利用斑马鱼模型研究鱼藤素对COX/PGE_2信号通路的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     鱼藤素(deguelin)是从豆科毛鱼藤植物中分离的一种黄酮类化合物,可抑制肺癌、胃癌、乳腺癌细胞等多种肿瘤细胞增殖并诱导其凋亡,体外实验表明鱼藤素可以抑制PI3K活性,降低pAkt磷酸化水平,下调环氧合酶-2(cyclooxygenase-2,COX-2)的蛋白表达,但是有关鱼藤素在体内的作用机制尚不清楚。本实验室利用模式生物斑马鱼胚胎研究鱼藤素初步发现:0.6μM浓度鱼藤素处理2细胞期胚胎,可以使胚胎在受精后4小时(4 hpf,4 hours post fertilization,又称sphere时期)停止发育,不能进行原肠胚运动,该表型与干扰斑马鱼胚胎COX/PGE2信号通路或PI3K/Akt信号通路的表型相似,推断鱼藤素可能抑制了斑马鱼胚胎的COX/PGE2信号通路,进而影响了下游PI3K/Akt信号通路,具体机制还有待探究。本课题希望利用荧光定量PCR,整胚原位杂交生物技术来检测斑马鱼上COX/PGE2信号通路和其下游相关基因的变化,而后选取与COX信号通路密切相关的肿瘤细胞,检测鱼藤素对其增殖的抑制作用,利用荧光定量PCR法检测这些肿瘤细胞中COX信号通路相关基因的变化,以验证鱼藤素的抗肿瘤作用与抑制COX信号通路相关性,为预测鱼藤素在体内抗肿瘤的作用机理提供基础依据。
     研究结果:
     (1)利用荧光定量PCR检测0.6μM鱼藤素作用前后的sphere期胚胎COX/PGE2通路相关基因,发现coxl, cox2b在转录水平并未发生明显变化,PGE2合成酶ptges、ptges3a的mRNA的表达下降水平与空白对照组相比有统计学差别(p<0.05),PGE2的受体ep2,ep4均发生显著下降,下游基因egrl和cyclin D1基因表达均发生了显著下调(p<0.01)。
     (2)0.16μM鱼藤素处理6 hpf时期胚胎至21体节期,用原位杂交的方法研究scl和gatal表达变化,发现在10体节期和21体节期,鱼藤素均抑制了scl和gatal的表达。5μM dmPGE2、0.16μM鱼藤素、5μM dmPGE2和0.16μM鱼藤素混合物处理10体节时期胚胎至30 hpf,用原位杂交的方法研究runxl表达,发现在30 hpf时期,与空白对照组相比,5μM dmPGE2提高了runxl表达,HSCs的数量明显增多,0.16μM鱼藤素抑制了runxl的表达,而用5μM dmPGE2和0.16μM鱼藤素混合物处理,与dmPGE2单独处理相比,runxl表达明显下降。
     (3)利用荧光定量PCR检测了21体节期胚胎COX/PGE2信号相关基因,另外scl, gatal, runxl, cmyb基因在这一时期对血细胞系前体均有特异性表达,对这四个标记性基因也进行了相对定量分析,其结果发现:coxl, ptges3a, ep4a, ep4b, egrl, cyclinDl, scl, gatal, runxl, cmyb基因均发生了显著下降(p<0.01), cox2b, ptges基因表达下降水平与空白对照组相比有统计学差别(p<0.05)。另外,利用荧光定量PCR法检测了30 hpf时期COX/PGE2信号通路相关基因,研究发现在30 hpf这一时期,COX/PGE2信号通路上cox2b基因发生了显著下降,其下游基因egrl也发生了显著下降(p<0.01), ep4b受体基因表达下降水平与空白对照组相比有统计学差别(p<0.05)。
     (4)鱼藤素作用于MCF-7, Mia PaCa-2, PC-3细胞48小时后,均可以抑制其细胞增殖,随着浓度的增加,抑制效果越为明显。荧光定量PCR检测鱼藤素作用48小时后这三个细胞的COX/PGE2信号通路相关基因,发现鱼藤素处理后,MCF-7细胞中COX1和EP2基因的表达发生了明显下降(p<0.01); Mia PaCa-2细胞中PTGES基因的表达水平发生了显著降低(p<0.01), EP4和CCND1基因的表达下降水平与空白对照组相比有统计学差别(p<0.05); PC-3细胞中COX1基因的表达水平发生了显著下降(p<0.01)。
     结论:
     (1)鱼藤素可以抑制斑马鱼胚胎体内COX/PGE2信号通路相关基因的表达。
     (2)鱼藤素可以抑制MCF-7, Mia PaCa-2, PC-3细胞增殖。
     (3)鱼藤素可以抑制MCF-7, Mia PaCa-2, PC-3细胞中COX/PGE2信号通路的相关基因的表达。
Objective:
     Deguelin, a flavonoid derived from Derris elliptica within the Leguminosae family, has been shown to inhibit Tumor cell proliferation and induce several types of cancers apoptosis, including lung, stomach and breast cancer cells. Deguelin inhibited PI3K activity and reduced pAkt levels and decreased expression of cyclooxygenase 2 in vitro studies on cancer cells. However, the mechanism action of deguelin in vivo is still not clear. By using the externally developing zebrafish embryos as a model, we found that embryos treated with 0.6μM deguelin at two-cell stage exhibited gastrulation arrest at 4 hours post fertilization stage(4 hpf, it is also called sphere stage) micking phenotypes of Cox-1, Ptges, EP4-deficient and inhibition PI3K/Akt signaling embryos. Therefore, we hypothesized that deguelin may disrupt the COX/PGE2 pathway in vivo. The functional role for deguelin in vivo remains virtually unknown. We hope to analysis the alterations of COX/PGE2 signaling genes transcript level in embryos treated with deguelin compared to control using qRT-PCR and whole-mount in situ hybridization. Then we selected tumor cells associated with COX pathway to observe the proliferative inhibition process by deguelin using MTT assay. QRT-PCR assay was performed to detect the alterations of COX/PGE2 signaling genes transcript level in these tumor cells to investigate the interaction between the effect of anti-tumor of deguelin and the inhibition of COX/PGE2 signal pathway.
