灵芝法呢基焦磷酸合酶基因的克隆和表达特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵芝(Ganoderma lucidum)在我国已有悠久的应用历史,可用于多种疾病的治疗。三萜类化合物是灵芝的重要药用成分,具有保肝、抗肿瘤、抑制组织胺释放、抑制胆固醇的合成和吸收以及抗HIV和抗HIV蛋白酶的作用等功能。因此,灵芝中三萜含量的高低已经成为灵芝药效高低的重要指标。
     作为次生代谢产物,三萜类化合物是通过甲羟戊酸途径,由法呢酯焦磷酸产生鲨烯、再转化成2,3-氧化鲨烯,最后经过一系列的氧化、还原和环化反应形成的。法呢基焦磷酸合酶(FPS)处于甲羟戊酸途径中的第一个分支点,是类异戊二烯生物合成过程中的一个关键酶,它可以催化两分子异戊烯基焦磷酸与二甲基烯丙基焦磷酸的相继性头尾缩合,形成法呢基焦磷酸(FPP)。FPS的含量与活性高低会影响三萜化合物产量的多少。
     根据已发表的其它物种FPS氨基酸序列的保守区,设计简并引物,以灵芝cDNA文库为模板,经PCR扩增,获得了一个456 bp的灵芝法呢基焦磷酸合酶基因特异cDNA片段。利用获得的灵芝法呢基焦磷酸合酶基因特异片段,设计特异性引物,结合cDNA文库的通用引物,扩增得到灵芝FPS基因的5′端cDNA片段。提取灵芝原基时期的RNA,经反转录后的cDNA作为模板,通过3′RACE,获得灵芝FPS基因的3′端cDNA片段。根据扩增获得的序列信息设计引物,以反转录的原基cDNA为模板,得到灵芝FPS基因的全长cDNA序列,该序列全长为1083 bp,编码360个氨基酸残基。其推导的蛋白分子量为42.27kDa。
     根据灵芝FPS基因全长cDNA序列设计引物,扩增灵芝的基因组DNA,得到灵芝FPS基因的全长基因组序列,该序列全长为1388 bp,FPS基因由4个外显子和3个内含子构成。
     灵芝FPS蛋白序列比对发现,灵芝FPS与另一种担子菌黄汁乳菇的FPS表现出最高的相似性(59%),并且包含有不同物种FPS序列中的四个保守区。在FPS的分型中,灵芝FPS属于Ⅰ型(真核状态)法呢基焦磷酸合酶,这与灵芝的物种分类相吻合。
     将灵芝FPS基因全长cDNA序列克隆到酵母表达载体pYF1845中,转入因缺失FPS活性而依赖麦角甾醇的酵母突变株CC25。结果转化子可以在36℃、不含麦角甾醇的培养基平板上生长,证实了所获得FPS基因cDNA序列的功能。
     根据灵芝FPS基因DNA序列设计引物,以灵芝基因组DNA为模板,扩增FPS基因上游启动子序列,该序列长约1288 bp,用Softberry软件对启动子序列进行分析,发现灵芝FPS基因启动子中包含有明显的TATA-box和CAAT-box,并发现了多个与固醇、激素和环境压力等调节相关的顺式作用元件。
     通过竞争性RT-PCR的方法,检测了不同发育阶段灵芝中FPS在mRNA水平的表达差异。结果证明,在灵芝原基中,FPS mRNA的转录水平要明显高于菌丝体中的转录水平。这种差异与Hirotani等所报道三萜含量的变化呈正相关。
     在培养基中添加植物激素茉莉酸甲酯(methyl jasmonate,MeJA),对灵芝三萜的生物合成有很好的诱导效果。基于此,对由不同浓度茉莉酸甲酯处理的菌丝体进行了灵芝FPS基因mRNA转录水平的检测。50~200μm茉莉酸甲酯作用下,灵芝FPS基因的转录本表现出持续性增加,150μm的浓度是最佳诱导浓度。同时,在灵芝FPS基因的启动子中发现了两个茉莉酸甲酯响应元件,这样的结果综合表明,灵芝FPS基因可能是经由茉莉酸甲酯响应元件而参与了由茉莉酸甲酯信号调控的灵芝三萜生物合成途径。
Ganoderma lucidum,called "Lingzhi" in China,has a long history of use for the treatment of many different diseases.Ganoderic acid(GA) produced by this higher fungus has a number of important biological functions including cytotoxicity to hepatoma cells, inhibition of histamine release,inhibition of cholesterol synthesis and absorption, stimulation of platelet aggregation,and anti-HIV and anti-HIV-protease activities.The quality of G.lucidum products was determined by the content of GA.
