,1993,1:263-282.
    [99]. Parkinson GN, Lee MP, Neidle S. Crystal structure of parallel quadruplexesfrom human telomeric DNA. Nature,2002,417:876-880.
    [100]. Li J, Correia JJ, Wang L, Trent J O, Chaires JB. Not so crystal clear: thestructure of the human telomere G-quadruplex in solution differs from thatpresent in a crystal. Nucleic Acids Res,2005,33:4649-4659.
    [101]. Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ. Human telomericsequence forms a hybrid-type intramolecular G-quadruplex structure withmixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res,2006,(34):2723-2735.
    [102]. Phan A.T, Kuryavyi V, Luu KN, Patel DJ. Structure of two intramolecularG-quadruplexes formed by natural human telomere sequences in K+solution.Nucleic Acids Res,2007,35:6517-6525.
    [103]. Dai JX, Carver M, Punchihewa C, Jones RA, Yang DZ. Structure of theHybrid-2type intramolecular human telomeric G-quadruplex in K+solution:insights into structure polymorphism of the human telomeric sequence. NucleicAcids Res,2007,(35):4927-4940.
    [104]. Renciuk D, Kejnovska I, Skolakova P, Bednarova K, Motlova J,&Vorlickova M. Arrangements of human telomere DNA quadruplex inphysiologically relevant K+solutions. Nucleic Acids Res,2009,37:6625–6634.
    [105]. Yu HQ, Miyoshi D,&Sugimoto N. Characterization of structure and stabilityof long telomeric DNA G-quadruplexes. J Am Chem Soc,2006,128:15461–15468.
    [106]. Xu, Y., Ishizuka, T., Kurabayashi, K.,&Komiyama, M. Consecutive formationof G-quadruplexes in human telomeric overhang DNA: A protective cappingstructure for telomere ends. Angew Chem Int Ed,2009,48:7833–7836.
    [107]. Leroy JL, Gueron M, Mergny J L, Helene C. Intramolecular Folding of aFragment of the Cytosine-Rich Strand of Telomeric DNA into an I-Motif.Nucleic Acids Res,1994,(22):1600-1606.
    [108]. Han XG, Leroy JL, Gueron M. An intramolecular i-motif: the solutionstructure and base-pair opening kinetics of d(5mCCT3CCT3ACCT3CC). J MolBiol,1998,(278):949-965.
    [109]. Brooks TA, Kendrick S, Hurley LH.Making sense of G-quadruplex andi-motif functions in oncogene promoters. FEBS J,2010,277:3459–3469.
    [110]. Gueron M, Leroy JL. The i-motif in nucleic acids. Curr Opin Struct Biol,2000,10:326–331.
    [111]. Lacroix L, Liénard H, Labourier E, Djavaheri-Mergny M, Lacoste J, LeffersH, Tazi J, Hélène C, Mergny JL. Identification of two human nuclear proteinsthat recognise the cytosine-rich strand of human telomeres in vitro. NucleicAcids Res,2000,28:1564–1575.
    [112]. Lipps HJ, Rhodes D. G-quadruplex structures: in vivo evidence and function.Trends Cell Biol,2009,19:414-422.
    [113]. Antonio MD, Rodriguez R, Balasubramanian S. Experimental approaches toidentify cellular G-quadruplex structures and functions. Methods,2012,doi:10.1016/j.ymeth.2012.01.008
    [114]. Fry M. Tetraplex DNA and its interacting proteins. Front Biosci,2007,12:4336-4351.
    [115]. Giraldo RM, Suzuki L. Chapman&Rhodes D. Promotion of parallel DNAquadruplexes by a yeast telomere binding protein: a circular dichroism study.Proc Natl Acad Sci U S A,1994,91:7658-7662.
    [116]. Fry M.&Loeb LA. Human Werner syndrome DNA helicase unwindstetrahelical structures of the fragile X syndrome repeat sequence d (CGG)n. JBiol Chem,1999,274:12797-12802.
