丹江口库区蒿坪河小流域非点源污染特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选取丹江口水库位于河南部分的最大入库河流老鹳河的支流蒿坪河小流域为研究对象,以修建的5组野外径流场等设施为依托,系统开展了自然降雨条件下不同坡度和土地利用类型非点源污染产生特征的研究。研究结果表明:
     (1)蒿坪河小流域降雨年度分布不均,暴雨集中型降雨产生径流和农业非点源污染的可能性最大。
     (2)0~5°耕地、5~10°耕地、10~15°耕地、栎林和果园平均径流系数分别为2.01%、2.98%、5.44%、16.47%和2.42%。陡坡地带的栎林在降雨侵蚀力大于0.5的时候开始产流,以超渗方式为主;果园在降雨侵蚀力大于2.5的时候开始产流,以蓄满产流为主;耕地产流受人为影响显著,产流界限不容易确定,在暴雨集中型降雨条件下以超渗产流方式为主。栎林和果园产流量与降雨侵蚀力均存在一定的线性相关性,R2分别为0.939和0.912。耕地由于受人为影响比较大,其产流与降雨侵蚀力关系波动较大,没有明显规律。暴雨集中型降雨条件下,10-15°耕地产流和0-5°、5-10°差异性显著(P<0.05),0-5°、5-10°耕地产流之间无显著差异。在小雨集中型降雨条件下,土壤结皮成为影响产流的主要因素。
     (3)氮的流失以溶解态为主,其来源主要是化肥的过量施用;磷的流失以颗粒态为主,主要来源于土壤侵蚀。坡耕地是产生非点源污染的主要源区。施肥后的前两次强降雨,耕地总氮的流失量表现出坡度之间的差异性,一般10~15°耕地和0~5°、5~10°之间差异性显著(p<0.05),但是在极端降雨条件下,如2008-7-18降雨,降雨侵蚀力达到了180,0~5°和5~10°耕地总氮流失量差异性也显著(p<0.05)。在暴雨集中型降雨条件下,10~15°耕地总磷流失量和0~5°、5~10°耕地之间差异性显著(p<0.05), 0~5°和5~10°耕地之间无显著差异性。此外陡坡栎林等山林地,氮磷输出总量也不容忽视,也是非点源污染产生的重要区域。
     (4)暴雨集中型降雨条件下,10~15°耕地泥沙流失量和0~5°、5~10°之间差异性显著(p<0.05),0~5°、5~10°之间无明显差异性,在强降雨条件下10~15°耕地水土流失严重。泥沙流失量年度差异性比较大,实验期内,2008年0~5°、5~10°、10~15°耕地、栎林和果园泥沙流失量分别为:142.54、191.50、1458.45、1253.31和211.64kg/hm2,2009年则分别为6.53、7.54、15.96、99.96和27.49 kg/hm2。10~15°耕地和陡坡栎林是土壤侵蚀的关键源区,应予以重视。
     (5)对大于10°的耕地实施“坡改梯”工程,在进行农事操作时,多关注天气情况,尽量避开强降雨,对于减少化肥和水土流失,降低非点源污染的产生有很重要的现实意义。
In this paper, the characteristics of non-point source pollution in different slopes and land uses were studied in Haoping river watershed,which is a tributary of Laoguan river—the largest tributary of Danjiangkou Reservoir in Henan. 15 runoff ponds of five groups were built, and the rain, runoff and water quality were monitored. The results showed that:
     (1)the distribution of annual precipitation in Haoping watershed was variable, and the centralized storm rainfall was the main type generating non-point source pollution.