     As a secondary metabolite,ganoderic acid is synthesized via the mevalonate pathway, where farnesyl diphosphate is converted to squalene,then to 2,3-oxidosqualene,and finally undergoes a series of cyclization,oxidation,and reduction reactions.
     Farnesyl-diphosphate(FPP) synthase(FPS;EC 2.5.1.1./EC 2.5.1.10) catalyzes the sequential 1'-4 condensation of two molecules of IPP with dimethylallyl diphosphate (DMAPP) and the resulting 10-carbon compound geranyl diphosphate(GPP) to produce the 15-carbon compound FPP.FPS is located at the first multiple branch point in the isoprenoid biosynthetic pathway,suggesting that FPP biosynthesis is tightly regulated. Therefore,changes in FPS activity might alter the flux of GA.
     Based on a sequence comparison between the FPS genes from other species, degenerate oligonucleotides from the most conserved regions were synthesized for PCR amplification of cDNA library.A 456 bp putative cDNA fragment was obtained and sequenced to confirm that this fragment shared high similarity with known fungal FPS sequences.Specific primers were designed on the basis of the specific 456-bp fragment of FPS gene of G.lucidum.Collaborated with the universal primers of the cDNA library vector,the 5' end of G.lucidum gene was amplified.Total RNA was prepared from G. lucidum primordium and reverse-transcribed to cDNA.We employed a 3' RACE strategy to obtain the sequence of 3' end of G.lucidum gene.Specific primers were designed according to the obtained sequence information and the full length of cDNA was amplified. Analysis of the GIFPS cDNA sequence indicated the presence of an open reading frame(ORF) of 1,083 bases.The ORF encoded a 360-amino acid polypeptide and a theoretical molecular mass of 41.27 kDa.
     The genomic sequence of G.lucidum FPS gene was amplified by the primes designed according to the 5' and 3' ends of FPS gene.The full-length genomic sequence was 1388 bp;the gene was consisted of 4 exons and 3 introns
     Protein sequence comparison indicated that GlFPS is closely related(59%identity) to the FPS of Lactarius chrysorrheus,another basidiomycetous fungus.The alignment of GlFPS with orthologs available in the databases showed four highly conserved regions. GlFPS contains the typeⅠ(eukaryotic) FPS signature,which is consistent with traditional evolutionary affinities.
     The cDNA sequence of FPS gene was cloned into yeast expression vector pYF1845. The recombinant plasmid was introduced into a FPS-defective yeast mutant strain CC25, whose growth requires ergosterol.Transformants could grow on media lacking ergosterol at 36℃.The results indicate that GlFPS is a functional fungal gene encoding FPS in G. lucidum.
     The promoter sequence of FPS was amplified from G.lucidum genomic DNA by the SEFA-PCR method.Using Softberry software,predicted TATA boxes and CAAT boxes were found.The potential regulatory elements associated with sterol,hormone,and stress-related responses were also found in the GlFPS promoter region.
     We monitored the levels of the GlFPS mRNA at different developmental stages by competitive PCR.The GlFPS mRNA level was relatively low in mycelia.However,the fruiting process increased the GlFPS mRNA level.The higher GlFPS mRNA level was probably correlated with the increased triterpene synthesis as described by Hirotani et al..
     Treatment of mycelia with exogenous methyl jasmonate(MeJA) also caused a large accumulation of triterpene biosynthesis.Thus,we monitored the effect of MeJA on the GlFPS mRNA level in the mycelia.GlFPS transcripts accumulated following the addition of 50-150μm MeJA to the culture medium,whereas mycelia treated with 200μm MeJA showed reduced promotion of GlFPS mRNA.The highest mRNA level was observed at a concentration of 150μm.Interestingly,sequence analysis of the GlFPS promoter identified two potential MeJA responsive elements.Our results suggest that GlFPS is probably involved in the triterpene biosynthesis regulation pathways of MeJA signalling via the putative MeJA-response elements.
引文
[1]李时珍.本草纲目[M].北京:人民卫生出版社,1987,577.