    [117]. Sun H, Karow JK, Hickson ID&Maizels N. The Bloom's syndrome helicaseunwinds G4DNA. J Biol Chem,1998,273:27587-27592.
    [118] Sun H, Bennett RJ&Maizels N. The Saccharomyces cerevisiae Sgs1helicaseefficiently unwinds G-G paired DNAs. Nucleic Acids Res,1999,27:1978-1984.
    [119]. Zaug AJ, Podell ER&Cech TR. Human POT1disrupts telomericG-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci U SA,2005,102:10864-10869.
    [120]. Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. Intracellulartranscription of G-rich DNAs induces formation of G-loops, novel structurescontaining G4DNA. Genes Dev,2004,18:1618–1629.
    [121]. Granotier C, Pennarun G, Riou L, Hoffschir F, Gauthier LR, et al.Preferential binding of a G-quadruplex ligand to human chromosome ends.Nucleic Acids Res,2005,33:4182–4190.
    [122]. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, et al. In vitrogenerated antibodies specific for telomeric guanine-quadruplex DNA reactwith Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA,2001,98:8572–8577.
    [123]. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ. Telomereend-binding proteins control the formation of G-quadruplex DNA structures invivo. Nat Struct Mol Biol,2005,12:847–854.
    [124]. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, et al.Mammalian telomeres end in a large duplex loop. Cell,1999,97:503-514.
    [125]. de Lange T. T-loops and the origin of telomeres. Nat Rev Mol Cell Biol,2004,5:323-329.
    [126]. Xu Y. Chemistry in human telomere biology: structure, function andtargeting of telomere DNA/RNA. Chem Soc Rev,2011,40:2719-2740.
    [127]. Xu Y, Sato H, Sannohe Y, Shinohara KI, Sugiyama H. Stable LariatFormation Based on a G-Quadruplex Scaffold. J Am Chem Soc,2008,130:16470.
    [128]. Oganesian L, Karlseder J. Telomeric armor: the layers of end protection. JCell Sci.2009,122:4013-4025.
    [129]. Zhang N, Phan AT, Patel DJ.(3+1) Assembly of three human telomericrepeats into an asymmetric dimeric G-quadruplex. J Am Chem Soc,2005,127:17277–17285.
    [130]. Sen D, Gilbert W. Formation of parallel four-stranded complexes byguanine-rich motifs in DNA and its implications for meiosis. Nature,1988,334:364–366.
    [131]. Xu Y, Noguchi Y, Sugiyama H. The new models of the human telomered[AGGG(TTAGGG)(3)] in K(+) solution. Bioorg Med Chem,2006,14:5584–5591.
    [132]. Azzalin CM, Reichenbach P, Khoriauli L, Lingner J. TelomericRepeat-Containing RNA and RNA Surveillance Factors at MammalianChromosome Ends. Science,2007,318:798-801.
    [133]. Schoefter S, Blasco MA. Developmentally regulated transcription ofmammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol,2008,10:228-236.
    [134]. Xu Y, Kaminaga K, Komiyama M. G-Quadruplex Formation by HumanTelomeric Repeats-Containing RNA in Na+Solution. J Am Chem Soc,2008,130:11179-11184.
    [135]. Martadinata H, Phan AT, Structure of Propeller-Type Parallel-Stranded RNAG-Quadruplexes, Formed by Human Telomeric RNA Sequences in K+Solution. J Am Chem Soc,2009,131:2570-2578.
    [136]. Collie GW, Haider SM, Neidle S, Parkinson GN. A crystallographic andmodelling study of a human telomeric RNA (TERRA) quadruplex. NucleicAcids Res,2010,38:5569-80.
    [137]. Xu Y, Ishizuka T, Kimura T, Komiyama M. A U-tetrad stabilizes humantelomeric RNA G-quadruplex structure. J Am Chem Soc,2010,132:7231-7233.
    [138]. Xu Y, Suzuki Y, Ito K, Komiyama M. Telomeric Repeat-Containing RNAStructure in Living Cells. Proc Natl Acad Sci USA,2010,107:14579-84.
