白菜类作物硫代葡萄糖甙结构和含量的分析及QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白菜类作物(Brassica rapa, L. syn. Brassica campestris)是我国重要的芸薹属蔬菜作物和油料作物,品种类型丰富,营养价值高。但由于其具有复杂的遗传背景以及广泛的遗传变异,使得一些重要农艺性状的改良非常困难。随着人民生活水平的提高,消费者对蔬菜营养品质的关注和要求日益提高。硫甙的降解产物是构成十字花科蔬菜特殊辛香风味的主要来源,同时还可作为天然的抗虫、抗菌剂,也和昆虫的繁殖和预测有关;其中很多研究表明异硫代氰酸盐(isothiocyanate, ITC)有良好的抗癌效果和防止微生物繁殖和间接的抗氧化作用。作为十字花科植物的主要活性成分硫代葡萄糖甙的相关研究也越来越受到人们的重视,因此从分子水平上分析白菜类作物中硫代葡萄糖甙的遗传规律,才能实现改良白菜类蔬菜的营养品质,培育高有益硫代葡萄糖甙的白菜类作物新品种,发掘和利用重要的基因资源的目的。
     本研究利用硫甙含量差异较大、表型差异较大、生育期不同的欧洲油用型白菜Rapid Cycling (L144)和中国大白菜Z16为材料,构建了含120个株系的BC2DH群体。本研究采用HPLC方法,对白菜类作物叶片中硫甙组分和含量进行了评价,为进一步开展白菜类作物中硫甙的积累和遗传研究提供信息。在此BC2DH群体的基础上构建了白菜类作物遗传连锁图谱,并对白菜叶片中硫甙含量进行了QTL定位和遗传效应的分析。其主要结论如下:
     1.利用HPLC分析了白菜类作物13种类型的叶片中8种硫甙组分的含量,脂肪族硫甙是其中最主要的硫甙,所占的比例均在64%以上,但在大白菜中吲哚族硫甙所占的比例相对最高,约为28.5%。野生白菜的总硫甙含量最高,为17.3μmol·g-1DW。3-丁烯基硫甙(NAP)是含量最高变异幅度最大的,平均含量为2.68μmol·g-1DW,变异范围为0-53.87μmol·g-1DW。方差分析表明,不同基因型间脂肪族硫甙在品种间差异极显著,芳香族硫甙含量在不同季节间差异极显著。相关分析结果表明,脂肪族硫甙NAP与PRO呈负相关;脂肪族硫甙NAP与GBN间呈极显著正相关;芳香族硫甙NAS与脂肪族硫甙PRO极显著正相关。在大白菜的硫甙的主成分分析中,筛选出编号为32、46、45、41、19和47的6份硫甙含量较高的材料。
     2.利用欧洲油用型白菜Rapid Cycling (L144)和中国大白菜Z16构建了120个株系的BC2DH群体,开发了194个Indel标记,构建了包括10个连锁群的遗传连锁图谱,共覆盖基因组长度563.3 cM,平均图距为2.90 cM。
     3.采用区间和MQM的作图法,对白菜类作物硫甙的含量进行了QTL定位及遗传效应的分析。在BC2DH群体的8条连锁群上,共检测到15个控制硫甙合成的QTL位点,2个控制NAP的QTL位点,3个控制GBN的QTL位点,3个控制PRO的QTL位点,2个控制GBC的QTL,1个控制NEO的QTL,2个控制40H的QTL,2个控制NAS的QTL,3个控制脂肪族硫甙含量的QTL位点,1个控制总硫甙含量的QTL位点和1个控制GBN/脂肪族硫甙合成比例的QTL位点。LOD值在3.20-16.76范围之间,贡献率范围12.5%-77.0%。
Chinese cabbage (Brassica rapa, L. syn. Brassica campestris) belongs to Brassica genus, with high nutritional value and is one of the most important vegetable crops in China. Complex genetic background and extensive variation of this crop make it difficult to improve some important agronomic traits. Consumers are having higher requirement and paying much attention to the quality of vegetable nutrition with the improvement of standard of living. Degradation products of glucosinolates constitute the primary source of special spicy flavors in cruciferous vegetables, and also been taken as natural insect resistance and antibacterial agent and be relevant with insect propagation and prediction; Many studies show that isothiocyanate has good anticancer effect and indirect antioxidant effect. The relative researches on glucosinolates are attaching much more importance as the main active ingredient of Brassica rapa. So genetic analysi of nutritional quality traits in B. rapa at molecular levels will achieve the purpose of the improvement of nutrition quality and beneficial types of glucosinolates, and exploitation and utilization to key genes in B. rapa.