    [2]邵力平,沈瑞祥,张素轩,等.真菌分类学[M].北京:中国林业出版社,1983.
    [3]赵继鼎.中国灵芝科真菌资源与分布.真菌学报[J],1992,11(1):56-62.
    [4]林志斌.灵芝的现代研究[M].北京:北京医科大学出版社,2001,1-327.
    [5]Hirotani M,Asaka I,Ino C,et al.Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidutn.Phytochemistry[J],1987,26(10):2797-2803.
    [6]Hirotani M,Furuya T,Shiro M,et al.A ganoderic acid derivative,a highly oxygenated lanostane-type triterpenoid from Ganoderma lucidum.Phytochemistry[J],1985,24(9):2055-2061.
    [7]Hirotani M,Ino C,Furuya T,et al.Ganoderic acids T,S and R,new triterpenoids from the cultured mycelia of Ganoderma lucidum.Chem Pharm Bull[J],1986,34(5):2282-2285.
    [8]Nishitoba T,Goto S,Sato H,et al.Bitter triterpenoids from the fungus Ganoderma applanatum.Phytochemistry[J],1989,28(1):193-197.
    [9]Nishitoba T,Sato H,Sakamura S.New terpenoids,ganoderis acid D,ganoderic acid L,lucidone C and lucidenic acid G from the fungus Ganoderma lucidurn.Agri Biol Chem[J],1986,50(3):809-811.
    [10]Nishitoba T,Sato H,Sakamura S.Triterpenoids from the fungus Ganoderma lucidum.Phytochemistry[J],1987,26(6):1777-1784.
    [11]Chairul,Tokuyama T,Hayashi Y,et al.Applanoxidic acids A,B,C and D,biologically active tetracyclic triterpenes from Ganoderma applanatum.Phytochemistry[J],1991,30(12):4105-4109.
    [12]Kikuchi T,Kanomi(nee Matsuda) S,Kadota S,et al.Constituents of the fungus Ganoderma lucidum(KR.) KARST Ⅰ.Structure of ganoderic acids C2,E,I,and K,lucidenic acid F and related Compounds.Chem Pharm Bull[J],1986,34(9):3695-3712.
    [13]Minb S,Gao JJ,Nakamura N,et al.Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells.Chem Pharm Bull[J],2000,48(7):1026-1033.
    [14]陈若芸,于德泉.赤芝孢子粉三萜化学成分研究.药学学报[J],1991,26(4):257-263.
    [15]李平作,张克昌.灵芝发酵菌丝体中灵芝酸的分离纯化及生物活性检测.天然产物研究与开发[J],1999,11(4):67-70.
    [16]Antonio GG,Francisco L,Augusto R,et al.Lanostanoid triterpenes from Ganoderma lucidum.J Nat Prod[J],1999,62:1700-1701.
    [17]Sato H,Nishitoba T,Shirasu S,et al.Ganoderiol A and B,new triterpenoids from the fungus Ganoderma lucidum(Reishi).Agri Biol Chem[J],1986,50(11):2887-2890.
    [18]El-Mekkawy S,Meselhy R,Norio M,et al.Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidium.Phytochemistry[J],1998,49(6):1651-1657.
    [19]王芳生,蔡辉,杨峻山,等.赤芝子实体中三萜化学成分的研究.药学学报[J],1996,31(3):200-204.
    [20]陈若芸,于德泉.用二维核磁共振技术研究赤芝孢子内酯A和B的结构.药学学报[J],1991,26:430。
    [21]Min BS,Nakamura N,Miyashio H,et al.Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV21 protease.Chem Pharm Bull[J],1998,46(10):1607-1612.
    [22]Su CY,Shiao MS,Wang CT.Dfferential effects of ganodermic acid S on the thromboxane A2-signaling pathways in human platelets.Biochem Pharmacol[J],1999,58(4):587-595.
    [23]Su CT,Shiao MS,Wang CT.Potentiation of ganodermic acid S on prostaglandin E_1-induced cyclic AMP elevation in human platelets.Thmmb Res[J],2000,99(2):135-145.
    [24]Mizushina Y,Takahashi N,Hanashima L,et al.Lucidenic acid O and lactone,new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete,Ganoderma lucidum.Bioorg Med Chem[J],1999,7(9):2047-2052.