     Results:
     (1) Using qRT-PCR to analysis the alterations of COX/PGE2 signaling genes transcript levels in embryos treated with 0.6μM deguelin compared to control, we found that PGE2 synthetases, ptges and ptges3a, were significantly reduced, else PGE2 receptors, ep2 and ep4, were significantly reduced. Consistently the downstream genes egrl and cyclin D1 were significantly decreased.
     (2) Using whole-mount in situ hybridization to observe the expression of scl and gatal in embryos treated with 0.16μM deguelin from 6 hpf to 21-somite stage compared to control, we found that deguelin decreased scl and gatal expression at 10-somite and 21-somite stages. At 30 hpf stage,0.16μM deguelin inhibited the expression of runxl compared to control embryos,5μM dmPGE2 enhanced runxl expression in control embryos, while the enhancing effect of dmPGE2 on HSCs was reduced significantly by deguelin.
     (3) QRT-PCR was used to examine the alterations of target genes transcript levels in the 21-somite stage of embryos treated with 0.16μM deguelin from 6 hpf to 21-somite stage compared to control embryos, we found that coxl, ptges3a, ep4a, ep4b, egrl, cyclinDl, scl, gatal, runxl, cmyb were downregulated in deguelin-treated embryos. At 30 hpf stage, ep4b was found to been downregulated by deguelin, cox2b and the downstream gene egrl were significantly decreased.
     (4) MCF-7, Mia PaCa-2 and PC-3 cells were treated with different concentrations of deguelin for 48 hours, resulted in the inhibition of cell proliferation in a dose-dependent manner. Using qRT-PCR to analysis the alterations of COX/PGE2 signaling genes transcript levels in these three tumor cells treatment with deguelin for 48 hours, the data showed that COX1 and EP2 were downregulated at the mRNA levels in MCF-7 cell. In Mia PaCa-2 cell, PTGES was downregulated significantly by deguelin, also EP4 and CCND1 transcript levels were decreased compared to control. In PC-3 cell, COX1 was downregulated significantly by deguelin.
     Conclusion:
     (1) Deguelin downregulated the expression of COX/PGE2 signaling genes in zebrafish embryos.
     (2) Deguelin inhibited the proliferation of MCF-7, Mia PaCa-2 and PC-3 cells.
     (3) Deguelin downregulated the expression of COX/PGE2 signaling genes in MCF-7, Mia PaCa-2 and PC-3 cells.
引文
[1]Chun KH, Kosmeder JW,2nd, Sun S, et al. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells[J]. J Natl Cancer Inst,2003,95(4):291-302.
    [2]Bortul R, Tazzari PL. Billi AM, et al. Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway[J]. Br J Haematol,2005,129(5):677-686.
    [3]Chen Y, Wu Q, Cui GH, et al. Deguelin blocks cells survival signal pathways and induces apoptosis of HL-60 cells in vitro[J]. Int J Hematol,2009,89(5):618-623.
