钛基纳米银、银镍、银铜电极的制备及其电催化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水合肼是一种重要的化工原料,在农药工业生产中有着广泛的应用。它也是一种理想的燃料电池的原料,这主要是因为水合肼在反应中不会产生如CO_2的温室气体,反应中它产生的过电位非常低,而且这种电池具有高的理论分解电压1.56V;除此之外,研究表明水合肼在电化学氧化过程中不会遭受毒化作用。但是,水合肼也被认为是一种致癌物质和神经毒素,这些都会给人体的健康造成很大的伤害,特别是对肝脏和大脑会造成伤害。电化学研究方法作为一种可靠、敏感的研究手段,通过它可以对水合肼的氧化的机理和动力学进行研究,也可以对水合肼进行检测。因此,寻找对水合肼电化学氧化具有好的催化活性的催化剂及其载体具有较重要的研究价值。
     硼氢化钠是一种稳定,不燃,易于处理的无毒化学品。也是直接硼氢化物燃料电池的原料,直接硼氢化物燃料电池具有较高的理论比容量(5.7Ahg~(-1))、相对比较负的平衡电位(-1.24VvsSHE)以及在许多金属表面上比较快的反应速度,受到了国内外许多研究工作者的高度重视。但是使用直接硼氢化物燃料电池也需要克服硼氢根在催化材料表面自身发生水解反应的问题,这会减少释放出的能量和降低硼氢根的利用率。因此,就需要找到一种合适的阳极材料,要求它既要对硼氢化钠有好的催化活性,又要减少硼氢化钠自身的水解。
     本论文的主要工作是:以水合肼、聚乙二醇为还原剂,采用水热法将近似纳米大小的金属颗粒沉积在钛基体上,从而制备出新型的钛基银系列电催化剂(Ag/Ti、AgNi/Ti、AgCu/Ti),它们对水合肼和硼氢化钠的氧化反应表现出高度的电催化活性。并通过电化学测试方法对各钛基银系列电极电催化氧化性能进行了对比研究,从而得出催化性能较高、稳定性较好的电极催化剂。
     此外,利用电化学沉积技术,直接从无支持电解质的低浓度AgNO_3和Cu(NO_3)_2混合溶液中,在钛片表面上沉积具有树枝状结构的双金属Ag-Cu纳米颗粒,并且对超低浓度肼进行了检测。
     论文的主要内容和研究结论如下:
     1.对银电极的应用和研究进展进行了概述,阐述了水合肼和硼氢化钠氧化的电催化机理,指出催化剂纳米化是当前对催化剂进行研究开发的主要思路。
     2.确定了制备钛基银系列电极的具体工艺过程。本研究中以水合肼和聚乙二醇为还原剂,以EDTA为添加剂,利用水热法制备了Ag/Ti、AgNi/Ti、AgCu/Ti电极。这一过程的主要特点是:金属催化剂能够以纳米大小的颗粒直接沉积于基体钛表面上,从而一步完成这类电极材料的制备,不仅过程简单,而且催化剂颗粒稳定。利用电沉积法制备了钛基树枝状银铜颗粒,其主要特点是,制备方法和过程简单,催化剂颗粒结构特殊,而且性能稳定。
     3.利用扫描电镜(SEM)和能谱分析(EDS)测试技术,对制备的Ag/Ti、AgNi/Ti、AgCu/Ti电极的形貌、结构与成分等进行了表征和分析。主要的研究结论如下:
     (1)Ag/Ti电极的SEM和EDS图像显示,在钛基表面沉积了尺寸均匀的银金属球形小颗粒,大小约200~300nm,并且这些球形小颗粒相互连接,形成立体网状结构,具有巨大的表面积。
     (2)AgNi/Ti电极的SEM和EDS图像显示,在钛基表面沉积了尺寸均匀的银镍金属球形小颗粒,并且这些球形小颗粒相互紧密连接呈多孔网状结构,大小约100~250nm,但是球体连接更加致密,形成多孔结构,具有巨大的活性位点。
     (3)AgCu/Ti电极的SEM和EDS图像显示,在钛基表面沉积了呈类似小圆球形状的颗粒,金属颗粒的直径约为500~800nm。
     (4)电沉积AgCu/Ti电极的SEM和EDS图像显示,在钛基表面呈现纳米结构的类似树枝形状,长度约100~110nm,枝叶顶端呈花蕊芯结构,这种结构极大地增加了比表面积。
     4.采用循环伏安和电位阶跃方法,在氢氧化钠碱性介质中研究了在Ag/Ti、AgNi/Ti、AgCu/Ti电极上水合肼的电催化氧化过程,并对电极过程动力学进行了分析研究,同时还研究了硼氢化钠在Ag/Ti电极上的电催化氧化反应,以及水合肼在电沉积银铜电极上的检测。主要结论如下:
     (1)伏安特性研究表明,在碱性溶液中,Ag/Ti电极和多晶银电极对水合肼和硼氢化钠氧化的电催化活性具有明显的差异。与多晶银电极相比,Ag/Ti电极对水合肼和硼氢化钠电化学氧化起始电位分别为-0.60V和-0.70V,而前者分别为-0.30V和-0.35V;,Ag/Ti电极上水合肼和硼氢化钠氧化的氧化峰电流密度分别为212.8mA/cm~(-2)和230.4mA/cm~(-2),是前者的近8倍和12倍。电位阶跃实验表明,多晶银电极和Ag/Ti电极上阶跃稳态电流都随水合肼和硼氢化钠的浓度增加而增大,并且成良好的线性增长。
     (2)将水热法制备的AgNi/Ti电极与同样方法制备的Ag/Ti电极进行比较,电化学测试实验结果表明:掺杂了Ni的Ag_(86)Ni_(14)/Ti电极对水合肼氧化表现出更为优异的催化性能,与Ag/Ti电极相比,Ag_(86)Ni_(14)/Ti电极对水合肼(60mmol/L)氧化的起始电位提前了0.09V,为-0.60V,氧化峰的电流密度257mA/cm~(-2),是Ag/Ti电极的2倍。Ni的加入明显改善了电催化剂对水合肼电化学氧化性能。
     (3)水热法制备的AgCu/Ti电极对水合肼的电化学氧化也具有极高的电催化性能。电化学测试结果证明,与Ag/Ti电极相比,AgCu/Ti电极对水合肼具有更高的氧化反应速率和更低的起始氧化电位。当Ag:Cu比例为79:21的电极,AgCu/Ti电极表现出较好的催化活性。
     (4)利用电沉积法制备的AgCu/Ti电极对超低浓度的水合肼进行了检测,在约-0.1V下的阳极峰峰电流随肼的浓度增加呈规律性下降,是由于肼在这些电催化剂表面的多层吸附而引起的,并且阳极峰的峰电流密度的倒数(i~(-1))与肼浓度成良好的线性关系,可用于对超低浓度肼的检测。
Hydrazine is an important chemical material and is widely used as a raw material in the manufacture of agricultural chemicals.Hydrazine is an ideal fuel for a direct fuel cell system because it does not exhaust environmentally loading materials such as CO_2 and the thermodynamic reversible potential for the direct hydrazine fuel cell(DHFC) is 1.56V.In addition,studies have shown that the hydrazine electrooxidation process did not suffer from any poisoning effect.Hydrazine is very important in pharmacology because it is recognized as a carcinogen and neurotoxin,which make against liver and brain.Electrochemical techniques offer the opportunity for portable,cheap and rapid methodologies of the hydrazine detection. Thus,development of electrocatalysts with significantly electrocatalytic activities for electrooxidation of hydrazine is considered as the most challenging problem.
