土壤—蔬菜系统中水、光照和氮素的互作效应与生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以青菜((Brassica Chinensis L.)品种杭州油冬儿为材料,研究了光照、水分、氮素三因素互作效应对其物质生产的影响作用。充足的水分供应和100%自然光照(H1 L3)条件下提高了干物质积累的能力,低水平供氮和光照强度的提高有利于蔬菜较少地积累硝酸盐。在100%施氮量和充足的水分供应条件下(N4H1),32%自然光照(L2)下硝酸盐含量是100%自然光照(L3)的1.70倍。自然光照条件还能显著提高氮素代谢相关酶活性,利于氮素的同化过程进行,可溶性糖含量明显增加,利于蔬菜品质的改善。在100%施氮量和充足的水分供应条件下(N4H1),32%自然光照(L2)下硝酸还原酶、谷氨酸脱氢酶、谷氨酰胺合成酶活性分别仅为100%自然光照(L3)的35%,56%和65%。研究结果表明在充足水分供应和自然光照前提下,施氮量可以降低至Hoagland-Arnon培养液标准用量的60%而干物质积累不受影响,这对达到减少施氮量的目标意义重大。
     以黄瓜(Cucumissativus L.)品种博美11号、番茄(Lycopersicon esculentumMill)品种种旺九号为材料,分别采用南方与北方土壤研究了水分、氮素、光照三因素互作效应对其物质生产的影响作用。研究表明,高光照条件对黄瓜、番茄植株的生长至关重要。给予高光照的优势不仅表现在利于产量的增长,还对品质的优化有突出影响。在相同的施氮量前提下,给予高光强的黄瓜、番茄植株结出的果实均含有较高的可溶性糖和维生素C含量,以及较低的硝酸盐含量。在350Kgha~(-1)。施氮水平(N2)下,全光照(L3)时黄瓜、番茄积累的可溶性糖含量分别是弱光(L1)时的1.3倍和1.6倍,而弱光(L1)时黄瓜、番茄的硝酸还原酶活性分别仅为自然光照(L3)时的29%和10%。在充足的光照供应以及适当的土壤水分条件下,氮素的施用量可以从600 Kgha~(-1)降低到350 Kgha~(-1),而对植株的产量未有显著影响,这一结果对改变目前我国农业生长现状,促进减氮节能意义重大。
The objective of this study is to evaluate the effect of different light intensities and nitrogen supply levels with different water stress on the biomass of Brassica Chinensis L. (Hangzhou you dong er) by a hydroponic experiment. The results showed that the dry biomass of the cabbages at 0%[w/v]PEG、100% natural light intensity (H1 L3) was significantly higher than in weak light intensity and water stress treatments under the same nitrogen treatment. Decreased nitrate was achieved in low nitrogen supply and high light intensity level. An almost 1.7-fold increase in nitrate content was found in plants at the 100% nitrogen supply and 0%PEG level (N4H1), compared with weak light intensity(L1).Under high light intensity, the plant has a high content of soluble sugar and increased nitrogen assimilation capacity. For plants grown on full nitrogen supply level and 0%PEG (N4H1) condition, Nitrate reductase, Glutamate dehydrogenase, Glutamine synthetase activity showed 65%、44% and 35% lower in weak light intensity(L2) condition than in high light intensity condition(L3). An optimal yield was reached at 60% of the traditional nitrogen application in the presence of adequate high light intensity supply and normal water content.
     We also evaluate the effect of different light intensities and nitrogen supply levels with different soil on the yield of Cucumissativus L. (Bomei 11) and Lycopersicon esculentum Mill (Zhongwang 9). The results show that high light intensity was especially important to the growth of the fruits. Under high light intensity, the plants had a high content of soluble sugar、ascorbic acid and low content of nitrogen. An almost 1.3-fold and 1.6-fold increase in soluble sugars was found in cucumber and tomoto at the 350Kgha~(-1) nitrogen supply level (N2) and high light intensity treatment (L3), weak light intensity (L1).While Nitrate reductase decreased by 71% and 90% respectively in weak light intensity (L1) compared with high light intensity treatment (L3). An optimal yield was reached at 60% of the traditional nitrogen application (350 Kgha~(-1)) in the presence of adequate high light intensity supply and soil water content. Modulating the relationship between water stress, light intensity and nitrogen supply level could increase the biomass and promote the quality of the plant.
