高亲和力钠依赖二羧酸转运蛋白(NaDC3)促进肾脏衰老的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肾脏功能随年龄增长逐渐下降,老年人终末期肾脏疾病(endstage renal disease,ESRD)的发生率高,且治疗有效率低,死亡率高。因此研究肾脏衰老的机制和延缓肾脏衰老的策略有重要意义。肾脏衰老的病理学特征是肾小球硬化、肾小管萎缩、肾间质纤维化和动脉内膜纤维性增厚,其中肾间质-小管的损伤对肾功能的影响更为重要。肾小管的重要功能之一就是主动吸收有用物质或分泌有害物质,而这些过程均需要消耗能量。近年来的研究表明能量代谢与衰老关系密切,而且限制热量摄入可延长很多物种的寿命,并可延缓衰老相关疾病的发生。与其他器官一样,肾小管的主要能量来源也依赖于三羧酸循环。有趣的是肾小管上皮细胞基底膜侧存在一种高亲和力钠依赖二羧酸转运蛋白(NaDC3),其主要功能是将三羧酸循环的中间产物二羧酸与三羧酸从组织或血液中转运至肾小管上皮细胞内,为其提供能量合成的底物。我们实验室前期研究发现NaDC3在人和大鼠肾脏的表达随着衰老逐渐增加,在肾脏衰老中起重要作用。过表达NaDC3基因,可使人二倍体成纤维细胞(WI38细胞)提前出现衰老表型。但是NaDC3促进衰老的具体机制尚不清楚,我们推测与能量代谢有关。目前越来越多的证据表明限制能量摄入延缓衰老、延长寿命与Sir2有关。Sir2是三羧酸循环中的辅酶尼克酰胺腺嘌呤二核苷酸(NAD)依赖的组蛋白去乙酰化酶,它通过NAD把代谢与寿命联系在一起,最近研究发现SIRT1(Sir2在哺乳动物中最近的同系物)对肾脏有保护作用。那么NaDC3是否通过调控三羧酸循环中间产物而影响NAD的水平,进而影响SIRT1的表达和/或功能而促进衰老呢?为此本研究以能量代谢为切入点,首先观察SIRT1在不同月龄大鼠肾脏的表达情况及其与NaDC3表达的相关性;进一步研究了在人肾小管上皮细胞(HKC)和WI38细胞中NaDC3对NAD~+/NADH比值的影响及其与SIRT1表达和功能的关系,并且观察了NaDC3对SIRT1表达影响与WI38细胞衰老表型的关系。
     方法:取1日龄、3月龄、12月龄和24月龄大鼠的肾脏组织,观察NaDC3和SIRT1的表达及SIRT1的活性变化,并分离培养各时间点大鼠肾小管上皮细胞,用免疫荧光法检测SIRT1的定位和表达变化。应用逆转录病毒介导的基因转移技术,将NaDC3基因分别转移至HKC和WI38细胞内,检测不同水平的NaDC3对SIRT1表达和活性的影响。在WI38细胞转染正义NaDC3后,检测衰老的相关指标,包括用β-半乳糖苷酶活性(SA-β-gal)染色方法检测了衰老相关SA-β-gal染色阳性率,用MTT法检测了细胞增殖能力,用流式细胞仪检测了细胞周期的变化,并计数了细胞分裂的代数等。在转染正义NaDC3的同时,给与SIRT1的激动剂白黎卢醇或限食大鼠血清,观察对上述衰老相关指标的影响,以证实NaDC3是否通过SIRT1影响了衰老的进程。同时检测了NaDC3对WI38细胞NAD~+/NADH比值的影响,并给与NAD刺激转染了正义NaDC3的WI38细胞,使NAD~+/NADH比值升高,观察衰老相关的指标变化,以证实NaDC3通过降低NAD~+/NADH比值,抑制SIRT1,继而加速衰老。
     结果:随大鼠月龄增长,NaDC3在肾脏的表达水平逐渐增高,而SIRT1的表达和活性均逐渐下降。SIRT1在肾小管上皮细胞核内表达,荧光强度随大鼠增龄逐渐减弱。HKC和WI38细胞转染正义NaDC3后明显抑制了SIRT1的蛋白表达和去乙酰化酶活性;HKC转染反义NaDC3后SIRT1的蛋白表达和去乙酰化酶活性有所升高。在WI38细胞转染正义NaDC3后,加速了细胞衰老,表现为细胞增殖能力下降,SA-β-gal染色阳性率明显增高,细胞分裂代数减少,停滞在G1的细胞数量增多;给与SIRT1的激动剂白黎卢醇或限食大鼠血清,则能抑制细胞出现以上衰老相关的表型。转染正义NaDC3的WI38细胞NAD~+/NADH比值降低,给与NAD刺激,提高NAD~+/NADH的比值后,细胞衰老相关的表型部分得到抑制。
     结论:在大鼠肾脏中,SIRT1的表达和活性随着增龄而下降,在肾脏衰老中起重要作用。NaDC3可通过增强能量代谢而抑制NAD~+依赖的SIRT1的蛋白表达和酶活性而促进肾脏衰老。
Background and objective: Normal aging alters renal function, the high frequency of end-stage renal disease (ESRD) in the elderly. The incidence of acute renal failure is higher in older subjects, and the clinical outcome of renal failure is significantly worse with regard to mortality, requirement of dialysis, and complete recovery. So it is important to study the mechanism of aging kidney. The pathological changes of tubular-interstitial are especially important because they determine the aggravate degree of renal function. High-affinity sodium-dependent dicarboxylate cotransporter (NaDC3) is expressed in basolateral membrane of proximal renal tubular epithelial cells primarily involved in the uptake and metabolism of Krebs cycle intermediates, which include a variety of di- and tricarboxylates such as succinate, citrate, and a-ketoglutarate. It induces the aging process. The pathway of NaDC3 mediating aging would provide the targets of delaying aging. But the mechanism is yet unclear. NaDC3 provides energy for renal tubular epithelial cells, and there are tight link between energy metabolism and lifespan. SIRT1, a NAD-dependent histone deacetylase, extends many organism lifespan and reduces aging-related diseases in caloric restriction. SIRT1 links energy metabolism and lifespan through NAD. We presumed NaDC3 probably regulated lifespan through inhibiting SIRT1 function. To determine the mechanism of aging induced by NaDC3, the study designed to investigate firstly the change of SIRT1 expression and activity in kidney with aging, and then detected the effects of NaDC3 on the level of SIRT1 expression and activity in HKC and WI38 cells, senescent-related phenotypes in WI38 cells, and NAD~+/NADH ratio.