     This study used BC2DH population developed by crossing of European oiled cabbage Rapid Cycling L144 and Chinese cabbage Z16 as parents, which were diversed in glucosinolate content, morphological traits and growth period comprising of 120 lines. Evaluaion to glucosinolate composition and content in B. rapa. leaves was conducted by HPLC, which would be useful to exploit glucosinolate accumulation and genetics in B. rapa.. Genetic linkage map of B. rapa. was
     constructed on this BC2DH population, and quantitative locus (QTL) analysis was performed for glucosinolate content. Main conclusions are listed as follows:
     1. Eight main glucosinolates were determined by HPLC among 13 Brassica rapa types, and aliphatic glucosinolates were the major glucosinolates, taken the ratio of above 64%; While in Chinese cabbage, indolic glucosinolates taken the highest ratio relatively about 28.5%.The total glucosinolate content of wild cabbage was the highest among all 13 different types, about 17.3μmol·g-1 DW. Gluconapin (NAP) content was at most and with the widest variation, varied from 0 to 53.87μmol·g-1 DW, and the mean content was 2.68μmol·g-1 DW. Analysis of variance indicated, for aliphatic glucosinolates, there was a significant difference between different varieties and for aromatic glucosinolates also significantly different between different seasons. Aliphatic glucosinolate NAP showed negatively correlation with PRO, and positively correlation with GBN; Aromatic glucosinolate NAS was significantly positive correlative with aliphatic glucosinolate GBN by correlation analysis. Six materials with high glucosinolate content were selected in Chinese cabbage by principal component analysis, numbered 19,32,41,45,46 and 47.
     2. Genetic linkage maps were constructed based on BC2DH population developed by crossing an European oiled cabbage Rapid Cycling (L144) and a Chinese cabbage variety Z16. One hundred and ninety four markers were developed to construct a 10 linkage groups genetic map covering a total distance of 563.3 cM. The average interval distance was 2.90 cM.
     3. Interval mapping and multiple-QTL model mapping (MQM) methods were employed in mapping and analysis of QTL controlling glucosinolate contents.15 putative QTL controlling glucosinolate,2 for NAP,3 for GBN,3 for PRO,2 for GBC,1 for NEO,2 for 4OH,2 for NAS,3 for aliphatic glucosinolates content,1 for total glucosinolate and 1 for GBN/Ali were detected in 8 linkage groups. The LOD value was from 3.20 to 16.76, and the percentages of variation explained were varied from 12.5% to 77.0%.
引文
[1]Mikkelsen MD, Hansen CH,Wittstock U, Halkier BA. Tryptophan to Indole-3-acetaldoxime, a Precursor of Indole Glucosinolates and Indole-3-acetic Acid[J]. Journal of Biological Chemistry, 2000,275:33712-33717
    [2]Fimognari C, Nusse M, Cesari R, Lori R, Cantelli-Forti G, Hrelia P. Growth inhibition, cell-dycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane[J]. Carcinogenesis,2002,23(4):581-586
    [3]Steinmeta KA & Potter JD. Vegetables, fruit and cancer. Ⅱ. Mechanisms[J]. Cancer Causes Control.1991,2:427-442.
    [4]Barbara Ann Halkier and Jonathan Gershenzon, Biology and Biochemistry of Glucosinolates[J]. Annu. Rev. Plant Biol,2006,57:303-333
    [5]Fabey J W, Salemann A T, Talalyy P. The chemical diversity and isothiocyananates among plants[J]. Phytochemistry,2001,56:5-51.