    [139]. Xu Y, Ishizuka T, Kurabayashi K, Komiyama M. Consecutive Formation ofG-Quadruplexes in Human Telomeric-Overhang DNA: A Protective CappingStructure for Telomere Ends. Angew Chem Int Ed,2009,48:7833-7836.
    [140]. Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is anatural ligand and direct inhibitor of human telomerase. Nucleic Acids Res,2010,38:5797-806.
    [141]. Lòpez de Silanes I, Stagno d’Alcontres M, Blasco MA. TERRA transcriptsare bound by a complex array of RNA-binding proteins. Nat. Commun,2010,1:33.
    [142]. Flynn RL, Centore RC, O'Sullivan RJ, et al. TERRA and hnRNPA1orchestrate an RPA-to-POT1switch on telomeric singlestranded DNA. Nature,2011,471:532-6.
    [143]. Zahler AM, Williamson JR, Cech WR, Prescott DM. Inhibition of telomeraseby G-quartet structures. Nature,1991,350:718–720
    [144]. Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, et al.1997.Inhibition of human telomerase by a G-quadruplex-interactive compound. JMed Chem,1997,40:2113–2116.
    [145]. Perry PJ, Read MA., Davies RT, Gowan SM, Reszka AP, Wood AA, KellandLR, Neidle S.2,7-Disubstituted Amidofluorenone Derivatives as Inhibitors ofHuman Telomerase. J Med Chem,1999,42:2679-2684.
    [146]. Read M, Harrison RJ, Romagnoli B, Tanious FA, Gowan SH, Reszka AP,Wilson WD, Kelland L R, Neidle S. Structure-based design of selective andpotent G quadruplex-mediated telomerase inhibitors. Proc Natl Acad Sci U SA,2001,98:4844-489.
    [147]. Han H, Langley DR, Rangan A, Hurley L H.Selective Interactions ofCationic Porphyrins with G-Quadruplex Structures. J Am Chem.Soc,2001,123:8902-13.
    [148]. Han H, Cliff, CL, Hurley LH. Accelerated Assembly of G-QuadruplexStructures by a Small Molecule. Biochemistry,1999,38:6981-6986.
    [149]. Jantos K, Rodriguez R, Ladame S, Shirude PS, Balasubramanian S.Oxazole-Based Peptide Macrocycles: A New Class of G-QuadruplexBinding Ligands. J Am Chem Soc,2006,128:13662-3.
    [150]. Neidle S. The structures of quadruplex nucleic acids and their drugcomplexes. Curr Opin Struc Biol,2009,19:239–250.
    [151]. Gavathiotis E, Heald RA, Stevens MF, Searle MS. Drug recognition andstabilisation of the parallel-stranded DNA quadruplex d(TTAGGGT)4containing the human telomeric repeat. J Mol Biol,2003,334:25-36.
    [152]. Parkinson GN, Ghosh R, Neidle S. Structural basis for binding of porphyrinto human telomeres. Biochemistry2007,46:2390-2397.
    [153]. Campbell NH, Parkinson GN, Reszka AP, Neidle S: Structural basis ofDNA quadruplex recognition by an acridine drug. J Am Chem Soc,2008,130:6722-6724.
    [154]. Shinohara K, Sannohe Y, Kaieda S, Tanaka K, Osuga H, Tahara H, Xu Y,Kawase T, Bando T, Sugiyama H. A Chiral Wedge Molecule InhibitsTelomerase Activity. J Am Chem Soc,2010,(132):3778-3782.
    [155]. Yu H, Ren J, Qu X. Chiral metallo-supramolecular complexes selectivelyrecognize human telomeric G-quadruplex DNA. Nucleic Acids Res.2008,36:5695-5703.