     Sodium borohydride is a stable,nonflammable,easy-to-handle and non-toxic chemical material.Sodium borohydride is also an ideal fuel for direct borohydride fuel cell.The advantages of the DBFC include very high theoretical capacity(5.7Ahg~(-1)),very negative equilibrium potential and faster anodic kinetics at many metallic surfaces.It has been receiving extensive investigation.But,direct use of borohydride as an anodic fuel has a few problems that need to be overcome.The major problem is the spontaneous hydrolysis of BH_4~-ions during the discharging on a variety of electrocatalysts,causing decreasing coulombic efficiency and poor utilization of BH_4~-.It is,therefore,of primary importance to develop an anodic catalyst,which can only catalyze the electrochemical oxidation but not the hydrolysis of borohydride.
     In this thesis,we report the preparation of nano-sized metal particales deposited on the surface of titanium by the hydrothermal process using hydrazine and polyethylene glycol as the reduction agent,the novel titanium-supported silver Ag/Ti,binary AgNi/Ti and AgCu/Ti electrodes are synthesized by the hydrothermal method.Electro-catalytic activities of the prepared electrodes for hydrazine oxidation are investigated by conventional electrochemical techniques like voltammetric responses,chronoamperometric measurements,etc.
     The novel titanium-supported binary AgCu/Ti electrodes are fabricated by a electrochemical deposition technique using AgNO_3 and Cu(NO_3)_2 solutions as raw materials. Results show that dendritic metal particales are deposited on the surface of titanium.It can be used for amperometric detection of hydrazine in lower concentration range.
     The main contents and conclusions in the thesis are as follows:
     1.Application of silver electrodes and electrocatalytic oxidation of hydrazine and sodium borohydride are reviewed briefly.The electro-catalytic mechanisms of the oxidation of hydrazine and sodium borohydride are elaborated according to corresponding reports of literatures.The thesis points out that development of nano-sized catalysts would be the investigation trend of anodic materials used in fuel cells.
     2.Ag/Ti,AgNi/Ti and AgCu/Ti electrodes are synthesized by the hydrothermal process using hydrazine hydrate and PEG as the reduction agent.Dendritic metal particales are deposited on the surface of titanium by electrochemical deposition technique.The main features of the process are:nano-metal catalysts particles are directly deposited on the surface of titanium substrate,and the preparation of the electrodes is simple and have high stability.
     3.Scanning electron microscopy(SEM),energy disperse spectroscopy(EDS),are employed to investigate the morphology and element compositions of Ag/Ti,AgNi/Ti and AgCu/Ti.The main results are as follows:
     (1) For the Ag/Ti electrode,SEM and EDS images show that the surface of Ti substrate is partly covered by silver particles which were present as small balls with the almost uniform size of around 200-300nm.These particles connect with each other to form alveolate structures.
     (2) For the AgNi/Ti electrodes,SEM and EDS images show a good coverage of catalyst particles on the surface of Ti substrate.The particle sizes are 100~250mm.These nano-scale particles are connected with each other to form a three-dimensional texture.This porous structure provides stable immobilization of the AgNi particles on the Ti surface.
     (3) For the AgCu/Ti electrodes,SEM and EDS images show that the surface of Ti substrate is partially covered by particles with the sizes of 500~800nm.
     (4) For the electrodeposition fabrication of AgCu/Ti electrode,SEM and EDS images show that the surface of Ti substrate is totally covered by metal particales.These particles form a dendritic structure and the length of the branches are 100~110nm.These particles form structure-tipped stamens at the top of branches.
     4.Electro-catalytic oxidation of hydraine in sodium hydroxide solution on Ag/Ti, AgNi/Ti and AgCu/Ti electrodes,electro-oxidation of sodium borohydride on Ag/Ti electrode and amperometric detection of hydrazine in lower concentration range on electrodeposited AgCu/Ti electrodes are studied using cyclic voltammetry and chronoamperometry.The results are as follows:
     (1)It is show from cyclic voltammograms in alkaline solutions that the oxidation current of hydrazine and sodium borohydride on the Ag/Ti electrode is much higher than that on a polycrystalline silver electrode,and that the onset potentials of hydrazine and sodium borohydride oxidation on Ag/Ti shift to -0.60V and -0.70V respectively,which are less than those on the polycrystalline silver electrode.It is also observed that the oxidation peak current densities of hydrazine and sodium borohydride on the Ag/Ti are 212.8 mA/cm~(-2) and 230.4mA/cm~(-2) respectively,which are 8 and 12 times higher than those on polycrystalline silver electrode.It is further observed from chronoamperometric measurements that the steady-state current(I_(ss)) on the Ag/Ti is also significantly higher than on the polycrystalline silver electrode,and the I_(ss) is well linearly proportional to hydrazine and sodium borohydride concentration.
     (2) The electroactivity of the prepared titanium-supported nano-scale Ag/Ti and AgNi/Ti towards the hydrazine oxidation in alkaline solutions is evaluated by cyclic voltammetry and chronoamperometry.Results show that the electrodes present a low onset potential of ca. -0.6V and considerably high and stable anodic current density for the hydrazine oxidation. Among them,nanoAg_(86)Ni_(14)/Ti electrode exhibits highest anodic current density towards the hydrazine oxidation,showing an increment of electro-active sites on the nanoAg_(86)Ni_(14)/Ti due to the addition of Ni to the Ag particles.
     (3) The AgCu/Ti electrodes are examined as an electrocatalyst for the electro- oxidation of hydrazine in alkaline solutions.The Ag_(79)Cu_(21)/Ti electrode exhibits signi-ficantly high current density of hydrazine oxidation and low onset potential of ca.-0.70V.
     (4) AgCu/Ti electrodes are fabricated by a electrochemical deposition technique. Ultra-low concentration hydrazine is detected on the AgCu/Ti electrodes.Results show that anodic peak current density at -0.10V regularly declines with the concentration of hydrazine, and the plot of the reciprocal of the anodic peak current density I~(-1) vs hydrazine concentration showes a good linear relationship.These electrodes can be used for the detection of ultralow concentration hydrazine.
引文
[1]Tomislav D,Grozdic,Dragica Lj.Electrochemicai characteristics of binary silver alloys in alkaline solution[J].Journal of Power Sources,1999,79:1-8.
    [2]Altman M S,Chung W F,He Z Q,et al.Quantum size effect in low energy electron diffraction of thin films[J].Applied Surface Science,2001,15(169/170):82-87.
    [3]Young T F,Liu J F,Wu C C,et al.Study of Ag thin films deposited on porous silicon[J].Applied Surface Science,1996,92:57-60.
    [4]Akamatsukensuke,Takei Shodo,Mizuhaza Minoru,et al.Preparation and characterization of polymerthin films containing silver and silver sulfide nanoparticles[J].Thin Solid Films,2000,359(1):55-60.
    [5]曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1996:20-26.
    [6]J Xu,JS Yin,E Ma.Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition[J].Nanostructured Materials,1997,8(1):91-100.
    [7]Chang HB,Sang HN,Seung M P.Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution[J].Applied Surface Science,2002,197-198:628-634.
    [8]Fitz-Gerald J,Pennycook S,Gao H,et al.Synthesis and properties of nanofunctionalized particulate materials[J].Nanostructured Materials,1999,12:1167-1171.
    [9]Arai N,Tsuji H,Motono M,et al[J].Nuclear Instruments and Methods in Physics Research B,2003,206:629-633.
    [10]金华峰,唐小东,韩波.溶胶-凝胶技术在化学领域中的新应用[J].安康师专学报,2001.1:71-75.
    [11]刘志强,李小斌,彭志宏等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化学通报,1999,7:54-57.
    [12]Janos H.Fendler.Atomic molecular clusters in membrane mimetic chemistry[J].Chem.Rev.,1987,87(5):877-899.
    [13]Lianos P,Thomas J K.Cadmium sulfide of small dimensions produced in inverted micelles[J].Chem.Phys.Lett.1986,125(3):299-302.
    [14]Llanos P,Thomas J K.Small CdS particles in inverted micelles[J].Colloid Interface Sci,1987,117(2):505-512.