    [6]周锦兰,胡健华.硫代葡萄糖苷的结构及降解特性[J].武汉工业学院学报,2003,22(1):58
    [7]Kroyman J, Textor S, Tokuhisa J G, et al. A gene controlling variation in Arabidopsis thaliana glucosinolate composition is part of the methionine chain elongation pathway[J]. Plant Physiol, 2001,127:1077-1088.
    [8]Textor S, Bartram S, Kroyman J, et al. Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana:Recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain elongation cycle[J]. Planta,2004,218: 1026-1035.
    [9]Halkier B A, L Du. The biosynthesis of glucosinolates[J]. Trends in Plant Science.1997,2: 425-431
    [10]Halkier B A and Gershenzon J. Biology and Biochemistry of Glucosinolates. Annu[J]. Rev. Plant Biol.2006,57:303-333
    [11]Graser G et al. The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana[J]. Phytochemistry.2001,57:23-32
    [12]Graser G et al. The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae)Arch[J]. Biochem. Biophys.2000,378:411-419
    [13]Armengaud P, Breitling R, Amtmann A. The potassium dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling [J]. Plant Physiol.2004,136: 2556-2576
    [14]Bones A, Slupphaug G. Purification, characterization and partial amino acid sequencing of (3-thioglucosidase from Brassica napus L [J]. Plant Physiol,2005,134:722-729
    [15]Mikkelsen M D, Hansen C H, Wittstock U et al. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, aprecursor of indole glucosinolates and indole-3-aceticacid[J].Biol Chem,2000,275:33712-33717
    [16]Mikkelsen M D, Hansen C H, Wittstock U et al. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, aprecursor of indole glucosinolates and indole-3-aceticacid[J].Biol Chem,2000,275:33712-33717
    [17]Naur P, Petersen B L, Mikkelsen M D, et al. CYP83A01 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis[J]. Plant Physiol,2003,133:63-72.
    [18]Hemm M R, Ruegger M O, Chapple C. The Arabidopsis ref 2 mutant is defective in the gene encoding CYP83A01 and shows both phenylpropanoid and glucosinolate phenotypes[J]. Plant Cell,2003,15:179-194.
    [19]Bak S, Tax F E, Feldmann K A, et al. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis [J]. Plant Cell,2001, 13:101-111
    [20]Reintanz B, Lehnen M, Reichelt M, et al. A bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short chain aliphatic glucosinolates[J]. Plant Cell,2001,3:351-367
    [21]Smolen G, Bender J. Arabidopsis cytochrome P450 CYP83B1 mutations activate the tryptophan biosynthetic pathway[J]. Genetics,2002,160:323-332
    [22]Zhao Y, Hull A K, Gupta N R, et al. Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP72B2 and CYP79B3[J]. Genes Dev,2002,16: 3100-3112
    [23]Chen S, Glawischnig E, Jorgensen K et al. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis[J]. Plant J,2003,33:923-937
    [24]Reintanz B. et al. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates[J]. Plant Cell.2001,13:351-367
    [25]Kliebenstein D.J. et al. Gene duplication in the diversification of secondary metabolism:tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis[J]. Plant Cell.2001,13:681-693
    [26]Mithen, R. et al. Genetics of aliphatic glucosinolates. Ⅲ. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana[J]. Heredity.1995,74:210-215
    [27]Mithen R Campos de Quiros. H. Genetic variation of aliphatic glucosinolates in Arabidopsis thaliana and prospects for map based gene cloning[J]. Entomol. Exp.Appl.1996,80:202-205
    [28]Parkin I. et al. Genetics of aliphatic glucosinolates. Ⅱ. Hydroxylation of alkenyl glucosinolates in Brassica napus[J]. Heredity.1994,72:594-598