引文
曹兵,金雪霞,蔡贵信,等.低量施氮对小青菜生长和氮素损失的影响.植物营养与肥料学报,2005,11(4):519-523.
    曹宏鑫,王世敬,戴晓华.土壤基础肥力和肥水运筹对春小麦产量和品质及植株氮素状况的影响.麦类作物学报,2003,23(2):52-56.
    曹慧,许雪峰,韩振海,等.水分胁迫下抗旱性不同的两种苹果属植物光合特性的变化.园艺学报,2004,31(3):285-290.
    常连生,韩志卿,朱小平.不同氮肥对不结球白菜生长及品质的影响.河北科技师范学院学报,2006,20(3):23-27.
    陈巍,罗金葵,尹晓明,等.硝酸盐在两个小白菜品种体内的分布及调配.中国农业科学,2005,38(11):2277-2282.
    陈新红,王志琴,杨建昌.不同氮素水平与水分胁迫对水稻秧苗素质的影响.干旱地区农业研究,2007,25(1):78-81.
    陈煜,朱保葛,张敬,等.不同氮源对大豆硝酸还原酶和谷氨酰胺合成酶活性及蛋白质含量的影响.大豆科学,2004,23(2):143-146.
    崔保伟,陆引罡,张振中,等.不同生育期水分胁迫对烤烟生理特性及化学品质的影响.中国烟草科学,2009,30(3):19-23.
    董彩霞,田纪春,赵世杰.不同形态氮素对高蛋白小麦幼苗叶绿素荧光特性的影响.西北植物学报,2002,22(2):229-234.
    董放,王媛,关维刚,等.旱地不同栽培模式和施氮对土壤水分、温度及氮素矿化的影响.西北农林科技大学学报(自然科学版),2008,36(12):108-114.
    董园园,董彩霞,卢颖林,等.NH_4~+-N部分代替NO+_3~--N对番茄生育中后期氮代谢相关酶活性的影响.土壤学报,2006,43(2):261-266.
    杜建军,李生秀.不同肥水条件对早地土壤供氮能力的影响.西北农业大学学报,1998,26(6):1-5.
    关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报,2000,26(6):806-812.
    郭相平,郭枫,刘展鹏,等.水分胁迫及复水对玉米光合速率及可溶性糖的影响.玉米科学,2008,16(6):68-70.
    韩晓增,乔云发,张秋英,等.不同土壤水分条件对大豆产量的影响.大豆科学,2003,22(4):269-272.
    华劲松,戴红燕,夏明忠.不同光照强度对芸豆光合特性及产量性状的影响.西北农业学报,2009,18(2):136-140.
    黄俊,郭世荣,吴震,等.6个不结球白菜品种光合作用特性的研究.西北植物学报,2006,26(6):1183-1189.
    贾士芳,董树亭,王空军,等.玉米花粒期不同阶段遮光对籽粒品质的影响.作物学报,2007,33(12):1960-1967.
    贾嫒嫒,何玉杰,梁宗锁,等.不同水分处理对地黄光合特性的影响.西北农林科技大学学报(自然科学版),2009,37(8):182-186.
    姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182.
    荆家海.植物生理学.陕西农业科学技术出版,1994.1
    冷石林,韩仕峰,王立祥.中国北方旱地作物节水增产理论与技术.北京:中国农业科技出版杜,1996
    李彩凤,马凤呜,赵越,等.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响.作物学报,2003,29(1):128-132.
    李合生.植物生理生化实验原理和技术.高等教育出版社,2000,92-93.
    梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节.生态学报,1996,16(3):258-264.
    梁银丽,陈培元.土壤水分和氮磷营养对小麦根系生理特性的调节作用.植物生态学报,1996,20(3):255-262.
    刘景辉,赵海超,任永峰,等.土壤水分胁迫对燕麦叶片渗透调节物质含量的影响.西北植物学报,2009,29(7):1432-1436.
    刘晓明,杨延杰,李天来.光强对番茄氮素代谢及相关酶活性的影响.北方园艺,2008.5:1-5.
    龙谊.干旱逆境下植物的形态特征、生理和分子机制,中国高新技术企业,2007,86-87.
    缪颖,曹家树,曹广文.渗透胁迫下大白菜吸收转运Ca~(2+)的变化.浙江农业大学学报,1998,24(2):126-130.