    [15]S Modes,P Llanos.Luminescence probe study of the conditions affecting colloidal semiconductor growth in reverse micelles and water-in-oil microemulsions[J].Phys.Chem,1989,93(15):5854-5859.
    [16]Sandeep Raha,Brian H.Robinson.Mitochondria,oxygen free radicals,and apoptosis[J].Colloids acid Sur-faces,2001,106(1):62-70.
    [17]Motte L,Petit C et aI.Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle:polydispersity and photochemical reaction[J].Langmuir 1992,8(2)1049-1053.
    [18]Barnickel P,Wokaun A,et al.Size tailoring of silver colloids by reduction in W/O microemulsions[J].Colloid Inter-face Sci,1992,148(1):80-90.
    [19]Kostas,Kostarelos.Rational design and engineering of delivery systems for therapeutics:biomedical exercises in colloid and surface science[J].Colloids and Surfaces A,2003,106(1-3):147-168.
    [20]Osseo-asarek,ArriagadaF.J.Preparation of SiO_2 nanoparticles in a non-ionic reverse micellar system[J].Colloids apd Sur-faces,1990,50:321-339.
    [21]Wang W,An Fu X,Long J.Preparation of submicron spherical particles of silica by the water-in-oil microemulsion method[J].Colloids and Surfaces A,1993,81:177-180.
    [22]Pillai V,Kumar P,MS Multani et al.Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing[J].Colloids and Surfaces A,1993,80:69-75.
    [23]Motte L,Petit C,Boulanger L.et al.Synthesis of cadmium sulfide in situ in cadmium bis(2-ethyihexyl)sulfosuccinate reverse micelle:polydispersity and photochemical reaction[J].Langmuir,1992,8(4):1049-1053.
    [24]P.BarnickeI,A.Wokaun.Synthesis of metal colloids in inverse microemulsions[J].Molecular Physics,1990,69(1):1-9.
    [25]路林波,陈建中,高绍康等。反相微乳液法制备纳米金属银粉[J].福州大学学报(自然科学版),2004,2(1):208-301。
    [26]E Braun,Y Eichen,U Sivan,et al.Microelectronic components and electronic networks comprising DNA[J].US Patent App,2004,10:961-985.
    [27]Yu-Ying YU,Ser-Sing Chang,Chien-Liang LEE,et aI.Gold Nanorods:Electrochemical Synthesis and Optical Properties[J].Phys.Chem.B,1997,101(34):6661-6664.
    [28]Junjie Zhu,Zhonghua Lu,S.T.Aruna,et al.Sonochemical Synthesis of SnO_2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes[J].Chem.Mater,2000,12(9):2557-2566.
    [29]R Amigo,J.Asenjo,E.Krotenko,et al.Electrochemical Synthesis of New Magnetic Mixed Oxides of Sr and Fe:Composition,Magnetic Properties,and Microstructure[J].Chem.Mater,2000,12(2):573-578.
    [30]廖学红,朱俊杰等。纳米银的电化学合成[J].高等化学学报,2000,12(2):1837-1839。
    [31]H Hirai,H Aizawa,H Shiozaki.Preparation of Nonaqueous Dispersion of Colloidal Silver by Phase Transfer[J].Chemistry Letters,1992,21(8):1527-1535.
    [32]Wang.W,Efri ma,S.Regev.O Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases [J].Langmuir,1998,14(3):602-610.
    [33]Baik N S,Sakai G,Miura N,et al.Preparation of Stabilized Nanosized Tin OxideParticles by Hydrothermal Treatment[J].J.Am.Ceram.Soc.,2000,83:2983-2987.
    [34]Deng Z X,Wang C,Li Y D.New Hydrolytic Process for Producing Zirconium Dioxide Tin Oxide and Titanium Dioxide Nanoparticles[J].J.Am.Ceram.Soc.,2002,85:2837-2839.
    [35]M.Gladstein,H.Guterman.A new approach to controlling metal deposition during the pulse plating process[J].Metal Finishing,2002,100(8):26-30.
    [36]George A.DiBari.Nickel Plating[J].Plating&Sufface Finishing,2000,87(8):50-53.
    [37]J ames P Langan.High-density Interconnection Surface Finish Issues[J]Plat.& Surf.Finish,2000,87(3):52-53.
    [38]Donald Baudrand CEF.Electroless Processes[J].Plating&Surface Finishing,2000,87(8):42-44.
    [39]夏传义,微电子镀覆发展动态[J].电镀与涂饰,2000,19(4):48-53。
    [40]Nao Takano,Daisuke Niwa,etal.Tetsuya Osaka.Nickel deposition behavioron n-type silicon wafer for fabrication of minute nickel dots[J].Electrochimica Acta,2000,45(20):3263-3268.
    [41]Tetsuya Osaka,Takayuki Homma.Electrochemically deposited thin films for magnetic recording devices[J].The Electrochemical Society,Interface,1995,4(2):42-46.
    [42]Marco Musiani.Electrodeposition of composites:an expanding subject in electrochemical materials science[J].Electrochimica Acta,2000,45(20):3397-3402.
    [43]张连宝,卢荣玲,吴鸣鸣,用电沉积方法制备纳米迭层薄膜材料[J].北京工业大学学报,1998,24(2):71-76。
    [44]喻敬贤,陈永言,黄清安,等.电化学制备Ni-Cu/Cu超品格多层膜[J].武汉大学学报(自然科学版),1998,44(6):700-702。
    [45]K Sieradzki,S R Brankovic,N Dimitrov.Electrochemical Defect-Mediated Thin-Film Growth[J].Science,1999,284:138-141.
    [46]M Datta,D Landolt.Fundamental aspects and applications of electrochemical microfabrication[J].Electrochimica Acta,2000,45(15/16):2535-2558.
    [47]F.L.Deepak,A.Govindaraj,C.N.R.Rao.Synthetic strategies for Y-junction carbon nanotubes[J].ChemPhysChem,2001,345(1-2):5-10.
    [48]孔令斌,李梦轲,陆梅等,模板法制备枝状Pt纳米线[J].高等学校化学学报,2003,24(3):513-515.
    [49]Zhenhui Kang,Enbo Wang,Suoyuan Lian,et al.One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite[J].2003,125(45):13652-13653.
    [50]Nikhil R.Jana,Latha Gearheart,Catherine J.Murphy Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J].Chem.Commun,2001,105:4065-4067.
    [51]Li-Mei Qi Existence results for second-order impulsive functional differential inclusions[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,157(13):285-2941.
    [52]Zhu J J,Liao X H,Zhao X N.Preparation of silver nanorods by electrochemical methods[J].Materials Letters,2001,49(2):91-95.
    [53]Zhu J J,Liao X H,Chen H Y.Preparation of Bi_2S_3 nanorods by microwave irradiation[J].Materials Research Bulletin,2001,36(13-14):1687-1692.
    [54]Satorn Miyashita,Yukio Saito,Makio Uwaha.Fractal aggregation growth and the surrounding diffusion field.[J]J.Crystal Growth,2005,283(5):533-539.
    [55]张凤珍,极端电化学条件下电沉积银枝晶生长[M].河北师范大学,2006.
    [56]王书明,蒋利军,刘晓鹏,等.硼氢化钠催化水解供氢的研究[J].电源技术,2006,130(10):810-812.
    [57]王恒秀,李莉,李晋鲁,等.一种新型制氢技术[J].化工进展,2001,7:1-4.
    [58]刘志贤,石双群,宋新芳.硼氢化钠的性质及合成[J].河北师范大学学报,1997,21(1):71-74.
    [59]洪学斌,王亚权.NaBH4水解制氢技术[J].化学工业与工程,2005,22(6):467-471.
    [60]刘昌波,刘志让,林革.过氧化氢燃料电池[J].电源技术,2006,130(5):345-348.
    [61]Ponce de Leon C,Walsh F C,Rose A,et al.A direct borohydride-Acid peroxide fuel cell[J].J Power Sources,2007,164:441-448.