    Methods: The kidneys from different month-old rats were used to investigate the change of SIRT1 and NaDC3 expression and SIRT1 activity. To determine the relation between NaDC3 and SIRT1, the expression and activity of SIRT1 protein were tested after transfecting NaDC3 gene in HKC and WI38 cells. To determine the effects of NaDC3 on SIRT1 in the aging process, aging-related phenotypes were tested after transfecting sense-NaDC3 in WI38 cells, including that the SA-β-gal staining positive ratio was detected by SA-β-gal staining, cells proliferation capacity was done by MTT, cell cycle was analysesed by flowcytometry system. Moreover, above parameters were also detected in WI38 transfecting sense-NaDC3 treated with resveratrol or CR serum. To determine the pathway of NaDC3 influencing SIRT1, we detected NAD~+/NADH ratio. Meanwhile, we tested aging-related phenotypes in WI38 transfecting sense-NaDC3 treated with NAD.
    Results: The results showed that the level of NaDC3 expression increased and SIRT1 expression and activity decreased in rat kidneys with aging (P<0.05). The level of SIRT1 expression and activity was significantly lower in HKC and WI38 cells transfecting sense-NaDC3 (P<0.05), while higher in HKC transfecting antisense-NaDC3 (ASNaDC3) than control cells (P<0.05). Cell prolification capacity and population doubling (PD) decreased, while the SA-β-gal staining positive ratio increased, and the cell number in G1 phase also increased in WI38 cells transfecting sense-NaDC3, compared with control group (P<0.05). But the aging-related phenotypes were reduced when WI38 cells transfecting sense-NaDC3 were treated with resveratrol or CR serum. NAD~+/NADH ratio was inhibited in WI38 cells transfecting sense-NaDC3, compared with control group (P<0.05). But when the cells transfecting sense-NaDC3 were treated with NAD~+, the aging-related phenotypes were reduced (P< 0.05).
    Conclusions: Our results have demonstrated that the level of SIRT1 expression and activity decreased in kidney with aging. NaDC3 promoted senescence by inhibiting SIRT1 expression and activity, which may provide a new target of delaying and preventing renal senescence.
引文
1. Chen XM, Tsukaguchi H, Chen XZ, et al. Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest. 1999; 103(8): 1159-1168.
    2.彭丽霞,陈香美,刘航等,肾小管基底侧钠~+/二羧基转运蛋白随增龄的表达变化 中华医学杂志 2003;83(2):123-127。
    3. Chen XM, Cao DW, Wang JZ, et al. Effects of Human Na~+/Dicarboxylate Cotransporter 3 on the Replicative Senescence of Human Embryonic Lung Diploid Fibroblasts. J Gerontol A-Biol. 2005; 60A (6): 709-714.
    4, Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci. 2000; 97: 5807-5811.
    