     (2)The average runoff coefficients of 0~5°, 5~10°, 10~15°cropland, oak forest and garden were 2.01%, 2.98%, 5.44%, 16.47% and 2.42% respectively. When rainfall erosivity (R) was greater than 0.5, oak forest in the steep slope began to generate runoff, and the main type was infliration excess runoff. When R was greater than 2.5, garden started to generate runoff, and the main type was saturation excess runoff.Cropland was dramatically affected by human, so it was not easy to determine the runoff boudary, and the main type was saturation excess runoff in centralized storm rainfall. The product of runoff and R showed a linear correlation in the oak forest(R2=0.939) and the garden(R2=0.912). The runoff and rainfall erosivity had no significant correlation in cropland, because it was significantly affected by human. In the condition of centralized storm rainfall, runoff was mainly affected by slope. The product of runoff in the cropland had significant difference between 0~5°, 5~10°and 10-15°cropland(P<0.05). In the condition of centralizd light rain, soil crust was the main factor affecting runoff.
     (3)The loss of nitrogen, whose main source was excessive application of fertilizer, was dominated by dissolved nitrogen, while the loss of phosphorus, whose main source was soil erosion, dominated by particulate phosphorus. Slope cropland was the major regional for generating non-point source pollution, the amount of total nitrogen loss had significant difference between 0~5°and 10-15°, 5~10°and 10-15°cropland(P<0.05) in the two previous heavy rainfalls after fertilization, and there was a significant difference between 0~5°and 5~10°cropland in extreme rainfall(R>180). In the condition of centralized storm rainfall, the amount of total phosphorus loss had significant difference between 0~5°and 10-15°, 5~10°and 10-15°cropland(P<0.05). It has a very important practical significance for implementing of terraced fields construction, taking agricultural activities to avoid heavy rain in the impaction of soil and water conservation, and reducing runoff and agricultural non-point source pollution. In addition, forest land such as oak was also important region for generating non-point source pollution, great attention should be paid.
     (4)In the condition of centralized storm rainfall, the amount of sediment loss had significant difference between 0~5°and 10-15°, 5~10°and 10-15°cropland(P<0.05). The sedements of different years had large difference, during the experimental period, the loss of sedements in 0~5°, 5~10°, 10~15°cropland, oak forest and garden were 142.54,191.50,1458.45,1253.31and 211.64kg/hm2 in 2008, and 6.53,7.54,15.96,99.96 and 27.49 kg/hm2 in 2009. 10~15°cropland and oak forest in steep slope are critical source area for soil erosion, great attention should be paid.
     (5) It has a very important practical significance for implementing of terraced fields construction, taking agricultural activities to avoid heavy rain in the impaction of soil and water conservation, and reducing runoff and agricultural non-point source pollution. In addition, forest land such as oak was also important region for generating non-point source pollution, great attention should be paid.
引文
[1]蒋协新,秦富,利明等.英国农业支出政策及其经验(上)[J].世界农业,2002,(10):13-15.
    [2]Arhonditsis G,Tsirtsis G,Angelidis M O,et a1.Quantification of the effects of nonpoint nutrient sources to coastal marine eu-trophication: applification to a semi-enclosed gulf in the Medi-terranean Sea. Ecological Modelling,2000,129(2) : 207-209.
    [3]金相灿.湖泊水体富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [4]Liu HZ, Chen YQ, Liang ZB. Current situation of the water environmental management of major lakes in China[J]. Environ Protection 1998,12:9-10.
    [5]Akiko Nagasaka, S. Yanai, H. Sato,et al. Soil erosion and gully growth associated with cultivation in southwestern Hokkaido, Japan[J]. Ecological Engineering,2005,24: 503–508.
    [6] Novotny V, Olem H. Water Quality:Prevention, Indentification, and Management of Diffuse. [J]New York: Van Nostrand Reinhold Compend, 1994.
    [7]Dassenakis M, Scoullos M, Krasakopolou E, Pavlidou A, Kloukiniotou M. Effects of multiple source pollution on small Mediterranean rive[J]r. Appl Geochem 1998,13: 197–211.
    [8]Dylan S. Ahearna, Rich ard W. Sheibleya, Randy A. Dahlgren,et al. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California[J]. Journal of Hydrology, 2005,313: 234–247.