    [62]Gimlin R,Shrestha P J,Benavides G,et al.Direct NaBH4/H2O2 fuel cells[J].J PowerSources,2007,165:509-516.
    [63]Liu B H,Li Z P,Arai K,et al.Performance improvement of a micro borohydride fuel cell operating at ambient conditions[J].J Electrochim Acta,2005,50:3719-3725.
    [64]Liu B H,Suda S.Influences of fuel crossover on cathode performance in a micro borohydride fuel cell[J].J Power Sources,2007,164:100-104.
    [65]Ki Tae Park,Un Ho Jung,Seong Uk Jeong,et al.Influence of anode diffusion layer properties on performance of direct borohydride fuel cell[J].J Power Sources.2006,162:192-197.
    [66]Li Z P,Liu B H,Zhu J K,et al.Depression of hydrogen evolution during operation of a direct borohydride fuel cell[J].J Power Sources,2006,163:555-559.
    [67]Cheng H,Scott K,Lovell K V.Evaluation of new ion exchange membranes for direct borohydride fuel cells[J].J Membrane Sci,2007,288:168-174.
    [68]Jasinski R.Fuel cell oxidation ofalkali borohydes[J].Electrochem Tech,1965,3(1-2):40-43.
    [69]Steven C.Amendola,Stefanie L.Sharp-Goldman,M.Saleem Janjua,et al.A safe,portable,hydrogen gas generator using aqueous borohydride solution and Ru catalyst[J].International Journal of Hydrogen Energy,2000,25(10):969-975.
    [70]Toshikatsu Sata.Studies on anion exchange membranes having perm selectivity for specific anions in electrodialysis-efect ofhydrophilicity ofanion exchange membranes on perm selectivity ofanions[J].J Membrane Science,2000,167(1):1-31.
    [71]Li z Liu B H,Arai K.Evaluation of alkaline borohydride solutions as the fuel for fuel cell[J].J Power Sources,2004,126(1-2):28-33.
    [72]Cheng H,ScoR K.Influence ofoperation conditions on direct borohydride fuel cell perform ance[J].J Power Sources,2006,160(1):407-412.
    [73]M.V. Mirkin, H. Yang, A.J. Bard, Borohydride oxidation at a gold electrod[J]. J. Electrochem. Soc. 1992,139 (8):2212-2217.
    [74]E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells [J].Electrochim. Acta ,2004,49 (6):965-978.
    [75]H. Dong, R. Feng, X. Ai, et al.Electrooxidation Mechanisms and Discharge Characteristics of Borohydride on Different Catalytic Metal Surfaces[J]J. Phys. Chem. B,2005,109 (21): 10896-10901.
    [76]S.C. Amendola,P. Onnerud, M.T.KeIly,et al.A novel high power density borohydride-air cell[J].J. Power Sources, 1999,84 (1):130-133.
    [77]R.X.Feng,H.Dong,Y.L.Cao,et al.A simple and high efficient direct borohydride fuel cell with MnO_2-catalyzed cathode[J]. Electrochemistry Communications,2005,7(4):449-452.
    [78]Marian Chatenet , Fabrice Micoud, Ivan Roche. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part I. BH_4 electro-oxidation on Au and Ag[J].catalysts Electrochimica Acta,2006, 51(25): 5459-5467.
    [79]Z.P. Li, B.H. Liu, J.K. Zhu, S. Suda.Depression of hydrogen evolution during operation of a direct borohydride fuel cell[J].I Journal of Power Sources,2006,163(1):555-559.
    [80]Qingfeng Yi, Wu Huang, Jingjing Zhang,et al.Methanol Oxidation on Titanium-Supported Nano-Scale Ni Flakes[J].Catal.Commun,2008,9(10)2053-2058.
    [81]Qingfeng Yi, Wu Huang, Jingjing Zhang, et al.A novel titanium-supported nickel electrocatalyst for cyclohexanol oxidation in alkaline solutions[J]. Journal of Electroanalytical Chemistry, 2007,610(2): 163-170.
    [82]M.E. Indig, R.N. Snyder.Sodium borohydride An interesting anodic fuel[J].J. Electrochem. Soc. 1962,109(11):1104-1106.
    [83]B.H. Liu, Z.P. Li, S. Suda. Electrocatalysts for the anodic oxidation of borohydrides[J]. Electrochimica Acta. 2004,49(19): 3097-3105.
    [84]B.H. Liu, Z.P. Li, K. Arai, S. Suda. Depression of hydrogen evolution during operation of a direct borohydride fuel cell[J]. Journal of Power Sources,2006,163(1)555-559.
    [85]Sanli E, Celikkan H, Uysala BZ.et al. Anodic behavior of Ag metal electrode in direct borohydride fuel cells Int J Hydrogen Energy,2006,31(13):1920-1924.
    [86]Marian Chatenet, Fabrice Micoud, Ivan Roche, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part I- O{sub}2 reduction [J]. Electrochimica Acta,2006, 51 (25): 5452-5458.
    [87]Gyenge E. Electro-oxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells[J].Electrochim Acta,2004;49:965-978.
    [88]Pound BG,MacDonald OD,Tomlinson J W. Electrochemistry of silver at elevated temperature III potentiostatic study[J].EIectrochim Acta, 1980;25:1293-1296.
    [89]Miller B. Rotating disc study of the silver electrode in alkaline solutions[J].J Electrochem Soc 1970,117:491-499.
    [90]Burstein GT,Newman RCAnodic behavior of scratched silver electrodes in alkaline media[J]. Electrochim Acta 1980,25:1009-1014..
    [91]Fleischer A.The solubility of silver (II) oxide in alkaline solutions[J].Short Comm J Electrochem Soc 1968,115(5):816-821.
    [92]Cohen LG,Atkinson G.The formation of tetrahydroxyargenate(III) ion in alkaline solution[J]. Electrochem Soc 1968,115(4): 1236-1242.
    [93]J.O'M. Bockris, S.Srinivasan, Fuel Cells: Their Electrochemistry [J].Their Electrochemistry , 1969, (5):588-591.
    [94]A.J. Bard, Anal. Chronopotentiometric Oxidation of Hydrazine at a Platinum Electrode[J].1963, 35 (11): 1602-1607.
    [95]L.D. Burke, K.J. O'Dwyer.Mediation of oxidation reactions at noble metal anodes by low levels of in situ generated hydroxy species[J].Electrochim. Acta, 1989,34(12): 1659-1664.
    [96]M.R. Andrew, W.J. Gressler, J.K. Johnson,et al. Engineering aspects of hydrazine-air fuel-cell power systems[J].J. Appl. Electrochem. 1972,2 (4):327-336.
    [97]S.G. Meibuhr,Surface-catalyzed anodes for hydrazine fuel cell[J].J. Electrochem. Soc,1974,121 (21): 1264-1271.
    [98]K. Tamura, T. Kahara, J. Investigation of PEM type direct hydrazine fuel cell[J].Journal of Power Sources,2003,115(2):236-242.
    [99]S. Takahashi, S. Higuchi, R. Fujii, et al. Report of Governmental Industrial Research Institute[C]. 1974,346:115-118.
    [100]S. Saito, Y. Fujita, Developmental Regulation of the Proteolysis of the p35 Cyclin-Dependent Kinase 5Activator by Phosphorylation[J]. The Journal of Neuroscience,2003,23(4):1189-1192.
    [101]B. Alvarez-Ruiz, R. Gomez, J.M. Orts, et al. Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media[J]J. Electrochem. Soc. 2002 ,149 (5):D35-D45.
    [102]C. Nishihara, I.A. Raspini, H. Kondoh, et al. Behavior of hydrazine and its effects on the adsorption of hydrogen at Pt(322) and Pt(111) electrodes in sulfuric acid solutions[J]. Electroanal.Chem. 1992,338 (10):299-315.