    牛洪斌,白润娥,张宪.水分胁迫对欧李光合速率日变化的影晌.湖北民族学院学报(自然科 学版),2008,18(2):15-17.
    齐红岩,刘洋,刘海涛.水分亏缺对番茄叶片气孔特性及叶绿体超微结构的影响.西北植物学报,2009,29(1):9-15.
    钱晓晴,顾竹英,周明耀,等.水分供应和氮素形态对水稻一些水分生理特征的影响.作物学报,2007,33(12):2016-2020.
    钦绳武,刘芷宇.土壤一根系微区养分状况的研究:Ⅵ.不同形态肥料氮素在根际的迁移规律.土壤学报,1989,26(2):117-123.
    宋海星,李生秀.根系的吸收作用及土壤水分对硝态氮,铵态氮分布的影响.中国农业科学,2005,38(1):96-101.
    孙继颖,高聚林,吕小红.施氮量对大豆抗旱生理特性及水分利用效率的影响.大豆科学,2007,26(4):517-522.
    汤章城.植物对水分胁迫的反应和适应性Ⅰ.抗逆性的一般概念和植物的抗涝性.植物生理学通讯,1983,(3):24-29.
    王贺正,徐国伟,马均,等.水分胁迫对水稻生长发育及产量的影响.中国种业,2009,1:47-49.
    王明霞,王三根,吴文彬,等.硝态氮对不同基因型小白菜光合速率及品质的影响.西南农业大学学报(自然科学版),2005,27(3):385-388.
    王绍辉,张福墁.水分亏缺逆境对温室黄瓜生长及有关物质代谢的影响.园艺学报,2004,31(6):743-746.
    王喜庆,李生秀,高亚军.土壤水分在提高氮肥肥效中作用机制.西北农业大学学报,1997,25(1):15-19.
    魏成熙,张旭.土壤锌铅镉污染对小白菜硝酸盐含量的影响.西南农业大学学报(自然科学版),2005,27(4):436-438.
    翁伯琦,王义祥,徐国忠.植物对干旱胁迫的生理生态响应及其研究进展.福建稻麦科技,2009,27(2):45-50.
    徐坤,邹琦,赵燕.土壤水分胁迫与遮荫对生姜生长特性的影响.应用生态学报,2003,14(10):1645-1648.
    杨文斌,杨茂仁.蒸腾速率、阻力与叶内外水势和光强关系的研究.内蒙古林业科技,1996,4(3):53-56.
    杨延杰,李天来,林多,等.光照强度对番茄生长及产量的影响.长江蔬菜,2008,3:40-42.
    张承先,武雪萍,吴会军,等.不同土壤水分条件下华北冬小麦基施不同氮肥的氨挥发研究.中国土壤与肥料,2008,5:28-32.
    张福锁.环境胁迫与植物营养.北京:农业大学出版社,1993,42-75.
    张丽,张兴昌.植物生长过程中水分、氮素、光照的互作效应,干旱地区农业研究.2003,21(1):43-46.
    张美云,钱吉,郑师章.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化.复旦学报(自然科学版),2001,40(5):558-561.
    赵磊,杨延杰,林多.光照强度对蒲公英光合特性及品质的影响.园艺学报,2007,34(6):1555-1558.
    郑爱泉,侯煜,赵钢平,等.水分胁迫对作物生长及生理代谢的影响.陕西农业科学,2008,2:120-122.
    邹琦.植物生理学实验指导,北京:中国农业出版社,2000,54-56.
    周小玲,田大伦,张旭东,等.桤木不同品系蒸腾特性与水分利用效率的研究.中南林业科技大学学报,2008,28(1):1-7.
    朱祝军.不同光强和不同形态氮素对烟草叶片中抗坏血酸过氧化物酶活性和百草枯抗性的影响.植物生理学通讯,1997,33(5):330-332.
    Abir B H,Michel E G,Sadok B,Stanley L.An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L.differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress.Journal of Experimental Botany,2008,59(6):1315-1326.
    Barber M J,Desai S K,Marohnic C C.Synthesis and bacterial expression of a gene encoding the heme domain of assimilatory nitrate reductase.Archives of biochemistry and biophysics,2002,402(1):38-50
    Buchanan B B,Gruissem W,Jones R L.Biochemistry and molecular biology of plants.Beijing:Science Press,2002.
    Burstrom H.Photosynthesis and assimilation of nitrate by wheat leaves.Annual Review of agriculturial.Sweden Ⅱ,1943,1-50.
