黄土高寒区三种灌木光合特性对水/盐胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨水分胁迫和NaCl胁迫对植物生长和光合生理特性的影响,该文以土壤-植物-大气连续系统(SPAC)理论为基础,选择黄土高寒区的三种水土保持灌木银水牛果(Shepherdia argentea)、沙棘(Hippophae rhamnoides Linn)和沙木蓼(Atraphaxis frutescens)作为研究对象。在2008年生长季期间,利用Li-6400便携式光合仪等仪器测定三种灌木的光合生理特征,分析其对水分胁迫和NaCl胁迫的反应。主要研究内容有:水分胁迫下三种灌木的生长指标的测定;水分胁迫条件下,光辐射强度对三种灌木的光合特性及水分利用效率的影响;水分胁迫下三种灌木的净光合速率、蒸腾速率及其相互关系;NaCl胁迫对三种灌木的生长及生理指标的影响;NaCl胁迫对三种灌木光合特性的影响。经研究,结果表明:
     1、随着水分胁迫的加剧,三种灌木的生物量(总干重和总鲜重)和单株总叶面积均显著下降,其影响程度表现为银水牛果>沙木蓼>沙棘。
     2、水分胁迫对三种灌木的净光合速率、蒸腾速率和水分利用效率的日过程产生显著影响。适度的水分胁迫能够提高三种灌木的水分利用效率,银水牛果和沙木蓼在土壤含水量为7.2-14.35%能保持较高水分利用效率,沙棘在土壤含水量<7.2%仍能保持较高水分利用效率。
     3、光辐射强度对三种灌木的净光合速率、蒸腾速率和水分利用效率产生显著影响。银水牛果在800-1800μmo1·m-2·s-1,沙棘在1200-200μmol·m-2·s-1,沙木蓼在800-2000μmol·m-2·s-1范围内具有较高的净光合速率和水分利用效率。
     4、NaCl胁迫使三种灌木的生物量、单株总叶面积和叶绿素含量显著下降,且同等胁迫条件下,沙棘的生理指标的下降幅度大于其他两种灌木,沙棘表现出对盐的敏感性。
     5、随着NaCl胁迫浓度的增加及胁迫时间的延长,三种灌木的净光合速率、蒸腾速率和气孔导度均明显下降,且同等条件下,沙棘下降的幅度大于其他两种灌木。随着NaCl胁迫时间的延长,三种灌木的Pn下降由气孔限制转为非气孔限制。
In order to study the plants'physiological and photosynthetic characteristics responding to the water stress and NaCl stress, we used three water-and-soil-conservative shrubs-- Shepherdia argentea, Hippophae rhamnoides Linn and Atraphaxis frutescens-as the research objectives, based on the SPAC theory. During the growth period in 2008, Li-6400 portable photosyntometer was employed to measure the photosynthetic characteristics of the above three shrubs and their corresponding responses to the water stress and NaCl stress were also analyzed. The main study includes:measuring the growth index of the three shrubs under the water-stress condition; the influence of radiant intensity on the three shrubs'photosynthetic characteristics and the water use efficiencies under the water-stress condition; the three shrubs' photosynthetic rates, transpirational rates and their correlations under the water-stress condition; the influence of NaCl stress on the three shrubs'growth and physiological index; the influence of NaCl stress on the three shrubs'photosynthetic characteristics.
     Our study results show that:
     (1) With the increase of water-stress levels, the three shrubs'biomass (i.e. the total dry weights and the total fresh weights) and the overall leaf areas per tree both decrease remarkably. And the influence degrees are Shepherdia argentea> Atraphaxis frutescens>Hippophae rhamnoides Linn;
     (2) The water stress has high influence on the three shrubs'net photosynthesis rates, transpirational rates and water use efficiency. Mediate water-stress level could increase their water use efficency. In particular, we observed that Shepherdia argentea and Atraphaxis frutescens have relatively higher water use efficiency in the soil which has a 7.2%--14.35% water content and Hippophae rhamnoides Linn showed relatively higher water use efficiency even in the soil with less than 7.2% water content;
     (3) The radiant intensity has high influence on the three shrubs' net photosynthesis rates, transpirational rates and water use efficiency. In particular, Shepherdia argentea, Hippophae rhamnoides Linn and Atraphaxis frutescens showed higher net photosynthesis rates and water use efficiencies on the radiant ranges 800-1800μmol·m-2·s-1,1200-2000μmol·m-2·s-1 and 800-2000μmol·m-2·s-1 respectively.