    [9]Philippe Maillarda, Nadia Antonia Pinheiro Santos. A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed-Brazil[J]. Journal of Environmental Management, 2008,86:158-170.
    [10]许其功,刘鸿亮,沈珍瑶等.茅坪河流域非点源污染负荷模拟[J].环境科学,2006,27(1):2176-2181.
    [11]吴志峰,卓慕宁,王继增等.珠海正坑小流域土壤与氮、磷养分流失估算[J].水土保持学报,2004,18(1):100-114.
    [12]Liu Jianchang, Zhang Luoping, Zhang Yuzhen, et al. Validation of an agricultural non-point source (AGNPS) pollution model for a catchment in the Jiulong River watershed, China[J]. Journal of Environmental Sciences, 2008, 20: 599–606.
    [13]马彦涛,薛金凤,梁涛等.基于GIS的溶解态氮磷负荷模型研究[J].环境科学,2006,27(9):1765-1769.
    [14]Griensven A. van , Meixner T, Grunwald S, et al. A global sensitivity analysis tool for theparameters of multi-variable catchment models[J]. Journal of Hydrology, 2006, 324: 10–23.
    [15]李恒鹏,杨桂山,黄文钰等.太湖上游地区面源污染氮素入湖量模拟研究[J].土壤学报,2007,44(6):1064-1069.
    [16] Jaepil Cho, Seungwoo Park, Sangjun Im. Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation[J]. Agricultural Water Management, 2008, 95: 400-408.
    [17]张玉珍,陈能汪,曹文志等.南方丘陵地区农业小流域最佳管理措施模拟评价[J].资源科学,2005,27(6):151-155.
    [18]Santhi C, Srinivasan R, Arnold J.G, et al. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas[J]. Environmental Modelling & Software, 2006, 21: 1141-1157.
    [19]Mazdak Arabi, Rao S. Govindaraju, Mohamed M. Hantush. A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices[J]. Journal of Hydrology, 2007, 333: 459- 471.
    [20]Bao QS, Mao XQ, Wang HD. Progress in the research on aquatic environmental nonpoint source pollution in China[J]. Environ Sci, 1997,9:329-336.
    [21]许其功,刘鸿亮,沈珍瑶等.三峡库区典型小流域氮磷流失特征[J].环境科学学报,2007,27(2):326-331.
    [22]洪华生,黄金良,张珞平等. AnnAGNPS模型在九龙江流域农业非点源污染模拟应用[J].环境科学,2005,26(4):63-69.
    [23]张荣保,姚琪,计勇等.太湖地区典型小流域非点源污染物流失规律[J].长江流域资源与环境,2005,14(1):94-98.
    [24]李恒鹏,杨桂山,黄文钰等.太湖上游地区面源污染氮素入湖量模拟研究[J].土壤学报,2007,44(6):1064-1069.
    [25]王晓燕,王一峋,王晓峰等.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究,2003,16(1):30-33.
    [26]M.C. Ramos, J.A. Martinez-Casasnovas. Erosion rates and nutrient losses affected by composted cattle manure application in vineyard soils of NE Spain[J]. Catena 2006,68:177–185.
    [27]王方浩,马文奇,窦争霞等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
    [28]罗定.农村养殖业污染触目惊心.新民晚报[N],2001-04-01(4).
    [29]Duda, A.M.. Addressing non-point sources of water pollution must become an international priority. Water Sci[J]. Technol. 1993, 28(3–5):1–11.
    [30]Hollinger E,Cornish P S, Baginska B, et a1. Farm-scale storm water losses of sediment and nutrients from a market garden near Sydney, Australia[J].Agricultural Water Management, 2001,47(3): 227-24l.
    [31]Cameira M R,Femando R M,Pereira L S. Monitoring water and NO3-N in irrigated maize fields in the Sorraia Watershed, Portuga[J]l.Agricultural Water Management,2003,60(3):199-2l6.