    [4]Hu J, Ye H, Fu A, et al. Deguelin--an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model[J]. Int J Cancer 2010,127(10):2455-2466.
    [5]Lee HY, Suh YA, Kosmeder JW, et al. Deguelin-induced inhibition of cyclooxygenase-2 expression in human bronchial epithelial cells [J]. Clin Cancer Res,2004,10(3):1074-1079.
    [6]Kim JH, Kim JH, Yu YS, et al. Deguelin inhibits retinal neovascularization by down-regulation of HIF-1 alpha in oxygen-induced retinopathy[J]. J Cell Mol Med,2008,12(6A):2407-2415.
    [7]Yan Y, Wang Y, Tan Q, et al. Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice[J]. Neoplasia,2005, 7(12):1053-1057.
    [8]Lee HY, Oh SH, Woo JK, et al. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis[J]. J Natl Cancer Inst,2005, 97(22):1695-1699.
    [9]Dahm R, Geisler R. Learning from small fry:the zebrafish as a genetic model organism for aquaculture fish species[J]. Mar Biotechnol (NY),2006,8(4): 329-345.
    [10]Langheinrich U. Zebrafish:a new model on the pharmaceutical catwalk[J]. Bioessays,2003,25(9):904-912.
    [11]Spitsbergen JM, Tsai H-W, Reddy A, et al. Neoplasia in Zebrafish (Danio rerio) Treated with 7,12-Diniethylbenz[a]anthracene by Two Exposure Routes at Different Developmental Stages[J]. Toxicol Pathol,2000,28(5):705-715.
    [12]Walter RB, Kazianis S. Xiphophorus Interspecies Hybrids as Genetic Models of Induced Neoplasia[J]. ILAR J,2001,42(4):299-321.
    [13]Cha YI, Kim SH, Sepich D, et al. Cyclooxygenase-1-derived PGE2 promotes cell motility via the G-protein-coupled EP4 receptor during vertebrate gastrulation[J]. Genes Dev,2006,20(1):77-86.
    [14]Speirs CK, Jernigan KK, Kim SH, et al. Prostaglandin Gbetagamma signaling stimulates gastrulation movements by limiting cell adhesion through Snai 1 a stabilization[J]. Development,2010,137(8):1327-1337.
    [15]Kujubu DA, Herschman HR. Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene[J]. J Biol Chem.1992, 267(12):7991-7994.
    [16]Morita I, Schindler M, Regier MK, et al. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and-2[J]. J Biol Chem,1995,270(18): 10902-10908.
    [17]Langenbach R, Morham SG, Tiano HF, et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration[J]. Cell,1995,83(3):483-492.
    [18]Altorki NK, Port JL, Zhang F, et al. Chemotherapy induces the expression of cyclooxygenase-2 in non-small cell lung cancer[J]. Clin Cancer Res,2005, 11(11):4191-4197.
    [19]Marrogi AJ, Travis WD, Welsh JA, et al. Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma[J]. Clin Cancer Res,2000,6(12):4739-4744.
    [20]Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors[J]. Cancer,2000,89(12):2637-2645.
    [21]Williams CS, Tsujii M, Reese J, et al. Host cyclooxygenase-2 modulates carcinoma growth[J]. J Clin Invest,2000,105(11):1589-1594.
    [22]Sandler AB, SM. D. COX-2 inhibition and lung cancer[J]. Semin Oncol,2004, 31((2 Suppl 7)):45-52.
    [23]Cha YI, DuBois RN. NSAIDs and cancer prevention:targets downstream of COX-2[J]. Annu Rev Med,2007,58:239-252.
    [24]Fujino H, JW. R. Prostanoid receptors and phosphatidylinositol 3-kinase:a pathway to cancer?[J]. Trends Pharmacol Sci,2003,24(7):335-340.
    [25]Hawcroft G, Ko CW, Hull MA. Prostaglandin E2-EP4 receptor signaling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells[J]. Oncogene,2007,26(21):3006-3019.
    [26]Goessling W, North TE, Loewer S, et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration[J]. Cell,2009,136(6):1136-1147.
    [27]North TE, Goessling W, Walkley CR, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis[J]. Nature,2007,447(7147):1007-1011.
    [28]Grosser T, Yusuff S, Cheskis E, et al. Developmental expression of functional cyclooxygenases in zebrafish[J]. Proc Natl Acad Sci U S A,2002, 99(12):8418-8423.
    [29]Ishikawa TO, Griffin KJ, Banerjee U, et al. The zebrafish genome contains two inducible, functional cyclooxygenase-2 genes[J]. Biochem Biophys Res Commun,2007,352(1):181-187.