     (4) The three shrubs' biomass, the overall leaf areas per tree and chlorophyll content all decreasd remarkably with the increase of NaCl-stress levels. Besides, given the same NaCl-stress level, Hippophae rhamnoides Linn's physiological characteristics dropped by larger amounts compared with the other two plants and it also showed sensitivity to salt;
     (5) With the increase of NaCl-stress levels and the stress time,the three shrubs'net photosynthesis rates, transpirational rates and stomatal conductance all extremely decreasd. Besides, given the same stress conditions, Hippophae rhamnoides Linn's physiological characteristics dropped by larger amounts than the other two plants. And the three shrubs'Pn decrease converted from stomatal limit to non-stomatal limit with the extension of the NaCl stress time.
引文
[1]阿布力米提·买买提明,张俊佩,裴东.不同类型核桃的光合和蒸腾性能对土壤水分胁迫响应的研究[J].河北农业大学学报.2004,27(4):26-30.
    [2]曹昀,王国祥.土壤水分含量对菖蒲(Acorus calamus)萌发及幼苗生长发育的影响[J].生态学报.2007,27(5):1748-1755.
    [3]陈建,张光灿,张淑勇,等.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程[J].应用生态学报.2008,19(6):1185-1190.
    [4]陈尚谟.旱区农田水分利用效率探讨[J].干旱地区农业研究.1995,13(1):14-19,5.
    [5]陈诗,和亚君,代兴涛,等.水分胁迫对赤桉苗木生长及生物量的影响和评价[J].山东林业科技.2009,39(3):16-19.
    [6]陈玉民,孙景生.节水灌溉的土壤水分控制标准问题研究[J].灌溉排水.1997,16(1):24-28.
    [7]段学芬,郭婧,孙福江,等.水分胁迫对美国黑莓光合特性的影响[J].河北农业大学学报.2009,32(2):71-73.
    [8]冯立田.小麦光合机构对盐胁迫适应机理的研究[D].山东农业大学,1998.
    [9]耿生莲,王占林.霸王、沙木蓼和银水牛果在不同水分条件下的生理研究[J].山西林业科技.2007(4):24-26.
    [10]龚吉蕊,黄永梅,葛之葳,等.4种杂交杨对土壤水分变化的生态学响应[J].植物生态学报.2009,33(2):387-396.
    [11]郭春芳,孙云,张木清.土壤水分胁迫对茶树光合作用-光响应特性的影响[J].中国生态农业学报.2008,16(6):1413-1418.
    [12]郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响[J].生态学报.2004,24(12):2716-2722.
    [13]韩建秋.水分胁迫对白三叶光合特性的影响[J].上海应用技术学院学报:自然科学版.2009,9(2):106-109.
    [14]何小勇,练发良,李因刚,等.3种紫金牛属植物光合光响应特性的研究[J].浙江林业科技.2008,28(1):14-18.
    [15]黄刚,赵学勇,崔建垣,等.水分胁迫对2种科尔沁沙地植物光合和水分利用特性的影响[J].西北植物学报.2008,28(11):2306-2313.
    [16]蒋高明,韩兴国,林光辉.大气C02浓度升高对植物的直接影响-国外十余年来模拟实验研究之主要手段及基本结论[J][J].植物生态学报.1997,21(6):489-502.
    [17]李合生.现代植物生理学[M].高等教育出版社,2002.