    5. Kaeberlain M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999; 13(19), 2570-2580.
    
    6. Tissenbaum HA and Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001; 410(6825):227-230.
    
    7. Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403: 795-800.
    
    8. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006; 126(2): 257-268.
    
    9. Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006; 281(31): 21745-21754.
    
    10. Chu F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res. 2005; 65(22):10183-10187.
    
    11. Kume S, Haneda M, Kanasaki K, et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med. 2006; 40(12): 2175-2178.
    
    12. Hamm LL. Renal handling of citrate. Kidney Int. 1990; 38:728-735.
    
    13. Rogina B, Reenan RA, Nilsen SP, et al. Extended life-span conferred by cotransporter gene mutations in drosophila. Science. 2000; 290:2137-2140.
    
    14. Inoue K, Fei YJ, Huang W, et al. Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J. 2002; 367:313-319.
    
    15. Yang T, Fu M, Pestell R, et al. SIRT1 and endocrine signaling. Trends Endocrinol Metab. 2006; 17(5):186-191.
    
    16. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000; 14(9):1021-1026.
    
    17. Toshiyuki Araki, Yo Sasaki, Jeffrey Milbrandt. Increased Nuclear NAD Biosynthesis and SIRTl Activation Prevent Axonal Degeneration. Science 2004; 305:1010-1013
    
    18. Brachmann CB, Sherman JM, Devine SE, et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995; 9(23): 2888-2902.
    
    19. Imai S, C Armstrong, and L Guarente. Silencing and aging protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403: 795-800.
    
    20. Cohen HY, Miller C, Bitterman KJ, et al. Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRTl Deacetylase. Science. 2004; 305(5682):390-392.
    
    21. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006; 126(2): 257-268.
    
    22. Alcendor RR, Gao S, Zhai P, et al. Sirt1 Regulates Aging and Resistance to Oxidative Stress in the Heart. Circ Res. 2007; 100(10):1512-1521.
    
    23. Chen J, Zhou Y, Mueller-Steiner S, et al. SIRTl protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005; 280(48):40364-40374.
    
    24. Alcendor RR, Kirshenbaum LA, Imai S, et al. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res. 2004;95(10):971-980.
    
    25. Ota H, Tokunaga E, Chang K, et al. Sirtl inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 2006; 25(2):176-185.
    
    26. Kume S, Haneda M, Kanasaki K, et al. SIRTl inhibits TGF-beta -induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem. 2007; 282: 151-158.
    
    27. Yasui M, Marples D, Belusa R, et al. Development of urinary concentrating capacity: role of aquaporin-2. Am J Physiol. 1996; 271: F461-F468.
    