    [30]Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction[J]. Mol Aspects Med,2006,27(2-3):95-125.
    [31]DeGowin RL, Fisher PG, An D. Differential elaboration of prostaglandin E2 by cells of the hemopoietic microenvironment in response to endotoxin[J]. J Lab Clin Med,1987,109(6):679-686.
    [32]Fisher JW, Nelson PK, Belegu M, et al. Prostanoid activation of erythropoiesis[J]. Haematologia (Budap),1984,17(2):137-149.
    [33]Fisher JW, Radtke HW, Jubiz W, et al. Prostaglandins activation of erythropoietin production and erythroid progenitor cells[J]. Exp Hematol,1980, 8 Suppl 8:65-89.
    [34]Ganchev T, Negrev N, Mileva V. Effects of indomethacin on erythropoiesis and plasma iron in rats[J]. Acta Physiol Pharmacol Bulg,1989,15(2):53-57.
    [35]Kalaidjieva V. Modulation of erythropoiesis in rat bone marrow erythroblastic islands by cyclooxygenase inhibition[J]. Gen Pharmacol,1999,32(4):423-428.
    [36]Kallianpur AR, Jordan JE. SJ. B. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis[J]. Blood,1994,83(5):1200-1208.
    [37]Gering M, Rodaway AR, Gottgens B, et al. The SCL gene specifies haemangioblast development from early mesoderm[J]. Embo J,1998,17(14): 4029-4045.
    [38]Kalev-Zylinska ML, Horsfield JA, Flores MV, et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis[J]. Development,2002,129(8):2015-2030.
    [39]Hoggatt J, Singh P, Sampath J, et al. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation[J]. Blood 2009,113(22): 5444-5455.
    [40]Villablanca EJ, Pistocchi A, Court FA, et al. Abrogation of prostaglandin E2/EP4 signaling impairs the development of ragl+lymphoid precursors in the thymus of zebrafish embryos[J]. J Immunol,2007,179(1):357-364.
    [41]Kalev-Zylinska ML, Horsfield JA, Flores MV, et al. Runxl is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis[J]. Development,2002,129(8):2015-2030.
    [42]Glynn SA, Prueitt RL, Ridnour LA, et al. COX-2 activation is associated with Akt phosphorylation and poor survival in ER-negative, HER2-positive breast cancer. BMC Cancer 2010; 10:626.
    [43]Miglietta A, Toselli M, Ravarino N, et al. COX-2 expression in human breast carcinomas:correlation with clinicopathological features and prognostic molecular markers[J]. Expert Opin Ther Targets.2010,14(7):655-664.
    [44]Boneberg EM, Legler DF, Senn HJ, et al. Reduced expression of cyclooxygenase-2 in primary breast cancer[J]. J Natl Cancer Inst,2008,100(14): 1042-1043.
    [45]Basu GD, Liang WS, Stephan DA, et al. A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells[J]. Breast Cancer Res,2006,8(6):R69.
    [46]Imada T, Matsuoka J, Nobuhisa T, et al. COX-2 induction by heparanase in the progression of breast cancer[J]. Int J Mol Med,2006,17(2):221-228.
    [47]Davies GL. Cyclooxygenase-2 and chemoprevention of breast cancer[J]. J Steroid Biochem Mol Biol,2003,86(3-5):495-499.
    [48]Half E, Tang XM, Gwyn K, et al. Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ[J]. Cancer Res,2002,62(6): 1676-1681.
    [49]Subbaramaiah K, Norton L, Gerald W, et al. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer:evidence for involvement of AP-1 and PEA3[J]. J Biol Chem,2002,277(21):18649-18657.
    [50]Hwang D, Scollard D, Byrne J, et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer[J]. J Natl Cancer Inst,1998,90(6): 455-460.
    [51]Schrey MP, Patel KV. Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators[J]. Br J Cancer,1995,72(6):1412-1419.
    [52]Harris RE, Alshafie GA, Abou-Issa H, et al. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor[J]. Cancer Res,2000,60(8): 2101-2103.
    [53]Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors[J]. Cancer Res,2000,60(5):1306-1311.
    [54]Hsu AL, Ching TT, Wang DS, et al. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2[J]. J Biol Chem,2000,275(15):11397-11403.
    [55]Kokawa A, Kondo H, Gotoda T, et al. Increased expression of cyclooxygenase-2 in human pancreatic neoplasms and potential for chemoprevention by cyclooxygenase inhibitors [J]. Cancer,2001,91(2):333-338.