    [103]V. Rosca, M.T.M. Koper, Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions [J]. Electrochim Acta2008 ,53(2):5199-5205.
    [104]Koji Yamada, Kazuaki Yasuda, Keiko Yamada,et al.Immunochemical characterisation and epitope mapping of a novel fimbrial protein (Pg-II fimbria) of Porphyromonas gingivalis[J] FEMS Immunology & Medical Microbiology,2006,11(3):247-255. ,
    [105]QingFeng Yi, Lei Li, WengQing Yu,et al.A novel titanium-supported Ag/Ti electrode for the electro-oxidation of hydrazine[J].Journal of Molecular Catalysis A:Chemical.2008,295(1-2):34-38.
    [106]G.Y. Gao, D.J. Guo, C.Wang, et al, Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J].Electrochem. Commun,2007,9 (12): 1582-1586.
    [107]G.W. Yang, G.Y. Gao, C.Wang.Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation [J].Carbon,2008,46(1):747-752.
    [108]M. Felischmann, K.Korinek,D. Plrtcher, Oxidation of hydrazine at a nickel anode in alkaline solution[J] J. Electroanal. Chem,1972,34(2):499-506.
    [109]E.Kirowa-Eisner,Y. Bonfil, D. Tzur,et al.Thermodynamics and kinetics of upd of lead on polycrystalline silver and gold[J]. J. Electroanal. Chem,2003,552 (30): 171-183.
    [110]Y. Bonfil, E. Kirowa-Eisner. Determination of nanomolar concentrations of lead and cadmium by anodic-stripping voltammetry at the silver electrode[J]. Analytica Chimica Acta,2002,457(2):285-296.
    [111]J.J. Zhang,W.J. Pietro,A.B.P. Lever.Rotating ring-disk electrode analysis of CO_2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring[J].Journal of Electroanalytical Chemistry, 1996,403( 1 -2):93-100.
    [112]Yoshihiro Matsumura,G.Ng'ang'a Wanyoike, Osamu Onomura Toshihide ,et al.Enantioselective substitution of N-acylated a-amino acids by electrochemical oxidation Electrochim. Acta, 1994,39(5):847-854.
    [113]Hamid R.Zare,AIi M. Habibirad, A.M. Habibirad, J. Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine[J].Journal of Solid State Electrochemistry,2006,10(6):348-359.
    [114]C.U. Ferreira, Y. Gushikem, L.T. Kubota.Electrochemical properties of Meldola's Blue immobilized on silica-titania phosphate prepared by the sol-gel method[J]J. Solid State Electrochem,2000,4 (5):298-303.
    [115]Deping Cheng,Changjian Feng,Duanjun Xu,et al.The directional reaction of hydrazine with silver complexes. Part 2. Influence of acidity and temperature[J]. Transition Metal Chemistry, 2000, 25(3):320-323.
    [1]日根文男(日),安家驹等译.电解槽工学[M].北京:化学工业出版社,1985。
    [2]周伟航等,电化学测量[M].上海:上海科学技术出版社,1985。
    [3]李荻.电化学原理[M].北京:北京航天航空大学出版社,1989。
    [4]南安普顿电化学小组(英),柳厚田等译.电化学中的仪器方法[M].上海:复旦大学出版社,1992。
    [5]田昭武.电化学研究方法[M].北京:科学出版社,1984。
    [6]杨辉,卢文庆.应用电化学[M].北京:科学出版社,2002。
    [7]阿伦.J.巴德,拉里.R.福克纳著,邵元华,朱果逸,董献堆等译.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005。
    [8]易清风,李东艳.环境电化学研究方法[M].北京:科学出版社,2006。
    [9]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002。
    [10]熊兆贤.无机材料研究方法—合成制备分析、表征与性能检测[M].厦门:厦门大学出版社,2000。
    [11]潘家来.物质元素的X射线分析—能谱测试技术及其应用[M].北京:科学普及出版社,1984。
    [1]蒋鹤麟,祁更新,夏文华,等.银合金及银复合材料的技术发展[J].贵金属,2000,20(3):56-63.
    [2]李娟,封克光,杨长印.电子浆料所用银粉新方法的研制[J].现代电子技术,1999,8(5):29-32.
    [3]张文钮,张羽天,载银抗菌材料及其制品[J].贵金属,1998,19(4):50-54.
    [4]Altman M S,Chung W F,He Z Q,et al.Quantum size effect in low energy electron diffraction of thin films[J].Applied Surface Science,2001,15(169/170):82-87.
    [5]Young T F,Liu J F,Wu C C,et al.Study of Ag thin films deposited on.porous.Silicon[J].Applied Surface Science,1996,92:57-60.
    [6]Akamatsukensuke,Takei Shodo,Mizuhaza Minoru,et al.Preparation and characterization of polymerthin films containing silver and silver sulfide nanoparticles[J].Thin Solid Films,2000,3590):55-60.
    [7]Wenlong Cheng,Shaojun Dong,Erkang Wang.Studies of electrochemical quantized capacitance charging of surface ensembles of silver nanoparticles[J].Electrochemistry Communication 2002,4(5)412-416.
    [8]唐芳琼,沈继锋等.超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度的增强效应[J].高等学校化学学报,1999,20(4):634-636.
    [9]任湘菱,唐芳琼.超细银-金复合颗粒增强酶生物传感器的研究[J].化学学报,2002,60(3):393-397.
    [10]GAO Ying-Chun(高迎春),LI Mao-Guo(李茂国),WANG Guang-Feng(王广凤),et al.银纳米修饰电极的制备及其对灿烂甲酚蓝的催化研究[J].Fenxi Shiyanshi(Chin.J.Anal.Lab.),2004,23(12):78-81.
    [11]Dao Jun Guo,Hu Lin Li.Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution[J].Electrochimica Acta,2005,43(6):1259-1264.
    [12]Marian Chatenet,Fabrice Micoud,Ivan Roche,et al.Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte:Part 1.BH4~- electro-oxidation on Au and Ag catalysts[J].Electrochimica Acta,2006,51(5):5459-5467.
    [13]M.Felischmann,K.Korinek,D.Plrtcher,Oxidation of hydrazine at a nickel anode in alkaline solution[J]J.Electroanal.Chem,1972,52(34 ):499-506.
    [1]M.H.Atwan,D.O.Northwood,E.L.Gyenge.Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells[J].International Journal of Hydrogen Energy,2007,32:3116-3125.
    [2]A.Salimi,L.Miranzadeh,R.Hallaj.Amperometric and voltammetric detection of hydrazine using glassy carbon electrodcs modified with carbon nanotubes and catechol derivatives[J].Talanta,2008,75:147-156.
    [3]J.B.Zheng,Q.L.Sheng,L.Li,Y.Shen.Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine[J].Journal of Eleclroanalytical Chemistry,227,611:155-161.
    [4]K.Yamada,K.Yasuda,H.Tanaka,et al.Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane[J].Journal of Power Sources,2003,122(2):132-137.
    [5]J.Li,X.Q.Lin.Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticlepolypyrrole nanowire modified glassy carbon electrode[J].Sensors and Actuators B:Chemical,2007,126(2):527-535.
    [6]W.C.Ye,B.Yang,G.Y.Cao,L.Y.Duan,et al..Electrocatalytic oxidation of hydrazine compound on electroplated Pd/WO3 film[J].Thin Solid Fihns,2008,516(10):2957-2961.
    [7]H.R.Zare,N.Nasirizadeh.Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine[J].Electrochim.Acta,2007,52(2):4153-4160.
    [8]K.Yamada,K.Asazawa,K.Yasuda,T.Ioroi,H.Tanaka,Y.Miyazaki,T.Kobayashi.Investigation of PEM type direct hydrazine fuel cell[J]. Journal of Power Sources, 2003,115(2): 236-242.