    [25]江振友,林晨.灵芝多糖对小鼠细胞免疫功能调节作用的实验研究.微生物学杂志[J],2003,23(2):51.
    [26]张剑诚,张峰,王吉桥.4种多糖对皱纹盘鲍细胞活性氧和血清凝集活力的影响.中国水产科学[J],2004,11(2):147-153.
    [27]张群豪,林志彬.灵芝多糖GL-B的抑瘤作用和机制研究.中国中西医结合杂志[J],1999,19(9):544.
    [28]林志彬.灵芝抗肿瘤活性和免疫调节作用的研究进展.北京大学学报[J],2002,34(5):493.
    [29]宁安红,曹婧,黄敏等.灵芝多糖对荷瘤小鼠肿瘤免疫系统的影响[J].中国微生态学杂志,2004,16(1):13.
    [30]You YH,Lin ZB.Protective effects of Ganodema lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species.Acta Pharmacol Sin[J],2002,23(9):787.
    [31]李荣芷,何云庆.灵芝多糖抗衰老机理的探讨.老年学杂志[J],1992,12(3):184.
    [32]李荣芷,何云庆.从灵芝扶正固体有效成分灵芝多糖的发现讨论中药活性成分研究的思路和途径.北京医科大学学报[J],1987,19(6):43.
    [33]殷勤燕.灵芝抗肿瘤作用的研究现状.中国食用菌[J],1996,15(4):28.
    [34]Lee S,Park S,Oh J,et al.Nature inhibitors for protein prenyltransferase.Planta Med[J],1998,64(4):303.
    [35]张万庆,王勤,印明善,等.灵芝凝聚素分离纯化及部分性质研究.生物化学研究[J],1993,9(1):125-128.
    [36]Kawagishi H,Mitsunaga S,Yamawaki M,et al.A lectin from mycelia of the fungus Ganoderma lucidum.Phytochem[J],1997,44(1):7-10.
    [37]Van der Hem LG,Van der Vliet JA,Bocken CF,et al.Ling Zhi-8:studies of a new immunomodulating agent.Transplantation[J],1995,60(5):438-443.
    [38]Jakucs E,Racz I,Lasztity D.Some characteristics and purification of the Ganoderma lucidum cellulase system.Acta Microbiol.Immunol Hung[J],1994,41(1):23-31.
    [39]兰进,徐锦堂,王秋颖等.灵芝过氧化物同工酶和脂酶同工酶的研究.中国药学杂志[J],1998,33(12):714-716。
    [40]Hseu RS,Wang HH,Wang HF,et al.Different and grouping of isolates of the Ganoderma lucidum complex by random amplified polymorphic DNA-PCR compared with grouping on the basis internal transcribed spacer sequences,Appl Environ Microbiol[J],1996,62(4):1354-1363.
    [41]D'Souza TM,Boominathan K,Reddy CA.Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR.Appl Environ Microbiol[J],1996,62(10):3739-3744.
    [42]Murasugi A,Tanaka S,Komiyama N,et al.Molecular cloing of a cDNA and a gene encoding an immunomodulatory protein,Lingzhi-8,from a fungus,Ganoderma lucidum,J Biol Chem[J],1991,266(4):2486-2493.
    [43]Lynen F,Agranoff BW,Eggerer H,et.al.γγ-Dimethyl-allyl-pyrophosphat und Geranyl-pyrophosphat,biologische Vorstufen des Squalens.Angew Chem[J],1959,21:657-684.
    [44]Tachibana A,Yano Y,Otani S,et al.Novel prenyltransferase gene encoding farnesylgeranyl.diphosphate synthase from a hyperthermophilic archaeon,Aeropyrum pernix.Molecular evolution with alteration in product specificity.Eur J Biochem[J],2000,267:321-328.
    [45]Correll CC,Ng L,Edwards PA.Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.J Biol Chem[J],1994,269:17390-17393.
    [46]Shearer A,Hampton RY.Lipid mediated,reversible misfolding of sterol-sensing domain protein.EMBO J[J],2005,24:149-159.
    [47]Shivdasani RA,Rosenblatt MF,Zucker-Franklin D,et al.Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development.Cell[J],1995,81:695-704.
    [48] Reilly JF, Martinez SD, Mickey G, et al. A novel role of farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction. Biochem J [J], 2002,366:501-510.