    28. Sasaki T, Maier B, Bartke A, et al. Progressive loss of SIRTl with cell cycle withdrawal. Aging Cell. 2006; 5(5):413-422.
    1.彭丽霞,陈香美,刘航等,肾小管基底侧钠/二羧基转运蛋白随增龄的表达变化 中华医学杂志 2003;83(2):123-127。
    2. Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-lalpha EMBO J. 2007; 26(7): 1913-1923.
    3. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006, 126(2): 257-268.
    4. Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006; 281(31): 21745-21754.
    5. Chu F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdrl and cancer resistance to chemotherapy by the longevity gene sirtl. Cancer Res. 2005; 65(22):10183-10187.
    6. Roth GS, Ingram DK, and Lane MA. Caloric restriction in primates and relevance to humans. Ann NY Acad Sci. 2001; 928: 305-315.
    7. Alcendor RR, Gao S, Zhai P, et al. Sirtl Regulates Aging and Resistance to Oxidative Stress in the Heart. Circ Res. 2007; 100 (10):1512-1521.
    8. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002; 21(10): 2383-2396.
    9. Imai S, Armstrong C, and Guarente L. Silencing and aging protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403: 795-800.
    10. Kume S, Haneda M, Kanasaki K. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem. 2007; 282(1):151-158.
    11.白雪源,陈香美,邱强等。人肾高亲和力钠离子依赖性二羧酸转运蛋白基因的克隆和生物信息学分析。中国生物化学与分子生物学报 2002;18(4):404-410。
    12. Simpson DP. Citrate excretion: a window on renal metabolism. Am J Physiol. 1983, 244(3): F223-F234.
    13. Pajor AM. Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol. 1999, 61:663-682.
    14. Wang HP, Fei YJ, Kekuda R, et al. Structure, function, and genomic organization of human Na~+-dependent high affinity dicarboxylate transporter. Am J Physiol Cell Physiol. 2000, 278(5):C1019-C1030.
    15. Pajor AM, Gangula R, Yao XZ. Cloning and functional characterization of a high-affinity Na~+/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol. 2001; 280(5):C1215-C1223.
    16. Chen XM, Tsukaguchi H, Chen XZ, et al. Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest. 1999, 103(8):1159-1168.
    17.何建英,陈香美,白雪源等。钠依赖二羧酸转运蛋白3和葡萄糖对肾小管上皮细胞琥珀酸转运的影响解放军医学杂志 2004;29(7):600-602。
    18. Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD~+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA. 2000; 97(12): 6658-6663.
    19. Tanner KG, Landry J, Sternglanz R, et al. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A. 2000; 97(26):14178-14182.
    
    20. Tanny JC and Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc Natl Acad Sci U S A. 2001; 98(2): 415-420.
    
    21. Sauve AA, Celic I, Avalos J, et al. Chemistry of gene silencing: the mechanism of NAD~+-dependent deacetylation reactions. Biochemistry. 2001; 40(51): 15456-15463.
    
    22. Aksoy P, Escande C, White TA. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun. 2006; 349(1):353-359.
    
    23. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004; 279(49):50754-50763.
    
    24. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004; 305(5686):1010-1013.
    
    25. Berger F, Lau C, Dahlmann M, et al. Subcellular Compartmentation and Differential Catalytic Properties of the Three Human Nicotinamide Mononucleotide Adenylyltransferase Isoforms. J Biol Chem. 2005; 280(43):36334-36341.
    1. Chen XM, Cao DW, Wang JZ, et al. Effects of Human Na~+/Dicarboxylate Cotransporter 3 on the Replicative Senescence of Human Embryonic Lung Diploid Fibroblasts. J GerontolA-Biol. 2005; 60A(6): 709-714.
    2. Haim YC, Christine M, Kevin JB, et al. Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase. Science. 2004; 305(16): 390-392.
    3. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425(6954):191-196.
    
    4. Bela S, Erno T and Zsuzsa KV. Dose-dependent effect of resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures. Exp Mol Med. 2000; 32(2):88-92.
    
    5. Cai AL, Zipfel GJ, Sheline CT. Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway. Eur J Neurosci. 2006; 24(8):2169-2176.
    