    [9]A. Salimi, R. Hallaj.Full Paper Adsorption and Reactivity of Chlorogenic Acid at a Hydrophobic Carbon Ceramic Composite Electrode: Application for the Amperometric Detection of Hydrazine[J]. Electroanalysis, 2004,16(23): 1964-1971.
    [10]A. Salimi, K. Abdi. Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: application to amperometric detection of hydrazine and hydroxyl amine[J]. Talanta, 2004,63(2): 475-483.
    [11]J.S. Pinter, K.L. Brown, P.A. DeYoung, et al.Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes[J]. Talanta 2007,71(3): 1219-1225.
    [12]C. Batchelor-McAuley, C.E. Banks, A.O. Simm, et al.The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array[J]. Analyst, 2006,131:106-110.
    [13]B. Alvarez-Ruiz, R. Gomez, J.M. Orts, J.M. Feliu. Role of the Metal and Surface Structure in the Electro-oxidation of Hydrazine in Acidic Media[J]. Journal of the Electrochemical Society, 2002, 149:D35-D45.
    [14]C. Nishihara, I.A. Raspini, H. Kondoh, et al. H. Nozoye. Behavior of hydrazine and its effects on the adsorption of hydrogen at Pt(322) and Pt(111) electrodes in sulfuric acid solutions[J]. Journal of Electroanalytical Chemistry, 1992, 338: 299-315.
    [15]V. Rosca, M.T.M. Koper. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions[J]. Electrochimica Acta, 2008, 53(16): 5199-5205.
    [16]A.P. O'Mullane, S.E. Dale, T.M. Day, et al.Formation of polyaniline/Pt nanoparticle composite films and their electrocatalytic properties[J]. Journal of Solid State Electrochemistry, 2006, 10(10): 792-807.
    [17]K. Korinek, J. Korita, M. Nusiloua. On the conditions favourable to the detection of barrierless electrode processes[J]. Journal of Electroanalytical Chemistry, 1969, 21(3): 421-427.
    [18]G.Y. Gao, D.J. Guo, C.Wang, et al.Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J]. Electrochemistry Communications, 2007,9(7): 1582-1586.
    [19]G.W. Yang, G.Y. Gao, C.Wang, et al. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation Carbon, 2008, 46(5): 747-752.
    [20]S.M. Golabi, F. Noor-Mohammadi. Electrocatalytic oxidation of hydrazine at cobalt hexacyanoferrate- modified glassy carbon, Pt and Au electrodes[J].Journal of Solid State Electrochemistry, 1998, 2(1): 30-37.
    [21]M. Felischmann, K.Korinek,D. Plrtcher. The oxidation of hydrazine at a nickel anode in alkaline solution[J]. Journal of Electroanalytical Chemistry, 1972,34(2): 99-506.
    [22]U. Eissner, E. Gileadi. Anodic oxidation of hydrazine and its derivatives: Part 1. The oxidation of hydrazine on gold electrodes in acid solutions[J]. Journal of Electroanalyticai Chemistry, 1970, 28(1): 81-88.
    [23]H. Razmi-Nerbin,M.H. Pournaghi-Azar.Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine[J].Journal of Solid State Electrochemistry, 2002, 6(2): 126-133.
    [24]G. Cepriaa, J.R. Castillo. Methanol-tolerant electrocatalysts for oxygen reduction in a polymer electrolyte membrane fuel cell[J].J. Appl. Electrochem, 1998,28 (7):65-70.
    [25]J.J. Zhang,W.J. Pietro, A.B.P. Lever. Rotating ring-disk electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring[J].J. Electroanal. Chem. 1996,403 (1-2):93-100.
    [26]H.R. Zare, Z. Sobhani, M. Mazloum-Ardakani.Electrochemical behavior of electrodeposited rutin film on a multi-wall carbon nanotubes modified glassy carbon electrode. Improvement of the electrochemical reversibility and its application as a hydrazine sensor[J].J. Solid State Electrochem.,2007,11(7):971-979.
    [27]H.R. Zare, A.M. Habibirad. Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine [J].J. Solid State Electrochem,2006,10 (6):348-359.
    [28] F.H.B. Lima, J.F.R. de Castro, Edson A. Ticianelli.Silver-cobalt bimetallic particles for oxygen reduction in alkaline media[J].J. Power Sources,2006,161 (2):806-812.
    [29] S. Garrod, M.E. Bollard, A.W. Nicholls, S.et al. Integrated Metabonomic Analysis of the Multiorgan Effects of Hydrazine Toxicity in the Rat[J].Chem. Res. Toxicol. 2005, 18 (2): 115-122.
    [30] E.H. Vernot, J.D. MacEwen, R.H. Bruner, et al. Long-Term Inhalation Toxicity of Hydrazine Fund. Appl. Toxicol, 1985,5 (6): 1050-1056.
    [1]C Coutanceau, RK Koffi, JM Leger, et al. Development of materials for mini DMFC working at room temperature for portable applications[J]. J Power Sources 2006,160( 1 ):334-339.
    [2]S Song, P Tsiakaras.Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs)[J]. Appl Catal B: Environ 2006,63(34): 187-193.
    [3]Steven C. Amendola, Per Onnerud, Michael T. Kelly, et al. A novel high power density borohydride-air cell [J].J Power Sources, 1999, 84(1): 130- 133.
    [4]A Verma,AK Jha, S Basu. Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte [J].J Power Sources, 2005, 141(1):30-34.
    [5]JB Lakeman, A Rose, KD Pointon, et al. The direct borohydride fuel cell for UUV propulsion power [J].J Power Sources, 2006, 162(2):765-772.
    [6]SC Amendola, P Onnerud, MT Kelly,et al. A novel high power density borohydride-air cell[J]. Sharp-Goldman SL.Binder M.. J PowerSources 1999,84(1): 130-133.
    [7]RX Feng, H Dong, YD Wang,et al. A simple and high efficient direct borohydride fuel cell with MnO2-catalyzed cathode[J]. J Phys Chem ,2005,7(4):449-452.
    [8]BH Liu, ZP Li, S Suda. Electrocatalysts for the anodic oxidation of borohydrides[J]. Electrochim Acta 2004,49(19):3097-3105.
    [9]E Gyenge. Eletrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cell[J].EIectrochim Acta 2004;49:965-978.
    [10]MV Mirkin, H Yang, AJ Bard. Borohydride oxidation at a gold electrode[J]. J. Electrochem. Soc., 1992,139(8):2212-2217.
    [11]EL Gyenge. Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells[J].Electrochim. Acta,2004,49 (6):965-978.
    [12]Hua Dong, Ruixiang Feng, Xinping Ai, et al. Electrooxidation Mechanisms and Discharge Characteristics of Borohydride on Different Catalytic Metal Surfaces[J].J. Phys. Chem.B, 2005, 109 (21): 10896-10901.
    [13]SC Amendola, SL Sharp-Goldman, MS Janjua,et al. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst[J]. Journal of Power Sources, 2005,85(2): 186-189.
    [14]RX Feng, H Dong, YD Wang,et al. A simple and high efficient direct borohydride fuel cell with MnO_2-catalyzed cathode[J]. Electrochemistry Communications 2005,7(4):449-452.
    [15]M Chatenet, F Micoud, 1 Roche,et al. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part I. BH_4~- electro-oxidation on Au and Ag catalysts[J].Eric Chainet. Electrochimica Acta,2006,51 (25):5459-5467.
    [I6]MH Atwan, EL Gyenge, DO Northwood. Response to "Commentary about the number of electrons really involved in the direct oxidation of borohydride catalyzed by Ag and Ag-alloys determined by Gyenge and co-authors" by Umit. B. Demirci International Journal of Hydrogen Energy 2008,33 (8):2125-2126.
    [17]Qingfeng Yi, Wu Huang, Jingjing Zhang, Xiaoping Liu, Lei Li, Methanol Oxidation on Titanium-Supported Nano-Scale Ni Flakes[J].Catal.Commun., 2008,9(10):2053-2058.