    [49] Chen DH, Ye HC, Li GF. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci [J], 2000,55:179-185.
    [50] Cornforth JW, Cornforth RH, Popjak G, et al. Studies on the biosynthesis of cholesterol. XX. Steric course of decarboxylation of 5-pyrophosphomevalonate and of the carbon to carbon bond formation in the biosynthesis of farnesyl pyrophosphate. J Biol Chem [J], 1966, 241: 3970-3987.
    [51] Poulter CD, Rilling HC. Prenyltransferase: the mechanism of the reaction. Biochemistry [J], 1976, 15:1079-1083.
    [52] Laskovics FM, Poulter CD. Prenyltransferase; determination of the binding mechanism and individual kinetic constants for farnesylpyrophosphate synthetase by rapid quench and isotope partitioning experiments. Biochemistry [J], 1981,20:1893-1901.
    [53] Grunler J, Ericsson J, Dallner G Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta [J], 1994,1212: 259-277.
    [54] Runquist M, Ericsson J, Thelin A, et al. Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. J Biol Chem [J], 1994, 269: 5804-5809.
    [55] Cunillera N, Boronat A, Ferrer A. The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J Biol Chem [J], 1997, 272: 15381-15388.
    [56] Olivier LM, Krisans SK. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. Biochim Biophys Acta [J], 2000,1529: 89-102.
    [57] Sanmiya K, Ueno O, Matsuoka M, et al. Localization of farnesyl diphosphate synthase in chloroplasts. Plant Cell Physiol [J], 1999, 40: 348-354.
    [58] Eberhardt NL, Rilling HC. Prenyltransferase from Saccharomyces cerevisiae. Purification to homogeneity and molecular properties. J Biol Chem [J], 1975, 250: 863-866.
    [59] Reed BC, Rilling HC. Crystallization and partial characterization of prenyltransferase from avian liver. Biochemistry [J], 1975,14: 50-54.
    [60] Yeh LS, Rilling HC. Purification and properties of pig liver prenyltransferase: interconvertible forms of the enzyme. Arch Biochem Biophys [J], 1977,183: 718-725.
    
    [61] Barnard GF, Popjak G. Human liver prenyltransferase and its characterization. Biochim Biophys Acta [J], 1981,661:87-99.
    [62]Clarke CF,Tanaka RD,Svenson K,et al.Molecular cloning and sequence of a cholesterol-repressible enzyme related to prenyltransferase in the isoprene biosynthetic pathway.Mol Cell Biol[J],1987,7:3138-3146.
    [63]Anderson MS,Yarger JG,Burck CL,et al.Farnesyl diphosphate synthetase.Molecular cloning,sequence,and expression of an essential gene from Saccharomyces cerevisiae.J Biol Chem[J],1989,264:19176-19184.
    [64]Wilkin DJ,Kutsunai SY,Edwards PA.Isolation and sequence of the human farnesyl pyrophosphate synthetase cDNA.Coordinate regulation of the mRNAs for famesyl pyrophosphate synthetase,3-hydroxy-3-methylglutaryl coenzyme A reductase,and 3-hydroxy-3-methylglutaryl coenzyme A synthase by phorbol ester.J Biol Chem[J],1990,265:4607-4614.
    [65]周明兵,肖月华,朱冬雪,等.杜仲胶合成相关基因EuFPS的克隆及序列分析.分子植物育种[J],2003,1(1):66-71.
    [66]刘长军,孟玉玲,侯嵩生,等.棉花法呢基焦磷酸合酶cDNA克隆、序列分析及其在种子发育过程中的表达特征.植物学报[J],1998,40(8):703-710.
    [67]Homann V,Mende K,Amtz C,et al.The isoprenoid pathway:cloning and characterization of fungal FPPS genes.Curr Genet[J],1996,30(3):232-239.
    [68]Delourme D,Lacroute F,Karst F.Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast.Plant Mol Biol[J],1994,26(6):1867-1873.
    [69]Ashby MN,Edwards PA.Elucidation of the deficiency in two yeast coenzyme Q mutants.Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase.J Biol Chem[J],1990,265:13157-13164.
    [70]Joly A,Edwards PA.Effect of site-directed mutagenesis of conserved,aspartate and arginine residues upon farnesyl diphosphate synthase activity.J Biol Chem[J],1993,268:26983-26989.