    [56]Maitra A, Ashfaq R, Gunn CR, et al. Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia:an immunohistochemical analysis with automated cellular imaging[J]. Am J Clin Pathol,2002,118(2):194-201.
    [57]Merati K, said Siadaty M, Andea A, et al. Expression of inflammatory modulator COX-2 in pancreatic ductal adenocarcinoma and its relationship to pathologic and clinical parameters[J]. Am J Clin Oncol,2001,24(5):447-452.
    [58]Okami J, Yamamoto H, Fujiwara Y, et al. Overexpression of cyclooxygenase-2 in carcinoma of the pancreas[J]. Clin Cancer Res,1999,5(8):2018-2024.
    [59]Tucker ON, Dannenberg AJ, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer[J]. Cancer Res,1999,59(5):987-990.
    [60]Molina MA, Sitja-Arnau M, Lemoine MG, et al. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines:growth inhibition by nonsteroidal anti-inflammatory drugs[J]. Cancer Res,1999,59(17):4356-4362.
    [61]Tseng WW, Deganutti A, Chen MN, et al. Selective cyclooxygenase-2 inhibitor rofecoxib (Vioxx) induces expression of cell cycle arrest genes and slows tumor growth in human pancreatic cancer[J]. J Gastrointest Surg,2002,6(6):838-843; discussion 844.
    [62]Takahashi M, Furukawa F, Toyoda K, et al. Effects of various prostaglandin synthesis inhibitors on pancreatic carcinogenesis in hamsters after initiation with N-nitrosobis(2-oxopropyl)amine[J]. Carcinogenesis,1990,11(3):393-395.
    [63]Dandekar DS, Lokeshwar BL. Inhibition of cyclooxygenase (COX)-2 expression by Tet-inducible COX-2 antisense cDNA in hormone-refractory prostate cancer significantly slows tumor growth and Improves Efficacy of Chemotherapeutic Drugs[J]. Clin Cancer Res,2004,10:8037-8047.
    [64]Fujita H, Koshida K, Keller ET, et al. Cyclooxygenase-2 promotes prostate cancer progression[J]. Prostate,2002,53(3):232-240.
    [65]Cai Y, Lee YF, Li G, et al. A new prostate cancer therapeutic approach: combination of androgen ablation with COX-2 inhibitor[J]. Int J Cancer,2008, 123(1):195-201.
    [66]Moreno J, Krishnan AV, Peehl DM, et al. Mechanisms of vitamin D-mediated growth inhibition in prostate cancer cells:inhibition of the prostaglandin pathway[J]. Anticancer Res,2006,26(4A):2525-2530.
    [67]Gupta S, Srivastava M, Ahmad N, et al. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma[J]. Prostate,2000,42(1):73-78.
    [68]Anai S, Tanaka M, Shiverick KT, et al. Increased expression of cyclooxygenase-2 correlates with resistance to radiation in human prostate adenocarcinoma cells[J]. J Urol,2007,177(5):1913-1917.
    [69]Narayanan BA, Reddy BS, Bosland MC, et al. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis:in vivo evidence[J]. Clin Cancer Res, 2007,13(19):5965-5973.
    [70]Aparicio Gallego G, Diaz Prado S, Jimenez Fonseca P, et al. Cyclooxygenase-2 (COX-2):a molecular target in prostate cancer[J]. Clin Transl Oncol,2007,9(11): 694-702.
    [71]Robertson RP. Dominance of cyclooxygenase-2 in the regulation of pancreatic islet prostaglandin synthesis[J]. Diabetes,1998,47(9):1379-1383.
    [72]Fosslien E. Molecular pathology of cyclooxygenase-2 in neoplasia[J]. Ann Clin Lab Sci,2000,30(1):3-21.
    [73]Subbaramaiah K, Zakim D, Weksler BB, et al. Inhibition of cyclooxygenase:a novel approach to cancer prevention[J]. Proc Soc Exp Biol Med,1997,216(2): 201-210.
    [74]Johnson AJ, song X, Hsu A, et al. Apoptosis signaling pathways mediated by cyclooxygenase-2 inhibitors in prostate cancer cells[J]. Adv Enzyme Regul,2001, 41:221-235.
    [75]Sheng H, Shao J, Morrow JD, et al. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells[J]. Cancer Res, 1998,58(2):362-366.
    [76]Form DM, Auerbach R. PGE2 and angiogenesis[J]. Proc Soc Exp Biol Med, 1983,172(2):214-218.
    [77]Alao JP, Gamble SC, Stavropoulou AV, et al. The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines[J]. Mol Cancer, 2006,5(7):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700