    [18]Qingfeng Yi, Wu Huang, Jingjing Zhang, Xiaoping Liu, Lei Li.A novel titanium-supported nickel electrocatalyst for cyclohexanol oxidation in alkaline solutions[J]. Journal of Electroanalytical Chemistry, 2007,610(2): 163-170.
    [19]E Sanli, H Celikkan, BZ Uysala, et al. Impedance analysis and electrochemical measurements of a direct borohydride fuel cell[J].Int J Hydrogen Energy 2006, 31:1920-1924.
    [20]M Chatenet, F Micoud, I Roche,et al. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part I. BH4- electro-oxidation on Au and Ag catalysts[J]. Electrochimica Acta 2006,51 (25):5459-5467.
    [21]Laviron E, General expression of the linear potential sweep voltammogram in the cade of diffusionless electrochemical systems[J]. J.Electroanal.Chem, 1979,101:19-28.
    [1]R.M.Hernandez-R,M.Kalaji.Electrochemical reactions of CO on polycrystalline copper electrodes [J].Journal of Electroanalytical Chemistry,1997,434(1-2):209-215.
    [2]A.D.Modestov,Guo-Ding Zhou,Hong-Hua Ge,et al.A study by voltammetry and the photocurrent response method of copper electrode behavior in acidic and alkaline solutions containing chloride ions[J].Journal of Electroanalytical Chemistry,1995,380(1-2):63-68.
    [3]S.M.Abd el Haleem,Badr G.Ateya.Cyclic voltammetry of copper in sodium hydroxide solutions[J].Journal of Electroanalytical Chemistry,1981,117(2):309-319.
    [4]F.X.Perrin J.Pagetti.Characterization and mechanism of direct film formation on a cu electrode through electro-oxidation of 2-mercaptobenzimidazole[J].1998,40(10):1647-1662.
    [5]Jaeyoung Lee,Yongsug Tak.Electrocatalytic activity of Cu electrode in electroreduction of CO_2[J].Electrochimica Acta,2001,46(19):3015-3022.
    [6]Li Rongti,Pan Wei,Chen Jian,et al.Thermodynamic properties of Ti in Ag-Cu-Ti alloys Materials[J].Science and Engineering A,2002,335(1-2):21-25.
    [7]S. Ishimaru, R. Shiratsuchi,G. Nogami Pulsed.Electroreduction of CO_2 on Cu-Ag Alloy Electrodes [J].J.Electrochem.Soc.,2000,147(5):1864-1867.
    [8]Weihua Pu, Xiangming He, Jianguo Ren, Chunrong Wan and Changyin Jiang, Electrodeposition of Sn-Cu alloy anodes for lithium batteries[J].EIectrochimica Acta, 2005,50(20):4140-4145.
    [9]In-Hyeong Yeo,Dennis C. Johnson. Electrochemical response of small organic molecules at nickel-copper alloy electrodes[J]. Journal of Electroanalytical Chemistry, 2001,495(2).110-119.
    [10]U Bertocci.Photopotentials on Copper and Copper Alloy Electrodes[J].J. Electrochem. Soc, 1978,125(10):1598-1602.
    [11]Sun-il Mho,Dennis C. Johnson. Electrocatalytic response of amino acids at Cu—Mn alloy electrodes[J].Journal of Electroanalytical Chemistry Volume 495,2001,2(5): 152-159.
    [12]G. M. Brisard, J. D. Rudnicki, F. Mclarnon and E. J.Cairns Application of probe beam deflection to study the electrooxidation of copper in alkaline media[J].EIectrochimica Acta, 1995,40(7):859-865.
    [12]A. Salimi, R. Hallaj. Full Paper.Adsorption and Reactivity of Chlorogenic Acid at a Hydrophobic Carbon Ceramic Composite Electrode: Application for the Amperometric Detection of Hydrazine[J]. Electroanalysis, 2004, 16(23): 1964-1971.
    [13]A. Salimi, K. Abdi. Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: application to amperometric detection of hydrazine and hydroxyl amine[J]. Talanta, 2004,63(2): 475-483.
    [14]J. S. Pinter, K. L. Brown, P. A. DeYoung,et al. Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes[J]. Talanta, 2007,71(3): 1219-1225.
    [15]C. Batchelor-McAuley, C. E. Banks, et al. The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array[J]. Analyst ,2006, 131: 106-110.
    [16]M. A. Me'ndez , M. F. Su'arez , M. T. Corte's ,et al. Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation[J]. Electrochem. Commun, 2007, 9(10): 2585-2590.
    [17]S. Ben Aoun, G. Sook Bang, T. Koga,et al.Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions[J]. Electrochem. Commun, 2003,5(4):317-320.
    [18]K. Ni , L. Chen, G.X. Lu. Gold nanoparticle-based assays for the detection of biologically relevant molecules [J]. Electrochem. Commun, 2008, 3(4): 543-553.
    [19]A. E.S. Sleightholme, J. R. Varcoe, A. R. Kucernak. Oxygen reduction at the silver/hydroxide exchange membrane interface[J]. Electrochem. Commun, 2008, 10(1): 151-155
    [20]A. Kongkanand, S. Kuwabata. Electrochem. Commun, Oxygen reduction at silver monolayer islands deposited on gold substrate[J]. Electrochem. Commun,2003, 5(2): 133-137.
    [21]G. Y. Gao, D. J. Guo, C. Wang, H. L. Li. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J] . Electrochem. Commun, 2007, 9(7): 1582-1586.
    [22]G. W. Yang, G. Y. Gao, C. Wang ,C. L. Xu, H. L. Li. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J]. Carbon, 2008,46(5): 747-752.
    [23]Q. F. Yi, W. Huang, J. J. Zhang, X. P. Liu, L. Li, J. A novel titanium-supported nickel electrocatalyst for cyclohexanol oxidation in alkaline solutions[J]. Electroanal. Chem, 2007, 610: 163-170.
    [24]Q. F. Yi, A. Chen, W. Huang, J. J. Zhang, X. P. Liu, G. R. Xu, Z. H. Zhou. Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation[J]. Electrochem. Commun, 2007, 9: 1513-1518.
    [25]K. Koczkur, Q. F. Yi, A. Chen. Nanoporous Pt-Ru Networks and Their Electro catalyt-ical Properties [J].Adv. Mater,2007, 19:2648-2652.
    [26]J. M. M. Droog, P. T. Alderliesten, G. A. Bootsma. A. Initial stages of anodic oxidation of silver in sodium hydroxide solution studied by potential sweep voltammetry and ellipsometry[J].J. Electroanal. Chem, 1979,99:173-186.
    [1]K Yamada,K Yasuda,N Fujiwara,et al.Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte[J].J.Power Sources,2003,5(10):892-896.
    [2]H Razmi-Nerbin,M Pournaghi-Azar.Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine[J].J.Solid State Electrochem,2002,6(2):126-133.
    [3]V Rosca,MTM Koper.Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions[J].Electrochim.Acta,2008,53(16):5199-5205.
    [4]L Niu,T You,JY Gui,et al.Electrocatalytic oxidation of hydrazines at a 4-pyridyl hydroquinone self-assembled platinum electrode and its application to amperometric detection in capillary electrophoresis[J]J.Electroanal.Chem,1998,448(1):79-86.
    [5]MD Azorero,ML Marcos,JG Velasco.Influence of Changes in the Total Surface-Area and in the Crystalline Surface-Composition of Pt Electrodes on Their Electrocatalytic Properties with Respect to the Electrooxidation of Hydrazine[J].Electrochim.Acta,1994,39(11-12):1909-1914.
    [6]JM Feliu,JM Orts,R Gomez,A Aldaz,et al.New information on the unusual adsorption states of Pt(111)in sulphuric acid solutions from potentiostatic adsorbate replacement by CO[J].J.Electroanal.Chem,1994,372(1-2):265-268.