    Chen B M,Wang Z H,Li S X,et al.Effects of nitrate supply on plant growth,nitrate accumulation,metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables.Plant Science,2004,167:635-643.
    Dong C X, Shen Q R, Wang G Tomato Growth and Organic Acid Changes in Response to Partial Replacement of NO_3~-—N by NH_4~+-N. Pedosphere, 2004,14(2): 159-164.
    Dubois F, Terce-Laforgue T, Gonzalez-Moro M B. Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiology and Biochemistry, 2003, 41: 565—576.
    Fukutoku Y. Effect of water stress on nitrate assimilation in soybean leaves. Bulletin of the Faculty of Agriculture, 1996, 80:69-76.
    Isabel S V, Ernesto P V, Antonio A M. Nitrate accumulation, yield and leaf quality of turnip greens in response to nitrogen fertilisation. Nutrient Cycling in Agroecosystems, 1998, 51:249-258.
    Jensen H H, Schjoerring J K. Effects of drought and inorganic N form on nitrogen fixation and carbon isotope discrimination in Trifoliumrepens. Plant Physiology and Biochemistry, 1997, 35(1):55-62.
    Judith H, Marie-Anne P C, Olivier S, Bertrand H. Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus? Plant Physiology, 2003, 133:253-262.
    Kaiser W M, Huber S C. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. Journal of Experimental Botany, 2001,52: 1981-1989.
    Law M Y, Charles S A, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts: The effect of hydrogen peroxide and of Paraquat. Biochemical Journal, 1983, 210:899-903.
    Leleu O, Vuylsteker C, Teot J F, et al. Effect of two contrasted N fertilisations on rapeseed growth and nitrate metabolism. Plant Physiology and Biochemistry, 2000, 38:639-645.
    Li T H, Li S H. Leaf responses of micropropagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiology, 2005, 25: 495-504.
    Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 2002, 53:979-987.
    
    Natu P S, Ghildiyal M C. Potential targets for improving photosynthesis and crop yield. Current Science, 2005, 88:1918-1928.
    Policy H W, Johnson H B, Mayeux H S. Increasing CO_2 comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology, 1994, 75:976-988.
    Puthur J. Influence of light intensity on growth and crop productivity of Vanilla planifolia Andr. Gen.Appl.Plant Physiology, 2005, 31:215-224.
    Robinson S A, Slade A P, Fox G G, et al. The Role of Glutamate Dehydrogenase in Plant Nitrogen Metabolism. Plant Physiology, 1991, 95:509-516.
    Ruiz J M, Romero L. Commercial Yield and Quality of Fruits of Cucumber Plants Cultivated under Greenhouse Conditions:Response to Increases in Nitrogen Fertilization. Journal of Agricultural and Food Chemistry, 1998,46:4171-4173.
    Sarah J C, Lorraine E W, Anthony J M. Light-Dark Changes in Cytosolic Nitrate Pools Depend on Nitrate Reductase Activity in Arabidopsis Leaf Cells. Plant Physiology, 2005,138:1097-1105.
    Shivashankara K S, Mithila J, Maiti S. Effect of different light intensities on growth and yield of Betevine (Piper betle L). Plantation Crops, 2000,28:196-200.
    Singh S. Physiological response of different crop species to light stress. Indian Journal of Plant Physiology, 1994,37:147-151.
    Solomonson L P, Barber M J. Assimilatory nitrate reductase: functional properties and regulation, Annual Review of Plant Biology, 1990, 41:225-253.
    Szente K, Nagy Z, Tuba Z. Enhanced water use efficiency in dry loess grassland species grown at elevated air CO_2 concentration. Photosynthetica, 1998, 35(4):637-640
    Tao Z P, Yin K. D. Effect s of environmental factors on nit rate content of Chinese cabbage. Transactions of the CSAE, 2008, 24 (8):245-248.
    Tombesi A, Antognozzi A, Palliotti A, Influence of light exposure on characteristics and storage life of kiwifruit. New Zealand Journal of Crop and Horticultural Science, 1993, 21:87-92.
    Vos J, van der Putten P E L. Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. European Journal of Agronomy, 2001, 14: 209—220.
    Wang Z H, Zong Z Q, Li S X, et al. Nitrate accumulation in vegetables and its residual in vegetable fields. Environmental Science, 2002, 23:79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700