    [29]Giamoustaris A, Mithen R. Genetics of aliphatic glucosinolates. Ⅳ. Side-chain modification in Brassica oleracea[J]. Theor. Appl.Genet.1996,93:1006-1010
    [30]Li G, Quiros C F. In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK[J]. Theor. Appl.Genet.2002,10:1161-1164
    [31]Gao Muqiang, Li G, Yang Bo, Richard McCombie W, Quiros C F. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence[J]. Genome.2004,47:666-679
    [32]Kelly, P.J. et al. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea[J].Planta.1998,206:370-377
    [33]Andreasson E. et al. Different myrosinase and idioblast distribution inArabidopsis and Brassica napus[J]. Plant Physiol.2001,127:1750-1763
    [34]Steven F, Vaughn, Mark A, Berhow. Glucosinolate hydrolysis products from various plant sources:pH effects, isolation, and purification[J]. Industrial Crops and Products.2005,21: 193-202
    [35]Gamet-Payrastre L et al.Cancer R es,2000,60(5):1426—1433
    [36]Johns T. The anu and the maca[J]. Journal of Ethnnobjology,1981,1:208-212
    [37]余龙江,金文闻,吴元喜,等.玛珈的植物学及其药理作用研究概况[J].天然产物研究与开发,2002,14(5):73
    [38]Zheng B L, He K, Kim C H, et al. Effect of a lipidic extract from Lepidium meyenii on sexual behabior in mice and rats[J]. Urology,2000,55(4):598-60
    [39]Kole C, Kole P, Vogelzang R, Osborn TC. Genetic linkage map of a Brassica rapa recombinant inbred population[J]. The Journal of Heredity.1997,88 (6):553-557
    [40]Novakova B, Salava J, Lydiate D. Construction of a genetic linkage map for Brassica campestris L. (syn. Brassica rapa L.) [J]. Genetika Slechteni.1996,32:249-256
    [41]于拴仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析[J].中国农业科学,2003,36(2):190-195
    [42]栗根义,高睦枪,赵秀山.大白菜游离小孢子培养[J].园艺学报,1993,20(2):167-170
    [43]张凤兰,钉贯靖久.大白菜小孢子植株自然加倍率的探讨[J].北京农业科学,1993,11(2):23-25
    [44]张凤兰,钉贯靖久,吉川宏昭.环境条件对大白菜小孢子培养的影响[J].华北农学报,1994,9(1):95-100
    [45]曹鸣庆,李岩,刘凡.基因型和供体植株生长环境对大白菜游离小孢子胚胎发生的影响[J].华北农学报,1993,8(4):1-6
    [46]刘公社,李岩,刘凡,曹鸣庆.高温对大白菜小孢子培养的影响[J].植物学报,1995(37):140-146
    [47]刘凡,莫东发,姚磊,张月云,张凤兰,曹鸣庆.遗传背景及活性炭对白菜小孢子胚胎发生能力的影响[J].农业生物技术学报,2001,9(3):297-300
    [48]Lim YP. Kim JH, Bang JW, Nam HG, Cho KW, Jang CS. Genetic mapping of Chinese cabbage (Braasica rapa L. var. pekinensis) [J]. Plant & Animal Genome VI.Abs.1998,221
    [49]王美,张凤兰,孟祥栋,刘秀村,赵岫云,樊治成.中国白菜AFLP分子遗传图谱的构建[J].华北农学报,2004,19(1):28-33
    [50]Zhang Xiaowei, Wu Jian, Zhao Jianjun, Song Xiaofei, Li Ying, Zhang Yanguo, Xu Donghui, Sun Rifei, Yuan Yuxiang, Xie Conghua, Wang Xiaowu. Identification of QTL Related to Bolting in Brassica rapa ssp. pekinensis(syn. Brassica campestris ssp. pekinensis) [J]. Agricultural Sciences in China,2006,5(4):265-271
    [51]Rask, L. et al. Myrosinase:gene family evolution and herbivore defense in Brassicaceae[J]. Plant Mol. Biol.2000,42:93-113
    [52]Skinner D M, Beattie W G, Blattner F R, et al. The repeat sequence of a hermitcrab satellite deoxyribo nucleica cidis (-T-A-G-G-)n, (-A-T-C-C-) n[J]. Biochemistry.1974,13:3930-3937
    [53]Hamada H and Kakunag T. Potential Z-DNA forming sequences are highly dispersed in the human genome[J]. Nature..1982,298:396-398
    [54]Kresovich S, Szewc-McFadden AK, Bliek SM, NcFerson JR. Abundance and characterization of simple-sequence repeats SSRS isolated from a size-fractionated genomic library of Brassica napus L. rapeseed[J]. Theor Appl Genet,1995,91:206-211
    [55]Bathia S, Das S, Jain A, Lakshmikumaran M. DNA fingerprinting of the B, juncea cultivars using the microsatellite probes[J]. Electrophoresis.1995,16:1750-1754