    [18]李利,张希明.中国内陆盐生荒漠两种盐生植物的种子萌发策略[J].中国科学D辑.2006,36(z1):103-109.
    [19]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报.2002,22(004):503-507.
    [20]李清河,刘建锋,张景波,等.乌兰布和沙漠东北部8种沙生灌木生长季末期的光合生理特性[J].西北植物学报.2006,26(11):2318-2323.
    [21]李树华,许兴,米海莉,等.水分胁迫对牛心朴子植株生长及渗透调节物质积累的影响[J].西北植物学报.2003,23(4):592-596.
    [22]李阳,齐曼·尤努斯,祝燕.水分胁迫对大果沙枣光合特性及生物量分配的影响[J].西北植 物学报.2006,26(12):2493-2499.
    [23]李远华,雷声隆.第五讲灌区水管理[J].中国农村水利水电.1999(9):51-53.
    [24]梁君瑛.水分胁迫对桑树苗生长及生理生化特性的影响[D].北京林业大学,2008.
    [25]梁宗锁,李新有.影响夏玉米单叶WUE的冠层因子分析[J].西北农业学报.1996,5(1):13-16.
    [26]林水中,王明霞,蒋守清.桑树不同叶位的气体交换和光合效率初探[J].中国蚕业.2009,30(1):20-24.
    [27]刘丹,陈祥伟.水分胁迫对银中杨耗水特征与水分利用的影响[J].生态学杂志.2006,25(3):290-294.
    [28]刘庚山,郭安红,任三学,等.不同覆盖对夏玉米叶片光合和水分利用效率日变化的影响[J].水土保持学报.2004,18(2):152-156.
    [29]刘家尧,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响[J].植物学通报.1998,15(2):46-49.
    [30]马飞,姬明飞,陈立同,等.油松幼苗对干旱胁迫的生理生态响应[J].西北植物学报.2009,29(3):548-554.
    [31]毛桂莲,许兴,张渊.NaCl胁迫对枸杞叶绿素荧光特性和活性氧代谢的影响[J].干旱地区农业研究.2005,23(5):118-121.
    [32]彭家中,常宗强,冯起.温度和土壤水分对祁连山青海云杉林土壤呼吸的影响[J].干旱区资源与环境.2008,22(3):165-169.
    [33]祁峰,李晓东,赵艳红,等.盐度、光照度和温度对漂浮刚毛藻光合作用的影响[J].大连水产学院学报.2008,23(5):382-386.
    [34]秦景,贺康宁,谭国栋,等.NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响[J].应用生态学报.2009,20(004):791-797.
    [35]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响[J].厦门大学学报:自然科学版.2005,44(B06):28-31.
    [36]山仑,邓西平,苏佩,等.挖掘作物抗旱节水潜力——作物对多变低水环境的适应与调节[J].中国农业科技导报.2000,2(2):66-70.
    [37]孙景宽,张文辉,刘新成.干旱胁迫对沙枣和孩儿拳头的生理特性的影响[J].西北植物学报.2008,28(9):1868-1874.
    [38]陶蕊,宋洪伟,李莉,等.水分胁迫对山梨净光合速率和光合有效辐射的影响[J].现代农业科学.2008(12):41-42.
    [39]王芳,喻理飞.水分胁迫对掌叶木幼苗生长的影响[J].安徽农业科学.2008,36(20):8436-8437.
    [40]王克勤,王斌瑞,Keqin Wang,等.集水造林林分水分生产力研究[J].林业科学.2000,36(Z1):1-9.
    [41]王彦辉,熊伟,于澎涛.“多树水分平衡法”的方法与应用[J].林业科学.2005,41(4):184-188.
    [42]伍维模,李志军,罗青红,等.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J].林业科学.2007,43(5):30-35.
    [43]夏江宝,张淑勇,张光灿,等.土壤水分对金银花叶片气体交换参数及水分利用效率的影响[J].林业科学研究.2008,21(6):803-807.