    6. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific Activation of Sirtuins by Resveratrol. J Biol Chem. 2005; 280(17):17038-17045.
    
    7. Cohen HY, Miller C, Bitterman KJ, et al. Calorie Restriction Promotes Mammalian Cell Survival by Inducing the S1RT1 Deacetylase. Science. 2004; 305(5682):390-392.
    
    8. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995; 92(20): 9363-9367.
    
    9. Anderson RM, Bitterman KJ, Wood JG, et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003; 423 (6936):181-185.
    
    10. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.Science. 2000; 289(5487):2126-2128.
    
    11. Lin SJ, Ford E, Haigis M, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004; 18(1):12-16.
    
    12. Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 2002; 418(6895):344-348.
    
    13. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian
    ?cells. J Biol Chem. 2004; 279(49):50754-50763.
    
    14. Sasaki T, Maier B, Bartke A, et al. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell. 2006; 5(5):413-422.
    
    15. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002; 21(10):2383-2396.
    
    16. Wood 3G, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004; 430(7000):686-689.
    
    17. Smith JS, Brachmann CB, Celic I, et al. A phylogenetically conserved NAD~+-dependent protein deacetylase activity in the Sir2 protein family. Proc NatlAcad Sci USA. 2000; 97(12):6658-6663.
    1. McCay CM, Crowell MF. Prolonging the life span. Sci Mon. 1934; 39, 405-414.
    2. Walford RL, Harris SB, Weindruch R. Dietary restriction and aging: historical phases, mechanisms and current directions. J Nutr. Review. 1987; 117 (10): 1650-1654.
    3. Logroscino G, Marder K, Cote L, et al. Dietary lipids and antioxidants in Parkinson's disease: a populationbased, case-control study. Ann. Neurol. 1996; 39, 89-94.
    
    4. Mayeux R, Costa R, Bell K, et al. Reduced risk of Alzheimer's disease among individuals with low calorie intake. Neurology. 1999; 59, S296-S297.
    
    5. Astrup A. Healthy lifestyles in Europe: prevention of obesity and type II diabetes by diet and physical activity. Public Health Nutr. 2001; 4, 499-515.
    
    6. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med. 2002; 137, 25-33.
    
    7. Hursting SD, Lavigne JA, Berrigan D, et al. Calorie restriction, aging, and cancer prevention: Mechanisms of action and applicability in humans. Annu Rev. Med. 2003; 54,131-152.
    
    8. Suzuki M, Wilcox BJ, Wilcox CD. Implications from and for food cultures for cardiovascular disease: longevity. Asia Pac. J Clin Nutr. 2001;10,165-171.
    
    9. Walford RL, Mock D, Verdery R, et al. Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemica parameters in humans restricted for a 2-year period. J. Gerontol. A Biol. Sci. Med. Sci. 2002; 57, B211-B224.
    
    10. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA. 2004; 101, 6659-6663.
    
    11. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004; 73: 417-435. Review.
    
    12. Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006; 20(21): 2913-2921
    
    13. Su-Ju Lin, Ethan Ford, Marcia Haigis, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004; 18(1):12-16.
    
    14. Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci. 2004; 101(45):15998-16003.
    
    15. Konrad TH, Kevin JB, Haim YC, et al. Small molecule activators of Sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425( 6954): 191-196.
    
    16. Liszt G, Ford E, Kurtev M, et al. Mouse Sir2 homolog S1RT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005; 280(22):21313-21320.
    
    17. Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005; 16(10):4623-4635.
    
    18. Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315-329.
    
    19. Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006; 20(9):1075-1080.
    
    20. Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403(6771):795-800.
    
    21.Dryden SC, Nahhas FA, Nowak JE, et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003; 23(9):3173-3185.
    
    22. Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun. 2003; 309(3):558-566.
    
    23. Wallace. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005; 70:363-374. Review.
    
    24. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 2004; 14 (8): 408-412.
    
    25. Vaziri H, Dessain SK, Ng E, et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001; 107(2):149-159.
    
    26. Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001; 107 (2):137-148.
    