    [56]Rafalski JA, Tingey SV. Genetic diagnostics in plant-breeding-RAPDs, microsatellites and machines. Trends Genet[J].1993,9:275-280
    [57]章元明,作物QTL定位方法研究进展[J].科学通报,2006,Vol.51,No.19,2223-2231
    [58]Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using TFLP linkage maps[J]. Genetics,1989,121:185-199
    [59]Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Proc Natl Acad Sci USA,1993,90:10972-10976
    [60]朱军.复杂数量性状基因定位的混合线性模型方法[A].王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集[C].北京:中国农业科技出版社,1998,11-20
    [61]Ajisaka H, Kuginuki Y, Yui S, Enomoto S and Hirai M. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis syn. campestris L.) using bulked segregant analysis[J]. Euphytica,2001,118:75-81
    [62]Nishioka M, Tamura K, Hayashi M, Fujimori Y, Ohkawa Y et al. Maping of QTLs for bolting time in Brassica rapa (syn. campestris) under different environmental conditions[J]. Breeding Science,2005,55:127-133
    [63]Teutonico RA, Osborn TC. Mapping loci controlling vernalization requirement in Brassica rapa[J]. Theor Appl Genet.1995,91:1279-1283
    [64]Osborn TC, Kole C I, Pakin IA, Sharpe AG, Kuiper M, Lydiatet DJ, Trickt M. Comparison of Flowering Time Genes in Brassica rapa, B. mpus and Arabidopsis thulium[J]. Genetics.1997, 146:1129-1129
    [65]Kole, C. Quijada P. Michaels SD. Amasino RM, Osborn TC. Evidence for homology of flowering-time genes and level of expression of alcohol dehydrogenases in the allotetraploid plant Tragopogon miscellus and its diploid progenitors. VFR2 from Brassica rapa and FLC from Arabidopsis thaliana[J]. Theor. Appl. Genet.2001,102:425-430
    [66]Axelsson T, Shavorskaya O, Lagercrantz U. Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene[J]. Genome, 2001,44:856-864
    [67]Schranz ME, Quijada P, Sung S, Lukens L, Amasino R, Osborn T. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa[J]. Genetics.2002,162:1457-1468
    [68]Lou P, Zhao JJ, Kim JS, Shen SX, Carpio DPD, Song XF, Jin M, Vreugdenhil D, Wang XW, Koornneef and Bonnema G. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa[J]. Journal of Experimental Botany,2007,58(14):4005-4016
    [69]Kole C, Williams PH, Rimmer SR, Osborn TC. Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Bassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana[J]. Genome.2002,45:22-27
    [70]Song K, Slocum MK, Osborn TC. Molecular marker analysis of genes encoding morphological variation in Brassica rapa (syn.campestris) [J]. Theor. Appl. Genet.,1995,90:1-10
    [71]张鲁刚.中国白菜分子标记遗传图谱的构建及QTL分析研究.[博士学位论文][D],西北农业大学,1999
    [72]卢钢,曹家树,陈杭.向王旬.白菜几个重要园艺性状的QTLs分析[J].中国农业科学,2002.35(8):969-974
    [73]郑晓鹰,王永健,宋顺华.大白菜耐热性分子标记的研究[J].中国农业科学,2002,35(3):309-313
    [74]Soengas P, Hand P, Vicente J, Pole J and Pink D. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa[J]. Theoretical and Applied Genetics,2007,114:637-645
    [75]Zhang FL, Aoki S, Takahata Y. RAPD markers linked to microspore embryogenic ability in Brassica crops[J]. Euphytica.2003,131:207-213
    [76]徐东辉,孙日飞,张延国,原玉香,康俊根,武剑,张慧,宋晓飞,李晓楠,宋一沫,王晓武.大白菜叶色相关性状的QTL定位与分析[J].园艺学报,2007,34(1):99-104
    [77]徐东辉.白菜类作物硫代葡萄糖甙及一些主要代谢组分的遗传分析.[博士学位论文][D],西北农业大学,2007
    [78]Wu Jian, Yuan Yu-Xiang, Zhang Xiao-Wei, Zhao Jian-jun, Song Xiao-fei, Li Ying, Li Xiao-nan, Sun Ri-fei, Maarten Koornneef, Mark G M Aarts, Wang Xiao-Wu. Mapping QTLs for mineral accumulation and shoot drybiomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J].Plant Soil,2008,310:25-40.