    [156]. Zhao CQ, Geng J, Feng LY, Ren JS, Qu XG. Chiral metallo-supramolecularcomplexes selectively induce human telomeric G-quadruplex formation undersalt-deficient conditions. Chem Eur J,2011,17:8209-8215
    [157]. Yu H, et al. DNA Loop sequence as the determinant for chiralsupramolecular compound G-quadruplex selectivity. J Med Chem,2010,53:492-498.
    [158]. Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; Mclean, R. S.;Brus, L. E., Racemic single-walled carbon nanotubes exhibit circular dichroismwhen wrapped with DNA. J Am Chem Soc,2006,128:9004-9005.
    [159]. Dovbeshko G. I., Repnytska O. P., Obraztsova E. D., Shtogun Y. V., DNAinteraction with single-walled carbon nanotubes: a SEIRA study. Chem PhysLett,2003,(3-4):432-437.
    [160]. Heller D. A., Jeng E. S., Yeung T. K., Martinez B. M., Moll A. E., Gastala J.B., Strano M. S., Optical detection of DNA conformational polymorphism onsingle-walled carbon nanotubes, Science,2006,(5760):508-511.
    [161]. Li, X., Peng, Y., Qu, X. Carbon nanotubes selective destabilization of duplexand triplex DNA and inducing B-A transition in solution. Nucleic Acids Res.2006,34:3670-3676.
    [162]. Li, X., Peng, Y., Ren, J., Qu, X. Carboxyl-modified single-walled carbonnanotubes selectively induce human telomeric i-motif formation. Proc NatlAcad Sci USA,2006,103:19658-19663.
    [163]. Peng, Y., Li, X., Ren, J., Qu, X. Single-walled carbon nanotubes binding tohuman telomeric i-motif DNA: significant acceleration of S1nucleasecleavage rate. Chem Commun,2007,48,5176-5178.
    [164]. Kim MY, Gleason-Guzman M, Izbicka E, Nishioka D, Hurley LH.. Thedifferent biological effects of telomestatin and TMPyP4can be attributed totheir selectivity for interaction with intramolecular or intermolecularG-quadruplex structures. Cancer Res,2003,63:3247–3256.
    [165]. Kim, M. Y., Vankayalapati, H., Shin-Ya, K., Wierzba, K.,&Hurley, L. H..Telomestatin, a potent telomerase inhibitor that interacts quite specificallywith the human telomeric intramolecular g-quadruplex. J Am ChemSoc,2002,124:2098–2099.
    [166]. Rezler, E. M., Seenisamy, J., Bashyam, S., Kim, M. Y., White, E., Wilson,W. D., et al. Telomestatin and diseleno sapphyrin bind selectively to twodifferent forms of the human telomeric G-quadruplex structure. J Am ChemSoc,2005,127:9439–9447.
    [167]. Gomez, D., Paterski, R., Lemarteleur, T., Shin-Ya, K., Mergny, J. L.,&Riou, J. F.(2004). Interaction of telomestatin with the telomeric single-strandoverhang. J Biol Chem,2004,279:41487–41494.
    [168]. Tahara, H., Shin-Ya, K., Seimiya, H., Yamada, H., Tsuruo, T.,&Ide, T.G-Quadruplex stabilization by telomestatin induces TRF2protein dissociationfrom telomeres and anaphase bridge formation accompanied by loss of the3’telomeric overhang in cancer cells. Oncogene,2006,25:1955–1966.
    [169]. Tauchi T, Shin-Ya K, Sashida G, Sumi M, Nakajima A, et al..Activity of anovel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095),against human leukemia cells: involvement of ATM-dependent DNA damageresponse pathways. Oncogene2003,22:5338–5347.
    [170]. Tauchi T, Shin-Ya K, Sashida G, Sumi M, Okabe S, Ohyashiki JH,Ohyashiki K: Telomerase inhibition with a novel G-quadruplex interactiveagent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene2006,25:5719-5725.
    [171]. Gomez, D., et al. Telomestatin-induced telomere uncapping is modulated byPOT1through G-overhang extension in HT1080human tumor cells. J BiolChem,2006,281:38721–38729.