    [71]Marrero PF,Poulter CD,Edwards PA.Effects of site-directed mutagenesis of the highly conserved aspartate residues in domain Ⅱ of farnesyl diphosphate synthase activity.J Biol Chem[J],1992,267:21873-21878.
    [72]Song L,Poulter CD.Yeast farnesyl-diphosphate synthase:site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and Ⅱ.Proc Natl Acad Sci USA[J],1994,91:3044-3048.
    [73]Koyama T,Tajima M,Nishino T,et al.Significance of Phe-220 and Gln-221 in the catalytic mechanism of farnesyl diphosphate synthase of Bacillus stearothermophilus.Biochem Biophys Res Commun[J],1995,212:681-686.
    [74] Koyama T, Tajima M, Sano H, et al. Identification of significant residues in the substrate binding site of Bacillus stearothermophilus farnesyl diphosphate synthase. Biochemistry [J], 1996, 35: 9533-9538.
    [75] Reed BC, Rilling HC. Crystallization and partial characterization of prenyltransferase from avian liver. Biochemistry [J], 1975,14:50-54.
    
    [76] Nakane H, Koyama T, Obata S, et al. Crystallization and preliminary X-ray diffraction studies of Bacillus stearothermophilus farnesyl diphosphate synthase expressed in Escherichia coli. J Mol Biol [J], 1993,233: 787-788.
    [77] Tarshis LC, Yan M, Poulter CD, et al. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6- A resolution. Biochemistry [J], 1994, 33:10871-10877.
    [78] Tarshis LC, Proteau PJ, Kellogg BA, et al. Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci USA [J], 1996, 93:15018-15023.
    
    [79] Koyama T, Gotoh Y, Nishino T. Intersubunit location of the active site of farnesyl diphosphate synthase: reconstruction of active enzymes by hybrid-type heteromeric dimers of site-directed mutants. Biochemistry [J], 2000, 39:463-469.
    [80] Karst F, Plochocka D, Meyer S, et al. Farnesyl diphosphate synthase activity affects ergosterol level and proliferation of yeast Saccharomyces cerevisiae. Cell Biol Int [J], 2004,28:193-197.
    [81] Ohnuma S, Nakazawa T, Hemmi H, et al. Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J Biol Chem [J], 1996, 271: 10087-10095.
    
    [82] Ohnuma S, Narita K, Nakazawa T, et al. A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem [J], 1996,271:30748-30754.
    
    [83] Hemmi H, Noike M, Nakayama T, et al. An alternative mechanism of product chain-length determination in type III geranylgeranyl diphosphate synthase. Eur J Biochem [J], 2003, 270: 2186-2194.
    
    [84] Kawasaki T, Hamano Y, Kuzuyama T, et al. Interconversion of the product specificity of type I eubacterial farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase through one amino acid substitution. J Biochem (Tokyo) [J], 2003,133: 83-91.
    [85] Spear DH, Kutsunai SY, Correll CC, et al. Molecular Cloning and Promoter Analysis of the Rat Liver Farnesyl Diphosphate Synthase Gene. J Biol Chem [J], 1992, 267: 14462-14469.
    [86] Szkopinska A, Swiezewska E, Karst F. The Regulation of Activity of Main Mevalonic Acid Pathway Enzymes: Farnesyl Diphosphate Synthase, 3-Hydroxy-3-methylglutaryl -CoA Reductase, and Squalene Synthase in Yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun [J], 2000, 267: 473-477.
    [87] Szajnman SH, Ravaschino EL, Docampo R, et al. Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase. Bioorg Med Chem Lett [J], 2005,15(21):4685-4690.
    [88] Chen A, Poulter CD. Purification and characterization of farnesyl diphosphate/geranylgeranyl diphosphate synthase. A thermostable bifunctional enzyme from Methanobacterium thermoautotrophicum. J Biol Chem [J], 1993,268:11002-11007.
    [89] Ohnuma S, Hirooka K, Ohto C, et al. Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate -rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem [J], 1997, 272: 5192-5198.
    [90] Narita K, Ohnuma S, Nishino T. Protein design of geranyl diphosphate synthase. Structural features that define the product specificities of prenyltransferases. J Biochem (Tokyo) [J], 1999, 126: 566-571.
    [91] Dhiman RK, Schulbach MC, Mahapatra S, et al. Identification of a novel class of omega,E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res [J], 2004, 45:1140-1147.