    [79]Halkier B A. J Gershenzon. Biology and Biochemistry of Glucosinolates[J]. Annu Rev Plant Biol.2006
    [80]Mithen, R., Faulkner, K., Magrath, R., Rose, P., Williamson, G., Marquez, J.. Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells[J]. Theoretical and Applied Genetics.2003,106(4),727-734.
    [81]Mithen R.F. et al. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods[J]. J. Sci. Food Agric.2000,80:967-984
    [82]Branca F, Li G, Goyal S, Quiros CF.. Survey of aliphatic glucosinolates in sicilian wild and cultivated Brassicaceae[J]. Phytochemistry,2002,59:717-724
    [83]Padilla, G., Cartea, M. a. E., Velasco, P.. Variation of glucosinolates in vegetable crops of Brassica rapa[J]. Phytochemistry,2007.68,536-545
    [84]Kushad M M, Brown A F, Kurilich A C, Juvik J A, Klein B K, Wallig M A, Jeffery E H..Variation of glucosinolates in vegetable subspecies of Brassica oleracea[J]. Journal of Agricultural and Food Chemistry,1999,47:1541-1548
    [85]Mithen R.F. et al. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods[J]. J. Sci. Food Agric.2000,80:967-984
    [86]Brown, A F, Yousef, G G, Jeffery, E H, Klein, B P, Walling, M A, Kushad, M M, Juvik, J A. Glucosinolate profile in broccoli:variation in levels and implications in breeding for cancer chemoprotection[J]. Journal of the American Society for Horticultural Science,2002,127: 807-813.
    [87]Vallejo F, Tomas-Barberan F,& Garcia-Viguera C.. Potential bioactive compounds in health promotion from broccoli cultivars grown in Spain[J]. Journal of the Science of Food and Agriculture,2002,82:1293-1297.
    [88]HE Hong-ju, Chen Hang, W. H. Schnitzer. Glucosinolate Composition and Contents in Brassica Vegetables[J]. Scientia Agricultura Sinica,2002,35(2):192-197. (in Chinese)
    [89]Kim S J, Kawaguchi S, Watanabe Y.. Glucosinolates in vegetative tissues and seeds of 12 cultivars of vegetable turnip rape (Brassica rapa L.) [J]. Soil Science and Plant Nutrition,2003, 49:337-346.
    [90]Charron, C S, Saxton, A M, Carl, E S. Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons[J]. Journal of the Science of Food and Agriculture,2005,85:671-681.
    [91]Xu C, Huang M T, Shen G, Yuan X, Lin W, Khor T O, Conney A H, Kong A N. Inhibition of 7,12-dimethyl-benz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2[J]. Cancer Reserch,2006,66:8293-8296.
    [92]宋廷宇,侯喜林,何启伟,吴春燕,徐苑芳.薹菜中硫代葡萄糖苷的鉴定与含量分析[J].园艺学报,2008,35(8):1161-1166
    [93]Ludwig-Miiller J. Glucosinolates and the clubroot disease:Defense compounds or auxin precursors? [J]Phytochemistry Reviews,2009,8:135-148.