    [44]夏仁学.测定作物叶面积的方法[J].植物生理学通讯.1987,5:58-60.
    [45]肖春旺,刘玉成.不同光环境的四川大头茶幼苗的生态适应[J].生态学报.1999,19(3): 422-426.
    [46]肖春旺,鸣董,周广胜,等.鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J].生态学报.2001,21(1):171-176.
    [47]肖文发,徐德应,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学.2002,38(5):38-46.
    [48]熊伟,王彦辉,于澎涛.树木水分利用效率研究综述[J].生态学杂志.2005,24(4):417-421.
    [49]严平,曹秀清,韦朝领,等.土壤水分对小麦光合作用影响的研究[J].作物杂志.2000(1):13-14.
    [50]张光飞,翟书华,苏文华,等.光照和温度对鸟巢蕨光合速率的影响研究[J].昆明学院学报.2008,30(4):62-63.
    [51]张建国,李吉跃.北方主要造林树种耐旱机理及其分类模型的研究:叶保水力及维持膨压[J].河北林学院学报.1995,10(003):187-193.
    [52]张立军,梁宗锁.植物生理学[M].科学出版社,2007:164-165.
    [53]张明如,翟明普,温国胜,等.太行山退化生境主要乔木树种光合日进程分析[J].浙江林学院学报.2005,22(5):475-480.
    [54]张淑勇,周泽福,夏江宝,等.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应[J].西北植物学报.2007,27(12):2514-2521.
    [55]张香凝,孙向阳,王保平,等.土壤水分含量对Larrea tridentata苗木光合生理特性的影响[J].北京林业大学学报.2008,30(2):95-101.
    [56]赵纪东,傅华,吴彩霞.水分胁迫对白刺幼苗生物量和渗透调节物质积累的影响[J].西北植物学报.2006,26(9):1788-1793.
    [57]郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报.2007,18(1):16-22.
    [58]周秋平,程积民,万惠娥,等.干旱胁迫下本氏针茅光合特性和水分利用效率日动态研究[J].草地学报.2009(4):510-514.
    [59]周睿智,徐程扬,段永红.长白山地区5种阔叶树苗木的光响应研究[J].林业科技开发.2009,23(2):37-39.
    [60]朱艳艳,贺康宁,唐道锋,等.不同土壤水分条件下白榆的光响应研究[J].水土保持研究.2007,14(2):92-94.
    [61]Badr M A, Hussein S. Yield and Fruit Quality of Drip-irrigated Cantaloupe under Salt Stress Conditions in an Arid Environment[J]. Australian Journal of Basic and Applied Sciences.2008, 2(1):141-148.
    [62]Bethke P C, Drew M C. Stomatal and Nonstomatal Components to Inhibition of Photosynthesis in Leaves of Capsicum annuum during Progressive Exposure to NaCl Salinity [J]. PLANT PHYSIOLOGY.1992,99(1):219-226.
    [63]Cavender-Bares J, Bazzaz F A. Changes in drought response strategies with ontogeny in Quercus rubra:implications for scaling from seedlings to mature trees[J]. Oecologia.2000,124(1):8-18.
    [64]Cheeseman J M. Mechanisms of Salinity Tolerance in Plants [J]. PLANT PHYSIOLOGY.1988, 87(3):547-550.
    [65]Condon A G, Richards R A, Rebetzke G J, et al. Improving Intrinsic Water-Use Efficiency and Crop Yield[J]. Crop Science.2002,42(1):122-131.
    [66]Cowan IR. Regulation of water use in relation to carbon gain in higher plants[J]. Physiological Plant Ecology Ⅱ.1982,12:589-613.
    [67]Craufurd P Q, Wheeler T R, Ellis R H, et al. Effect of Temperature and Water Deficit on Water-Use Efficiency, Carbon Isotope Discrimination, and Specific Leaf Area in Peanut[J]. Crop Science.1999,39(1):136-142.