    [92] Attucci S, Aitken SM, Gulick PJ, et al. Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and purification of the expressed protein. Arch Biochem Biophys [J], 1995,321: 493-500.
    [93] Cunillera N, Arro M, Delourme D, et al. Arabidopsis thaliana contains two differentially expressed famesyl-diphosphate synthase genes. J Biol Chem [J], 1996,271: 7774-7780.
    [94] Pan Z, Herickhoff L, Backhaus RA. Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles. Arch Biochem Biophys [J], 1996, 332:196-204.
    [95] Sanmiya K, Ueno O, Matsuoka M, et al. Localization of farnesyl diphosphate synthase in chloroplasts. Plant Cell Physiol [J], 1999, 40: 348-354.
    [96] Hemmerlin A, Rivera SB, Erickson HK, et al. Enzymes encoded by the farnesyl diphosphate synthase gene family in the Big Sagebrush Artemisia tridentata ssp. spiciformis. J Biol Chem [J], 2003, 278:32132-32140.
    [97] Homann V, Mende K, Arntz C, et al. The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet [J], 1996, 30: 232-239.
    [98]Sambrook J,Fritsch EF,Maniatis T.Molecular Cloning:A Laboratory Manual,2nd Ed[M].Cold Spring Harbor Laboratory Press,1989.
    [99]Homann V,Mende K,Amtz C,et al.The isoprenoid pathway:cloning and characterization of fungal FPPS genes.Curr Genet[J],1996,30(3):232-239.
    [100]赵明文,李娜,梁婉琪,等.用λZAP Express作载体构建灵芝原基表达型cDNA文库.南京农业大学学报[J],2004,27(4):64-68.
    [101]http://www.ncbi.nlm.nih.gov
    [102]Gaffe J,Bru JP,Causse M,et al.LEFPS1,a tomato farnesyl pyrophosphate gene highly expressed during early fruit development.Plant Physiol[J],2000,123:1351-1362.
    [103]Hirotani M,Asaka I,Furuya T.Investigation of the biosynthesis of 3-hydroxy triterpenoids,ganoderic acids T and S,by application of a feeding experiment using[1,2-~(13)C_2]acetate.J Chem Soc,Perkin Trans 1[J],1990,2751-2754.
    [104]Marrero PF,Poulter CD,Edwards PA.Effects ofsite-directed mutagenesis of the highly conserved aspartate residues in domain Ⅱ of farnesyl diphosphate synthase activity.J Biol Chem[J],1992,267:21873-21878.
    [105]Joly A,Edwards PA.Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon famesyl diphosphate synthase activity.J Biol Chem[J],1993,268:26983-26989.
    [106]Tarshis LC,Proteau PJ,Kellogg BA,et al.Regulation of product chain length by isoprenyl diphosphate synthases.Proc Natl Acad Sci USA[J],1996,93:15018-15023.
    [107]Ohnuma S,Hirooka K,Ohto C,et al.Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl.diphosphate synthase.Two amino acids before the first aspartate -rich motif solely determine eukaryotic farnesyl diphosphate synthase activity.J Biol Chem[J],1997,272:5192-5198.
    [108]Narita K,Ohnuma S,Nishino T.Protein design of geranyl diphosphate synthase.Structural features that define the product specificities of prenyltransferases.J Biochem(Tokyo)[J],1999,126:566-571.
    [109]Koyama T,Tajima M,Nishino T,et al.Significance of Phe-220 and Gin-221 in the catalytic mechanism of farnesyl diphosphate synthase of Bacillus stearothermophilus.Biochem Biophys Res Commun[J],1995,212:681-686.
    [110]Blanchard L,Karst F.Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae.Gene[J],1993,125:185-189.
    [111]Martín D,Piulachs MD,Cunillera N,et al.Mitochondrial targeting of farnesyl diphosphate synthase is a widespread phenomenon in eukaryotes.Biochim Biophys Acta[J],2007,1773:419-426.
    [112]Tamura K,Dudley J,Nei M,et al.MEGA4:molecular evolutionary genetics analysis(MEGA)software version 4.0.Mol Biol Evol[J],2007,24:1596-1599.
    [113]Gietz RD,St Jean A,Woods RA,et al.Improved method for high efficiency transformation of intact yeast cells.Nucleic Acids Res[J],1992,20(6):1425.