    [172]. Gomez, D., et al.. The G-quadruplex ligand telomestatin inhibits POT1binding to telomeric sequences in vitro and induces GFP-POT1dissociationfrom telomeres in human cells. Cancer Res,2006,66,6908–6912.
    [173]. Burger AM, Dai F, Schultes CM, Reszka AP, MooreMJ, Double JA, NeidleS: The G-quadruplex-interactive molecule BRACO-19inhibits tumor growth,consistent with telomere targeting and interference with telomerase function.Cancer Res,2005,65:1489-1496.
    [174]. Leonetti, C., et al. Biological activity of the G-quadruplex ligand RHPS4(3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) isassociated with telomere capping alteration. Mol Pharm,2004,66:1138–1146.
    [175]. Phatak P, Cookson JC, Dai F, Smith V, Gartenhaus RB, Stevens MF, BurgerAM: Telomere uncapping by the G-quadruplex ligand RHPS4inhibitsclonogenic tumour cell growth in vitro and in vivo consistent with a cancerstem cell targeting mechanism. Br J Cancer2007,96:1223-1233.
    [176]. Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M, Galati R, SperdutiI, Stevens MF, D’Incalci M, Blasco M et al.: Telomere damage induced by theG-quadruplex ligand RHPS4has an antitumor effect. J Clin Invest,2007,117:3236-3247.
    [177]. Han H, Bennett RJ&Hurley LH: Inhibition of unwinding of G-quadruplexstructures by Sgs1helicase in the presence of N,N'-bis[2-(1-piperidino)ethyl]-3,4,9,10-perylenetetracarboxylic diimide, aG-quadruplexinteractive ligand. Biochemistry,2000,39:9311-9316.
    [178]. Li JL, Harrison RJ, Reszka AP, Brosh Jr RM, Bohr VA, Neidle S, HicksonID. Inhibition of the Bloom’s and Werner’s Syndrome helicases byG-quadruplex interacting ligands. Biochemistry,2001,40:15194-15202.
    [179]. Pennarun G, Granotier C, Gauthier LR, Gomez D, Hoffschir F, Mandine E,Riou JF, Mergny JL, Mailliet P, and Boussin FD. Apoptosis related totelomere instability and cell cycle alterations in human glioma cells treated bynew highly selective G-quadruplex ligands. Oncogene2005,24:2917–2928.
    [180]. Temime-Smaali N, Guittat L, Sidibe A, Shin-ya K, Trentesaux C, Riou JF.The G-Quadruplex Ligand Telomestatin Impairs Binding of TopoisomeraseIIIα to G-Quadruplex-Forming Oligonucleotides and Uncaps Telomeres inALT Cells. PLoS One.2009,4:e6919.
    [181]. Gowan SM, Harrison JR, Patterson L, Valenti M, Read MA, Neidle S&Kelland LR. A G-quadruplex-interactive potent small-molecule inhibitor oftelomerase exhibiting in vitro and in vivo antitumor activity. Mol Pharmacol2002,61:1154–1162.
    [182]. Leonetti C, Scarsella M, Riggio G, Rizzo A, Salvati E, D’Incalci M,Staszewsky L, Frapolli R, Stevens MF, Stoppacciaro A et al. G-quadruplexligand RHPS4potentiates the antitumor activity of camptothecins inpreclinical models of solid tumors. Clin Cancer Res,2008,14:7284–7291.
    [183]. Gunaratnam M, Swank S, Haider SM, Galesa K, Reszka AP, Beltran M,Cuenca F, Fletcher JA&Neidle S. Targeting human gastrointestinal stromaltumor cells with a quadruplex-binding small molecule. J Med Chem2009,52:3774–3783.
    [184]. Halder, K.,&Chowdhury, S. Quadruplex-coupled kinetics distinguishesligand binding between G4DNA motifs. Biochemistry,2007,46:14762–14770.