    [68]Egert M, Tevini M. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum)[J]. Environmental and Experimental Botany.2002,48(1):43-49.
    [69]Ehleringer J R. Carbon and water relations in desert plants:an isotopic perspective[J]. Ehleringer JR, Hall AE, Farquhar GD, et al. Stable isotopes and plant carbon water relations.1993:155-172.
    [70]Ehleringer J R, Monson R K. Evolutionary and Ecological Aspects of Photosynthetic Pathway Variation[J]. Annual Review of Ecology and Systematics.1993,24(1):411-439.
    [71]Everard J D, Gucci R, Kann S C, et al. Gas Exchange and Carbon Partitioning in the Leaves of Celery (Apium graveolens L.) at Various Levels of Root Zone Salinity[J]. PLANT PHYSIOLOGY.1994,106(1):281-292.
    [72]Farquhar G D, Lloyd J, Ehleringer J R, et al. Stable isotopes and plant carbon-water relations[J]. San Diego:Academic.1993:155-172.
    [73]Farquhar G D, Lloyd J, Taylor J A, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2[J]. Nature.1993,363(6428):439-443.
    [74]Farquhar G D, Sharkey T D. Stomatal Conductance and Photosynthesis[J]. Annual Review of Plant Physiology.1982,33(1):317-345.
    [75]Fischer R A. Growth and water limitation to dryland wheat yield in Australia:a physiological framework[J]. Journal of the Australian Institute of Agricultural Science.1979,45(2):83-94.
    [76]Francey R J, Gifford R M, Sharkey T D, et al. Physiological influences on carbon isotope discrimination in huon pine (Lagarostrobos franklinii)[J]. Oecologia.1985,66(2):211-218.
    [77]Friend A L, Coleman M D, Isebrands J G. Carbon allocation to root and shoot systems of woody plants[J]. Biology of adventitious root formation.1994:245-273.
    [78]Garten C T, Taylor G E. Foliar δ13C within a temperate deciduous forest:spatial, temporal, and species sources of variation[J]. Oecologia.1992,90(1):1-7.
    [79]Guehl J M, Fort C, Ferhi A. Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants[J]. New Phytologist.1995,131(2):149-157.
    [80]Guy R D, Reid D M, Krouse H R. Factors affecting 13 C/12 C ratios of inland halophytes. I. Controlled studies on growth and isotopic composition of Puccinellia nuttalliana[J]. Canadian Journal of Botany.1986,64(11):2693-2699.
    [81]Heitholt J J. Water Use Efficiency and Dry Matter Distribution in Nitrogen-and Water-Stressed Winter Wheat[J]. Agronomy Journal.1989,81(3):464-469.
    [82]Iqbal M, Ashraf M. Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines[J]. Plant Growth Regulation.2005,46(1):19-30.
    [83]Ismail A M, Hall A E, Bray E A. Drought and Pot Size Effects on Transpiration Efficiency and Carbon Isotope Discrimination of Cowpea Accessions and Hybrids[J]. Functional Plant Biology. 1994,21(1):23-35.
    [84]Jaleel C A, Sankar B, Sridharan R, et al. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus[J]. Turkish Journal of Biology.2008, 32(2):79-83.
    [85]Jensen M E. Water consumption by agricultural plants[M]. Water Deficit and Plant,1968.
    [86]Jeschke W D, Wolf O, Hartung W. Effect of NaCI Salinity on Flows and Partitioning of C, N, and Mineral Ions in Whole Plants of White Lupin, Lupinus albusL.[J]. Journal of Experimental Botany.1992,43(6):777-788.
    [87]Jiang Y, Huang B. Drought and Heat Stress Injury to Two Cool-Season Turfgrasses in Relation to Antioxidant Metabolism and Lipid Peroxidation[J]. Crop Science.2001,41(2):436-442.