    [32]朱松,陈英旭.小流域N、P污染负荷的构成比重研究[J].环境污染与防治,2003,25(4):226-227.
    [33]S P Buck.M I Wolfe.S Mostaghimi.Application of probabilistic risk assessment to agricultural nonpoint source poilution[J].Journal of Soil and Water C0nservation, 2000, 55(3):340-346.
    [34]鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66-71.
    [35]阎伍玖,王心源.巢湖流域非点源污染初步研究[J].地理科学,1998,18(3):263-267.
    [36]杨爱玲,朱颜明.城市地表饮用水源保护研究进展[J].地理科学,2000,20(1):72-77.
    [37]李俊然,陈利顶,傅伯杰等.于桥水库流域地表水非点源N时空变化特征[J].地理科学,2002,22(2):238-242.
    [38]Nadine Turpina, Philippe Bontemsb, Gilles Rilbnc,et a1.AgriBMP-Water:systems approach to environmentally acceptable farming[J]. Envi-Ronmental Modelling&Software, 2005, 20: 187-196.
    [39]王东胜,杜强.水体农业非点源污染危害及其控制[J].科学技术与工程,2004,4(2):123-127.
    [40]郝芳华,程红光,杨胜天.非点源污染模型-理论方法与应用[M].中国环境科学出版社. [41黄丽,丁树文,董舟等.三峡库区紫色土养分流失的试验研究[J].水土保持学报,1998,4(1):8-13.
    [42]张兴昌.郑剑英.吴瑞俊等.氮磷配合对土壤氮素径流流失的影响[J].土壤通报,2001,32(3):110-112.
    [43]白红英,唐克丽.坡地土壤侵蚀与养分流失过程的研究[J].水土保持通报, 1991,11(3):14-19.
    [44]李鹏,李占斌,郑良勇.植被恢复演替初期对模拟降雨产流特征的影响[J].水土保持学报, 2004,18(1): 54-62.
    [45]吴发启,赵晓光.黄土高原南部缓坡耕地降雨与侵蚀的关系[J].水土保持研究, 1999,6(2):53-60.
    [46]Sharpley Andrew N, Chapra S C, Wedephol R, et al. Managing agricultural phosphours for protection of surface waters: issues and options[J]. Environmental Quality, 1994, 23: 437-452.
    [47]McDowell L L,Willis G H, Murphree C E. Plant Nutrient Yields in Runoff from a Mississippi Delta Watershed[J]. Transaction of the ASAE,1984,27(4):1059-1066.
    [48]黄志霖,傅伯杰,陈利顶.黄土丘陵区不同坡度、土地利用类型与降水变化的水土流失分异[J].中国水土保持科学,2005,3(4):11-18.
    [49]徐秦平,朱波,汪涛.不同降雨侵蚀力条件下紫色土坡耕地的养分流失[J].水土保持研究, 2006,13(6):140-144.
    [50]高超,朱继业,朱建.极端降水事件对农业非点源污染物迁移的影响[J].地理学报,2005,60(6):991-997.
    [51]唐克丽.黄土高原上壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社,1990.
    [52]傅伯杰,邱杨,王军等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    [53]J Romero-Dfaz A, Cammeraat L H, Vacca A, et a1.Soil erosion at three experimental sites in the Mediterranean[J].Earth Surface Process Landforms,1999,24:1243-1256.
    [54]陈法扬.不同坡度对土壤冲刷量影响试验[J].中国水土保持,1985,2:24-30.
    [55]陈强,常恩福,毕波等.滇东南岩溶地区两种地类的水土流失比较[J].水土保持研究,2007,14(1):281-283.
    [56]王晓燕,王晓峰.北京密云水库石匣小流域空问数据库的初步建立[J].环境科学与技术,2004,27(3):42-46.
    [57] Dylan S. Ahearna , Richard W. Sheibleya, Randy A. Dahlgren,et al. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California[J]. Journal of Hydrology, 2005, 313: 234–247.