    [185]. Lemarteleur, T., Gomez, D., Paterski, R., Mandine, E., Mailliet, P.,&Riou, J.F. Stabilization of the c-myc gene promoter quadruplex by specific ligands’inhibitors of telomerase. Biochem Bioph Res Co,2004,323:802–808.
    [186]. Brown, D. G., Sanderson, M. R., Garman, E. and Neidle, S. Crystal-Structureof a Berenil-d(CGCAAATTTGCG) Complex-an Example of Drug DNARecognition Based on Sequence-Dependent Structural Features. J. Mol. Biol.,1992(226),481-490.
    [187]. Vega, M. C., Saez, I. G., Aymami, J., Eritja, R., Vandermarel, G. A., Vanboom,J. H., Rich, A. and Coll, M. Three-dimensional crystal structure of the A-tractDNA dodecamer d(CGCAAATTTGCG) complexed with theminor-groove-binding drug Hoechst33258. Eur. J. Biochem.,1994(222),721-726.
    [188]. Wood, A. A., Nunn, C. M., Czarny, A., Boykin, D. W. and Neidle, S.Variability in DNA minor groove width recognised by ligand binding: thecrystal structure of a bis-benzimidazole compound bound to the DNA duplexd(CGCGAATTCGCG)2. Nucleic Acids Res.,1995(23),3678-3684.
    [189]. Leonard, G. A., Zhang, S., Peterson, M. R., Harrop, S. J., Helliwell, J. R.,Cruse, W. B. T., Destaintot, B.L., Kennard, O., Brown, T. and Hunter, W. N.Self-Association of a DNA Loop Creates a Quadruplex:Crystal-Structure ofd(GCATGCT) at1.8-Angstrom Resolution. Structure,1995(3),335-340.
    [190]. Phan, A. T. and Mergny, J. L. Human telomeric DNA: G-quadruplex, i-motifand Watson-Crick double helix. NucleicAcids Res.,2002(30),4618-4625.
    [191]. Li, X., Peng, Y., Ren, J. and Qu, X. Carboxyl-modified single-walled carbonnanotubes selectively induce humantelomeric i-motif formation. Proc. Natl.Acad. Sci. USA,2006(103),19658-19663.
    [192]. Qu, X. and Chaires, J. B. Analysis of drug-DNA binding data. MethodsEnzymol,2000(321),353-369.
    [193]. Sprecher, C. A., Baase, W. A. and Johnson, W. C., Jr. Conformation andcircular dichroism of DNA. Biopolymers,1979(18),1009-1019.
    [194]. Baase, W. A. and Johnson, W. C., Jr. Circular dichroism and DNA secondarystructure. Nucleic Acids Res.,1979(6),797-814.
    [195]. Bokma, J. T., Johnson, W. C., Jr. and Blok, J. CD of the Li-salt of DNA inethanol/water mixtures: evidence for the B-to C-form transition in solution.Biopolymers,1987(26),893-909.
    [196]. Remeta, D. P., Mudd, C. P., Berger, R.L. and Breslauer, K. J. Thermodynamiccharacterization of daunomycin-DNA interactions: microcalorimetricmeasurements of daunomycin-DNA binding enthalpies. Biochemistry,1991(30),9799-9809.
    [197]. Kagemoto, A., Takagi, H., Naruse, K. and Baba, Y. ThermodynamicCharacterization of Binding of DNA with Cisplatin in Aqueous-Solution byCalorimetry. Thermochim. Acta,1991(190),191-201.
    [198]. Kagemoto, A., Kunihiro, A. and Baba, Y. Thermodynamic Studies onInteractions between DNAand Dye. Thermochim. Acta,1994(242),65-75.
    [199]. Wiseman, T., Williston, S., Brandts, J. F. and Lin, L. N. Rapid measurementof binding constants and heats of binding using a new titration calorimeter.Anal. Biochem.,1989(179),131-137.
    [200].陈勇,赵传奇,曲晓刚*.人类端粒DNA的分子识别及其作用机制探讨.中国科学:化学2012.42(1):1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700