    [88]Johnson R C, Yangyang L. Water Relations, Forage Production, and Photosynthesis in Tall Fescue Divergently Selected for Carbon Isotope Discrimination[J]. Crop Science.1999,39(6): 1663-1670.
    [89]Johnson Z, Barber R. The low-light reduction in the quantum yield of photosynthesis:potential errors and biases when calculating the maximum quantum yield[J]. Photosynthesis Research. 2003,75(1):85-95.
    [90]Kellomaki S, Wang K Y. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature[J]. Tree Physiology.1996,16(9):765.
    [91]Korner C, Farquhar G D, Roksandic Z. A global survey of carbon isotope discrimination in plants from high altitude[J]. Oecologia.1988,74(4):623-632.
    [92]Kozlowski T, Kramer P J. The physiological ecology of woody plants[M]. San Diego, CA,:HA Academic Press,1991.
    [93]Kramer P J, Boyer J S. Water relations of plants and soils[M]. Academic Press, Inc.,1995.
    [94]Lakshmi A, Ramanjulu S, Veeranjaneyulu K, et al. Effect of NaCI on photosynthesis parameters in two cultivars of mulberry[J]. Photosynthetica (Czech Republic).1996,32(2):285-289.
    [95]Lange O L, Kappen L, Schulze E D. Water and plant life:problems and modern approaches[M]. Springer-Verlag, Berlin; New York,1976.
    [96]Lawlor D W. Limitation to Photosynthesis in Water-stressed Leaves:Stomata vs. Metabolism and the Role of ATP[J]. Annals of Botany.2002,89(7):871-885.
    [97]Liu W Z. Dynamic interrelations of crop production, water consumption and water use efficiency [J]. Journal of natural resources.1998,13(1):23-27.
    [98]Lloyd J E, Kunkel B A. Effects of water availability on carbon assimilation and structural integrity of potted greenhouse poinsettia (Euphorbia pulcherrima)[J]. SPECIAL CIRCULAR-OHIO AGRICULTURAL RESEARCH AND DEVELOPMENT CENTER.2001: 91-98.
    [99]Loader N J, Switsur V R, Field E M. High-resolution stable isotope analysis of tree rings: implications of'microdendroclimatology'for palaeoenvironmental research[J]. The Holocene. 1995,5(4):457-460.
    [100]Masle J, Farquhar G D. Effects of Soil Strength on the Relation of Water-Use Efficiency and Growth to Carbon Isotope Discrimination in Wheat Seedlings[J]. PLANT PHYSIOLOGY.1988, 86(1):32-38.
    [101]Massai R, Remorini D, Tattini M. Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations[J]. Plant and Soil. 2004,259(1):153-162.
    [102]Mcnulty S, Swank W. Wood δ13C as a measure of annual basal area growth and soil water stress in a Pinus strobes forest[J]. Ecology.1995,76:1581-1586.
    [103]Mian M, Bailey M A, Ashley D A, et al. Molecular markers associated with water use efficiency and leaf ash in soybean[J]. Crop Science.1996,36(5):1252-1256.
    [104]Morecroft M D, Woodward F I, Marris R H. Altitudinal Trends in Leaf Nutrient Contents, Leaf Size and delta 13 C of Alchemilla alpina[J]. Functional Ecology.1992,6(6):730-740.
    [105]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant, Cell and Environment.1993,16(1):15-24.
    [106]Munns R, Schachtman D P, Condon A G. The Significance of a Two-Phase Growth Response to Salinity in Wheat and Barley[J]. Functional Plant Biology.1995,22(4):561-569.
    [107]Nabors M W, Gibbs S E, Bernstein C S, et al. NaCl-tolerant tobacco plants from cultured cells[J]. Z. Pflanzenphysiol.1980,97(1):13-17.
    [108]Neill S J, Burnett E C. Regulation of gene expression during water deficit stress[J]. Plant Growth Regulation.1999,29(1):23-33.