    [114]Cunillera N,Arr6 M,Delourme D,et al.Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes.J Biol Chem[J],1996,271:7774-7780.
    [115]Wang S,He J,Cui Z,et al.Self-formed adaptor PCR:a simple and efficient method for chromosome walking.Appl Environ Microbiol[J],2007,73:5048-5051.
    [116]何健,黄星,顾立锋等.Halomonas sp.BYS-1四氢嘧啶合成基因ectABC克隆及其在大肠杆菌中盐分诱导下的表达.微生物学报[J],2006,46(1):28-32.
    [117]http://www.fruitfly.org/seq_tools/promoter.html
    [118]Yang Y,Eggertsen G,Gafvels M,et al.Mechanisms of cholesterol and sterol regulatory element binding protein regulation of the sterol 12alpha-hydroxylase gene(CYP8B1).Biochem Biophys Res Commun[J],2004,320:1204-1210.
    [119]Ericsson J,Jackson SM,Edwards PA.Synergistic binding of sterol regulatory element-binding protein and NF-Y to the famesyl diphosphate synthase promoter is critical for sterol-regulated expression of the gene.J Biol Chem[J],1996,271:24359-24364.
    [120]Sanchez HB,Yieh L,Osborne TF.Cooperation by sterol regulatory element-binding protein and Sp1 in sterol regulation of low density lipoprotein receptor gene.J Biol Chem[J],1995,270:1161-1169.
    [121]Ericsson J,Usheva A,Edwards PA.YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes.J Biol Chem[J],1999,274:14508-14513.
    [122]Yazaki K,Takeda K,Tabata M.Effects of Methyl Jasmonate on Shikonin and Dihydroech inofuran Production in Lithospermum Cell Cultures.Plant & Cell Physiology[J],1997,38(7):776-782.
    [123]Parchmann S,Gundlach H,Mueller M.Induction of 12-O xo-phytodienoic acid in Wounded plants and Elicited plant Cell Cultures.Plant Physiology[J],1997,115(3):1057-1064.
    [124]Christian Boh land,Thomas Balkenhold,Gabriele Loers,et al.Differential Induction of Lipoxygenase Isoforms in Wheat upon Treatment with Rust Fungus Elicitor,Chitin Oligo saccharides,Chitosan and Methyl Jasmonate.Plant Physiology[J],1997,114(2):679- 685
    [125]Zhao MW,Zhong JY,Liang WQ,et al.Analysis of squalene synthaseexpression during the development of Ganoderma lucidum.J Microbiol Biotechnol[J],2004,14(1):116-120.
    [126]Xu F,Zhao MW,Li YX.Cloning and sequence analysis of a glyceraldehydes-3-phosphate dehydrogenase gene from Ganoderma lucidum.J Microbiol[J],2006,44:515-522.
    [127]张晓杰,鲁纯平,唐建华,等.竞争性RT-PCR法定量检测糖基化磷脂酰肌醇特异性磷脂酶D基因的表达.湖南医科大学学报[J],2003,28(4):322-326.
    [128]苏青,罗敏,刘红标.竞争性RT-PCR在基因表达定量分析中的应用.上海第二医科大学学报[J],2002,3:265-266.
    [129]Grunebach F,Griese E,Shumacher K.Competitive nested polymerase chain reaction for quantification of human MDR1 gene expression.J Cancer Res Clin Oncol[J],1994,120(2):539-544.
    [130]朱芬,陈军,师亮,等.灵芝三萜高产菌株原生质体紫外诱变选育.南京农业大学学报[J],2008,31(1):37-41.
    [131]汪以真,韩菲菲,黄海青.小白鼠乳铁蛋白基因片段克隆及不同泌乳阶段乳铁蛋白基因表达的差异.浙江大学学报[J],2004,1:83-88.
    [132]王颖,李辉,顾志良,等.鸡瘦蛋白受体(0BR)基因内含子8单核苷酸多态性与体脂性状的相关研究.遗传学报[J],2004,3:265-269.
    [133]单体中,汪以真,李民.猪脂蛋白脂酶基因片段的克隆及不同体重的表达差异.农业生物技术学报[J],2006,2:151-155.
    [134]李凤娥,熊远著,雷明刚,等.猪ESR mRNA在不同组织表达的定量研究.华中农业大学学报[J],2004,5:492-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700