    [58]杨建霞,雷孝章,邱景.5°~25°坡耕地径流小区产流产沙规律[J].中国水土保持科学, 2008,6(增刊):30-34.
    [59]刘世海.黄土高原南部坡耕地土壤氮素径流损失特征研究[J].泥沙研究,2006,1:71-75.
    [60]黄满湘,章申,张国梁等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154.
    [61]USEPA.Our Built and Natural Environments:A Technical Review of the Interactions between Land Use, and Transportation [J]. Environmental Quality, 2001,4.
    [62]申震洲,刘普灵,谢永生等.不同下垫面径流小区土壤水蚀特征试验研究[J].水土保持通报,2006,26(3):6-9.
    [63]王晓燕,王晓峰,汪清平等.北京密云水库小流域非点源污染负荷估算[J].地理科学,2004,24(2):227-231.
    [64]Le Bissonnais Y, Lecomte V, Cerdan O. Grass strip effects on runoff and soil loss[J].Agron,2004,24:129–36.
    [65]Cavelier, J.,Jaramillo, M., Solis, D., deLeon, D.. Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama[J]. Journal of Hydrology, 1997,193(1-4), 83-96.
    [66]杨金玲,张甘霖,张华等.丘陵地区流域土地利用对氮素径流输出的影响[J].环境科学,2003,24(1):16-23.
    [67]S. Behera, R.K. Panda. Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process based mode l. [J] 2006,113:62–72.
    [68]V. Polyakov, A. Fares, D. Kubo,et al. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed[J]. Environmental Modelling & Software,2007 22:1617-1627.
    [69]胡远安,程声通,贾海峰.芦溪流域非点源污染物流失的一般规律[J].环境科学,2004,25(4):108-112.
    [70]胡远安,程声通,贾海峰.袁水上游小流域非点源污染研究--实验设计与数据初步分析[J].农业环境科学学报,2003,22(3):442-445.
    [71]Rudi Hessela, Ingmar Messingb, Chen Liding,etal.Soil erosion simulations of land use scenarios for a small Loess Plateau catchment[J].Catena ,2003,54: 289-302.
    [72]Gaynor J D,Findlay W I.Soil and Phosphorus loss from conservation and conservational tillage in Corn production[J].Environmental Quality,1995,24:734-741.
    [73]林永如.丘陵地区坡耕地水上流失动态监测分析[J].水土保持研究,1997,4(1):120-123.
    [74]汪涛,朱波,武永锋.不同施肥制度下紫色土坡耕地氮素流失特征[J].水土保持学报,2005,19(5):65-68.
    [75]韩建刚,李占斌.紫色土小流域种植模式对土壤氮素流失的影响初探[J].土壤肥料科学,2005,21(9):275-278.
    [76]南水北调中线工程源头生态功能保护区规划编写组.南水北调中线工程源头国家级生态功能保护区规划[C],2005.10.
    [77]张光科,方铎.坡面径流侵蚀量随坡度变化规律初探[J].水文,1996,4:45-48.
    [78]Moore. Effest of surface sealing on infiltration[J]. Transactions of the ASAE, 1984(24): 201-205.
    [79]程琴娟,蔡强国,廖义善.土壤表面特性与坡度对产流产沙的影响[J].水土保持学报[J],2007,21(2):9-11.
    [80]张曙光,张学奎,王金玲.关于黄河非点源污染控制问题的思考[J].中国水土保持,2004,8:11-12.
    [81]唐莲,白丹.农业活动非点源污染与水环境恶化[J].环境保护,2003,(3):18-20.
    [82]高龙华,张行南.RS和GIS支持下农业非点源污染模型研究评述[J].中国水土保持,2005,(11):36-38.
    [83]贾继元,吴建军,张苗.肥料结构对红壤氮素淋失的影响及防治措施[J].农机化研究,2005,(1):56-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700