    [7]T.Kodera,M.Honda,H.Kita.On the electrochemical behaviour of H_2O_2 at Ag in alkaline solution.[J].Electrochim.Acta,1983,28:727-733.
    [8]G.Kokkinidis,P.D.Jannakoudakis.Reduction of dinitrobenzenes on mercury,bare silver and silver surfaces modified by underpotential Pb adsorbates in methanol[J].J.Electroanal.Chem,1982,27:1199-1205.
    [9]M. Perek, J. Kendler, Ascorbic acid as a dietary supplement for white leghorn hens under conditions of climatic stress[J].J. Electroanal. Chem, 1973,47(2)329-335.
    [10]JA Harrison,ZA Khan.The oxidation of hydrazine on platinum in acid solution[J].J. Electroanal. Chem,1970,28(5):131-138.
    [11]K. Korinek, J. Koryta,M. Musilova.Electro-oxidation of hydrazine on mercury, silver and gold electrodes in alkaline solutions[J].J. Electroanal. Chem, 1969,21:319-327.
    [1]Liu X Y,Hu R Z,Xiong S L,et al.Well-aligned Cu_2O nanowire arrays prepared by an ethylene glycol-reduced process[J].Materials Chemistry and Physics,2009,114:213-216.
    [2]Tokoro H,Fujii S,Oku T.Synthesis of boron nitride and carbon nanomaterials through a solid phase reduction process[J].Materials Chemistry and Physics,2009,114:204-212.
    [3]Sun L G,Li H F,Ren L,Hu C W.Synthesis of Co_3O_4 nanostructures using a solvothermal approach [J].Solid State Sciences,2009,11:108-112.
    [4]Attar A S,Ghamsari M S,Hajiesmaeilbaigi F,Mirdamadi Sh,Katagiri K,Koumoto K.Sol-gel template synthesis and characterization of aligned anatase-TiO_2 nanorod arrays with different diameter[J].Materials Chemistry and Physics,2009,113:856-860.
    [5]Yang X H,Wang L L,Yang S.Facile route to fabricate large-scale silver microtubes.[J].Materials Letters,2007,61:2904-2907.
    [6]Gao T,Meng G,Zhang J,et al.Template synthesis of Y-junction metal nanowires[J].Appl Phys A,2002,74:403-406.
    [7]Kong L B,Lu M,Li M K,et al.Branched silver nanowires obtained in porous anodic aluminum oxide template[J].Journal of Materials Science Letters,2003,22:701-702.
    [8]Li J,Papadopoulos C,Xu J.Nanoelectronics-growing Y-junction carbon nanotubes[J].Nature,1999,402(6759):253-254
    [9]Manna L,Scher E C,Alivisatos A P.Synthesis of soluble and processable rod-,arrow-,teardrop-,and tetrapod- shaped CdSe nanocrystals[J].J Am Chem Soc,2000,122:12700-12706.
    [10]Manna L,Milliron D J,Meisel A,et al.Controlled growth of tetrapod-branched inorganic nanocrystals[J].Nature Mater,2003,2:382-385.
    [11]Xu L P,Yuan Z H,Zhang X GFabrication of multi-level branched metal nanowires by AAO template electrodeposition[J].Chinese Science Bulletin,2006,51:2055-2058.
    [12]Ding P,Qu B J,Shi L Y,et al. Inorganic template directed assembly of dendritic LDH nanostructures and their properties of morphological preservation and facile exfoliation[J].Materials Letters,2008,62: 3815- 3817.
    [13]Kong W H,Chen Y Q,et al. Self-assembled ultrafine hierarchical ZnS treelike nanoarchitectures [J].Materials Letters,2007,61:5033-5036.
    [14]Wu X, Sui J,Cai W,Qu F.Growth of dendritic SnO_2 nanoarchitectures. Materials Chemistry and Physics[J].2008,112:325-328.
    [15]Liu W C, Cai W.One-dimensional and quasi-one-dimensional ZnO nanostructures prepared by spray-pyrolysis-assisted thermal evaporation. Applied Surface Science[J].2008,254:3162-3166
    [16]Zhao F,Du Y K.Dendritic-shaped, fractal nanogold aggregates based on surfactant/polymer complex template[J].Materials Science and Engineering:A,2007,467:207-212.
    [17]Yao Z Y,Zhu X, Li X X,et al.Synthesis of novel Y-junction hollow carbon nanotrees [J]. Carbon, 2007, 45:1566-1570.
    [18]Dick K A.,Deppert K,Martensson T,et al.nanotree structures by sequential seeding of 1D nanowires[J]. Journal of Crystal Growth,2004,272:131-137.
    [19]Elif S,Bekir Z U,Mehmet L A.The oxidation of NaBH_4 on electrochemicaly treated silver electrodes[J]. Int. J. Hydrogen Energy,2008,33:2097-2104.
    [20]Yang G. W, Gao G. Y,Wang C,et al.Carbon doi:10.1016/j.carbon.2008.01.026
    [21]Isse A A.Gottardello S,Maccato C,et al.Silver nanoparticles deposited on glassy carbon.Electrocatalytic activity for reduction of benzyl chloride[J]Electrochemistry Communications, 2006,8:1707-1712.
    [22]Starowicz M,Stypula B,Banas J. Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications[J].2006,8:227-230.
    [23]Ni K,Chen L,Lu G. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction[J].Electrochemistry Communications, 2008,10:1027-1030.
    [24]Zheng X J, Jiang Z Y, Xie Z X, et al.Growth of silver nanowires by an unconventional electrodeposition without template[J]. Electrochemistry Communications, 2007,9:629-632.
    [25]Mazur M.Electrochemically prepared silver nanoflakes and nanowires.Electrochemistry Communications [J].2004,6: 400-403.
    [26]EH Vernot, JD MacEwen, RH Bruner,et al.Long-Tenn Inhalation Toxicity of Hydrazine[J].Appl. Toxicol,1985,5(6):1050-1064.
    [27]J.S. Budkuley, Mikrochim. Determination of hydrazine and sulphite in the presence of one another [J].MicrochimicaActa 1992,108(1-2):103-105.
    [28]T.J. Pastor, V.J. Vajgand,N.V. Antonijeic,et al. Coulometric determination of thiols and hydrazines with electrogenerated iodine in methanol in the presence of potassium acetate[J].Microchimica Acta, 1983, 81(3-4):203-217.
    [29]A.X. Lupea, D. Oprescu,Hydrazines Volumetric and Potentiometric Determination with p-Carboxybenzenesulphone-dichloroamide[J].Rev. Chim,1994,45(2):433-441.
    [30]E. Athanasiou-Malaki, M.A. Koupparis.Kinetic study of the determination of hydrazines, isoniazid and sodium azide by monitoring their reactions with 1-fluoro-2,4-dinitrobenzene, by means of a fluoride-selective electrode[J].Talanta, 1989,6(4):431 -436.
    [31]A Safavi, AA Ensafi. Kinetic spectrophotometric determination of hydrazine[J].Chim. Acta 1995, (1-2):307-311.
    [32]S. Amlathe, V.K. Gupta, Spectrophotometric determination of hydrogen cyanide in air using phloroglucinol[J].Analytical and Bioanalytical Chemistry, 1990,338(5):615-617.
    [33]R Gilbert, R Rioux, SE Saheb. Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazineAnalytical Chemistry [J]. 1984,56(1): 106-109.
    [34]N.E.Preece,S.Forrow,S.Ghatineh,et al. Determination of hydrazine in biofluids by capillary gas chromatography with nitrogen-sensitive or mass spectrometric detection[J].J.A. Timbrell, J.Chromatogr. 1992,573(2):227-234.
    [35]Yi Q F, Li L,Yu W Q,Zhou Z H,et al.A novel titanium-supported Ag/Ti electrode for the electro-oxidation of hydrazine[J] J Mol Catal A: Chem ,2008,295:34-38..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700