    27. Smith J. Human Sir2 and the 'silencing' of p53 activity. Trends Cell Biol. 2002; 12(9):404-406.
    
    28. Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 2002; 21(10):2383-2396.
    
    29. Kume S, Haneda M, Kanasaki K, et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation, Free Radic Biol Med. 2006; 40(12): 2175-2182.
    
    30. Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. PNAS. 2003; 16 (100): 10794-10799.
    
    31. Kamel C, Abrol M, Jardine K, et al. SirT1 fails to affect p53-mediated biological functions. Aging Cell. 2006; 5(1):81-88.
    
    32. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004; 16 (305): 390-392.
    
    33. Jeong J, Juhn K, Lee H, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 2007; 39(1):8-13.
    
    34. Nakae J, Biggs WH, Kitamura T, et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxol. Nat Genet. 2002; 32(2): 245-253.
    
    35. Machida S, Spangenburg E, and Booth F. Forkhead transcription factor FoxO1 transduces insulin-like growth factor's signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol. 2003; 196 (3): 523-531.
    
    36. Kamei Y, Miura S, Suzuki M. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type 1 (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Bio Chem. 2004; 279 (39): 41114-41123.
    
    37. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC1. Cell. 1999; 98(1): 115-124.
    
    38. Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001; 413(6852): 131-138.
    
    39. Michael LF, Wu Z, Cheatham RB, et al. Restoration of Insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci. 2001; 98(7): 3820-3825.
    
    40. Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 2005; 280(21):20589-20595.
    
    41. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature. 2005; 434 (7029): 113-118.
    
    42. Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007; 26(7):1913-1923.
    
    43. Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1 {alpha}. J Biol Chem. 2005; 280(16):16456-16460.
    
    44. Heilbroon LK, Smith SR, Martin CK, et al. Alternateday fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005; 81, 69-73.
    
    45. Lane MA, Ingram DK, Roth GS. Easy to swallow. The serious search for an anti-aging pill. Sci Am. 2002; 287, 24-29.
    
    46. Ingram DK, Anson RM, Decabo R, et al. Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci. 2004; 1019, 412-423.
    
    47. Everitt AV, Roth GS, Le Couteur DG, et al. Caloric restriction versus drug therapy to delay the onset of aging diseases and extend life. Age. 2005; 27,
    58. Duan W, Mattson MR Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 1999; 57, 195-206.
    
    59. Zhu Z, Jiang W, McGinley JN, et al. 2-deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res. 2005; 65, 7023-7030.
    
    60. Bartke A. Mini review: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology. 2005; 146, 3718-3723.
    
    61. Anisimov VN. Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Exp. Gerontol. 2003; 38,1041-1049.
    
    62. Scarpello JH. Improving survival with metformin: the evidence base today. Diabetes Metab. 2003; 29, 6S36-6S43.
    
    63. Eurich DT, Majumdar SR, McAlister FA, et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005; 28, 2345-2351.
    
    64. Corton JC, Apte U, Anderson SP, et al. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem. 2004; 279, 46204-46212.
    
    65. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004; 430, 686-689.
    
    66. Quideau S. Plant 'polyphenolic' small molecules can induce a calorie restriction-mimetic life-span extension by activating sirtuins: will 'polyphenols' some-day be used as chemotherapeutic drugs in Western medicine? Chembiochem.2004; 4, 427-430.
    
    67. Schafer SA, Hansen BC, Volkl A, et al. Biochemical and morphological effects of K-111, a peroxisome proliferator-activated receptor (PPAR) a activator, in non-human primates. Biochem. Pharmacol. 2004; 68, 239-251.
    
    68. Kalra SP, Kalra PS. Gene-transfer technology: a preventive neurotherapy to curb obesity, ameliorate metabolic syndrome and extend life expectancy. Trends Pharmacol. Sci. 2005; 26, 488-495.
    
    69. Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight. Nat. Med. 2004; 10, 524-529.
    
    70. Shklyave S, Aslanidi G, Tennant M, et al. Sustained peripheral expression transgene adiponectm offsets the development of diet-induced obesity in rats. Proc. Natl Acad. Sci. USA. 2003; 100,14217-14222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700