    [94]Jia Cheng-Guo, Xu Chao-Jiong, Wei Jia, Yuan Jing, Yuan Gao-Feng, Wang Bing-Liang, Wang Qiao-Mei. Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets[J]. Food Chemistry,2009,114:28-37
    [95]Sun B, Liu N, Zhao Y T, Yan H Z, Wang Q M. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties[J]. Food Chemistry,2011,124(3): 941-947.
    [96]Kim, J. K., Chu, S. M., Kim, S. J., Lee, D J., Lee, S. Y., Lim,S. H., Ha, S., Kweon, S. J.,& Cho, H. S.. Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. Pekinensis[J].Food Chemistry,2010,119,423-428
    [97]Kliebenstein DJ, Gershenzon J, Mitchell-Olds T. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds[J].Genetics,2001a,159:359-370.
    [98]Keurentjes J J, Fu J. de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M. The genetics of plant metabolism[J]. Nature Genetics,2006,38: 842-849.
    [99]Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways[J]. PLoS Genetic,2007,3:1687-1701.
    [100]Heidel AJ, Clauss MJ, Kroymann J, Savolainen O, Mitchell-Olds T. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype [J].Genetics,2006,173:1629-1636.
    [101]Howell PM, Sharpe AG, Lydiate DJ. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus) [J]. Genome,2003,46:454-460
    [102]Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR. Molecular mapping of seed aliphatic glucosinolates in Brassica juncea[J]. Genome,2003,46:753-760.
    [103]Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK. QTL analysis reveals contextdependent loci for seed glucosinolate trait in the oilseed Brassica juncea:importance of recurrent selection backcross scheme for the identification of'true'QTL[J]. Theoretical and Applied Genetics,2007,116:77-85.
    [104]Kliebenstein D J, Lambrix V M, Reichelt M, Gershenzon J, and Mitchell-Olds T. Gene duplication in the diversification of secondary metabolism:tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis[J]. The Plant Cell,2001b,13(3): 681-693
    [105]He H., G. Fingerling, W. H. Schnitzler. Glucosinolate contents and patterns in different organs of Chinese cabbages, Chinese kale (Brassica alboglabra Bailey) and Choy sum (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) [J]. Journal of Applied Botany.2000,74: 21-25.
    [106]Fahey J W, Haristoy X, Dolan P M, Kensler T W, Scholtus I, Stephenson K K, Talalay P, Lozniewski A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99:7610-7615.
    [107]Sonderby,I. E., Geu-Flores. F., Halkier, B. A., Biosynthesis of glucosinolate gene discovery and beyond[J]. Trends in Plant Science.2010,15(5),283-296.
    [108]Zhang, Y., Kensler, T., Cho, C., Posner, G., Talalay, P., Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl. isothiocyanates[J]. Proc. Natl. Acad. Sci. U. S. A.1994,91(8),3147-3150.
    [109]Kim, J., Lee, B., Schroeder, F., Jander, G., Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid) [J]. The Plant Journal. 2008,54(6),1015-1026.
    [110]Griffiths D W, Birch A N E, and Hillman J R. Antinutritional compounds in the Brassicaceae—Analysis, biosynthesis, chemistry and dietary effects[J]. Journal of Horticultural Science and Biotechnology,1998,73:1-18.
    [111]Li Peiwu, Li Guangming, Zhang Wen, Yang Mei, Zeng Jianqiang. Investigations on Dominant Glucosinolates in Rapeseed Germplasm Collected in China[J]. Scientia agriculture sinica, 1999,32(Z1)
    [112]Van Ooijen JW, Voorrips RE. JoinMap(?) 3.0, Software for the calculation of genetic linkage maps[J]. Plant Research International, Wageningen, the Netherlands,2001
    [113]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping[J]. Genetics.1994,138:963-971
    [114]Zwart R S, Thompson J P, Milgate A W, Bansal U K, Williamson P M, Raman H, Bariana H S.. QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat[J]. Molecular Breeding,2010,26:107-124
    [115]Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M Fujimura M Nunome T, Fukuoka H, Hirai M, Matsumoto S.2006. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana[J].The genetic origin of clubroot resistance.
    [116]Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project[J]. Theor Appl Genet,2007,115 (6):777-792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700