    [109]Nijs I, Ferris R, Blum H, et al. Stomatal regulation in a changing climate:a field study using Free Air Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE)[J]. Plant, Cell and Environment.1997,20(8):1041-1050.
    [110]O'Leary M H. Carbon isotope fractionation in plants[J]. Phytochemistry.1981,20(4):553-567.
    [111]O'Leary M H. Carbon isotopes in photosynthesis (fractionation techniquesmay reveal new aspects of carbon dynamics in plants)[J]. Bioscience.1988,38(5):328-336.
    [112]Physiol A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Aust. J. Plant Physiol.1982,9:121-137.
    [113]Proietti P. Changes in Photosynthesis and Fruit Characteristics in Olive in Response to Assimilate Availability[J]. Photosynthetica.2003,41(4):559-564.
    [114]Robinson S P, Downton W J S, Millhouse J A. Photosynthesis and Ion Content of Leaves and Isolated Chloroplasts of Salt-Stressed Spinach [J]. PLANT PHYSIOLOGY.1983,73(2): 238-242.
    [115]Schleser G H. Investigations of the{delta} 13C Pattern in Leaves of Fagus sylvatica L.[J]. Journal of Experimental Botany.1990,41(5):565-572.
    [116]Shan L, Xu M. Water-saving agriculture and its physio-ecological bases[J]. Chinese Journal of Applied Ecology.1991,2(1):70-76.
    [117]Sidari M, Santonoceto C, Anastasi U, et al. Variations in four genotypes of lentil under NaCl-salinity stress[J]. American Journal of Agricultural and Biological Science.2008,3(1): 410-416.
    [118]Sparks J P, Ehleringer J R. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects[J]. Oecologia.1997,109(3):362-367.
    [119]Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains[J]. Environmental and Experimental Botany.1999,42(3):211-220.
    [120]Teare ID, Sionit N, Kramer P J. Changes in water status during water stress at different stages of development in wheat[J]. Physiologia Plantarum.1982,55(3):296-300.
    [121]Tezara W, Mitchell V J, Driscoll S D, et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Ecology.1996,77:2027-2042.
    [122]Tsialtas J T, Karadimos D A. Leaf Carbon Isotope Discrimination and its Relation with Qualitative Root Traits and Harvest Index in Sugar Beet (Beta vulgaris L.)[J]. Journal of Agronomy and Crop Science.2003,189(5):286-290.
    [123]Undersander D J. Management of sorghum under limited irrigation[J]. Agronomy Journal.1986, 78(1):28-32.
    [124]Walker R R, Blackmore D H, Sun Q. Carbon Dioxide Assimilation and Foliar Ion Concentrations in Leaves of Lemon (Citrus limon L.) Trees Irrigated With Nacl or Na2SO4[J]. Functional Plant Biology.1993,20(2):173-185.
    [125]Wicks G A, Smika D E, Hergert G W. Long-term effects of no-tillage in a winter wheat (Triticum aestivum)-sorghum (Sorghum bicolor)-fallow rotation[J]. Weed Science.1988,36(3):384-393.
    [126]Wilson J B. Shoot competition and root competition[J]. Journal of Applied Ecology.1988,25(1): 279-296.
    [127]Yan C R, Han X G, Chen L Z. Water use efficiency of six woody species in relation to micro-environmental factors of different habitats[J]. Acta ecol. sin.2001,21(11):1-952.
    [128]Zhang H, Nobel P S. Dependency of cl/ca and Leaf Transpiration Efficiency on the Vapour Pressure Deficit[J]. Functional Plant Biology.1996,23(5):561-568.
    [129]Zhang Z B, Shan L. Research development in estimation models of crop water use efficiency and transpiration and evaporation[J]. Agricultural Research in the Arid Areas.1997,15(1):73-78.
    [130]Zhang Z J, Shi L, Zhang J Z, et al. Photosynthesis and Growth Responses of Parthenocissus quinquefolia (L.) Planch to Soil Water Availability[J]. Photosynthetica.2004,42(1):87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700