光谱技术在食品安全检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,食品安全问题由于严重地危害人类健康和造成环境的污染引起了人们越来越多的关注。光谱技术已广泛的应用于物质的化学和物理分析中,而拉曼光谱技术特别是表面增强拉曼光谱技术和局域表面等离子体共振光谱技术在食品安全检测方面具有独特的优势。本文针对这两种光谱技术在食品安全方面的应用进行了基础研究,提供了灵敏度好,高选择性,操作方便的检测技术。食品安全的问题中有两个方面最为突出,其一是一些人为了商业利益非法的添加一些有害的化学添加剂,二是重金属超标而造成的水质与食品的污染。本文就这两种问题中挑选了最为典型的几种物质,通过理论计算,实验测试等多种手段,对其进行了系统的分析与讨论,具体结果如下:
     (1)基于密度泛函理论对异硫氰基-孔雀石绿,三聚氰胺,氰尿酸,木糖醇分子的构建及其电子结构进行理论的研究。
     三聚氰胺,氰尿酸分子由于高氮含量被非法的用作食品添加剂,还有一些将有害物质冒充木糖醇加入食品中。由于食品的组成成分非常复杂,在这种体系中,拉曼散射测量结果包含了多种成分的拉曼光谱,为了准确的测量食品中有害分子的含量,我们必须知道分子的准确拉曼光谱图,此外我们还需要知道更丰富的的电子结构信息,以便于识别和分析。本文采用密度泛函理论在B3LYP/6-311G*水平下研究了三聚氰胺,氰尿酸,木糖醇分子空间结构,原子上Mulliken电荷分布,极化率等,并且计算获得前线分子轨道(最高占据轨道(HOMO)、最低空轨道(LUMO))。在优化得到的基态几何构型的基础上,采用含时密度泛函(TD-DFT)方法研究了其电子吸收光谱的性质。
     (2)三聚氰胺,氰尿酸,木糖醇食品分子的拉曼光谱的密度泛函理论研究
     利用密度泛函理论在B3LYP-6-311G*水平下分别计算了三聚氰胺,氰尿酸,木糖醇分子的理论拉曼光谱,表面增强拉曼光谱,预共振拉曼光谱。将理论的自然拉曼光谱,表面增强拉曼光谱分别与实验的自然拉曼光谱和表面增强拉曼光谱进行对比和分析,结果显示了很好一致性。同时也给出了其空间结构参数、振动模指认等数据来确定其拉曼特征峰。
     (3)表面增强拉曼散射技术对水中的重金属铅离子进行检测
     基于谷胱甘肽和4-巯基吡啶修饰的金纳米粒子用于高灵敏度的表面增强拉曼散射技术检测水中的铅离子。首先利用柠檬酸钠还原氯金酸溶液的方法制备金纳米球,并对金纳米粒子的形貌及光学性质进行分析研究金纳米球。描述了表面增强拉曼光谱检测pb2+卦制备过程,首先制备谷胱甘肽和4-巯基吡啶修饰的金纳米粒子,4-巯基吡啶作为拉曼特征分子,当加入pb2+后,金纳米粒子产生聚集,使得4-巯基吡啶的拉曼光谱强度增强,从而可以间接的检测出溶液中含有重金属铅离子。从紫外可见吸收光谱,电子显微镜,还有直观的颜色变化结果中,都可以证明这种方法可以有效地检测水中的重金属离子。
     (4)Cu2-xS纳米粒子的局域表面等离子共振(LSPR)吸收光谱对Pb2+的检测
     我们报道了利用半导体纳米晶体检测水中的重金属铅离子。首先通过一种简单的方法制备了重掺杂Cu2-xS,纳米晶体。并证明了其在近红外有局域表面等离子共振吸收光谱。并通过油酸的改变,可以对其近红外的表面等离子共振吸收光谱线性调节。通过谷胱甘肽包裹的Cu2-xS纳米晶体产生高灵敏度的局域表面等离子共振吸收峰值,当溶液中加入重金属铅离子后,谷胱甘肽包裹的Cu2_xS纳米晶体产生聚集,从而使得LSPR吸收峰产生频移。在最优化的条件下,我们的检测灵敏度为0.25μM(52.5ppb)Pb2+。通过实验研究,我们提供了一种新型的方法,即利用半导体材料的表面等离子共振吸收峰值来检测影响食品安全有害物质。这就为检测技术提供了一种无毒,操作更简单,成本更廉价的方法在食品安全中的应用。
Recently, the food safety has attracted great attentions because it causes harm to human health and environmental pollution. The spectroscopy has been widely used in the physical and chemical analysis of compounds, among them, the Raman spectroscopy, especially for surface enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR) techniques have unique advantages in the detection of food safety. In this work, we perform basic research in the field of food safety using these two approaches and provide a high sensitivity, good selectivity, easy-operating detection method. There are two aspects which influence significantly for the food safety:on the one hand, someone illegally add chemical additives into food for the commercial interests. On the other hand, the exceed of heavy metals may cause seVere water and food pollution. We select some typical compounds with respect to the two issues and do detection analysis. By a combination of theoretical and experimental studies, we perform systematic discussion and the results are as follow:
     (1) Based on density functional theory (DFT), the optimized structures and electronic structures are studied by theoretical calculation.
     The food additives, such as melamine and cyanuric acid molecules, attracted much attention due to the well-known high nitrogen ratio, others like xylitol molecule is necessary in food but always added counterfeit alternatives. HoweVer, due to the complex composition in food, the results of Raman spectroscope contain spectra for seVeral compounds. So in order to test the content of specific molecules and recognize the functional groups, we should know the precise Raman spectra in advance and sometimes it is better to know the detailed information of electronic structures. In this work, we firstly performed DFT calculations, at the B3LYP/6-311G leVel, on the electronic structures, Mulliken charges, polarizability, etc. and also frontier molecular orbitals (highest occupied molecular orbital, HOMO; lowest unoccupied molecular orbital, LUMO). On the basis of the optimized ground-state structures, we also performed time-dependent DFT (TDDFT) calculations for the electronic absorption spectra.
     (2) DFT studies of the Raman spectra of food molecules, such as melamine, cyanuric acid, xylitol.
     We performed DFT calculations of Raman spectra, surface-enhanced Raman spectra and pre-resonance Raman spectra at the B3LYP/6-311G*leVel, we compare the calculated Raman spectra and surface-enhanced Raman spectra with the experimental ones. The good agreement between theoretical and experimental results indicates the reliability of DFT method employed. At the same time, it also gives the spatial structure parameters and vibration modes so as to determine the Raman characteristic peaks.
     (3) Surface enhanced Raman scattering (SERS) technique applied in the detection of pb2+in the water.
     Gold nanoparticles modified by glutathione (GSH) and4-mercaptopyridine (4MPY) are applied in the detection of Pb2+in water by high-sensitivity SERS. Firstly, we make the gold nanoparticles through the reduction of gold chloride acid solution using sodium citrate, and then study the shape and optical properties. We describe the synthesis process of detection of Pb2+by SERS:firstly GSH and4MPY are modified on the surface of gold nanoparticles, and the4MPY is used as Raman characteristic molecule. After adding Pb2+, the gold nanoparticles become assemblization making the Raman signal of4MPY enhanced. By this process, we can detect the concentration of Pb2+. In addition, the detection of Pb2+can also be proved by the change from UV-vis, TEM and color.
     (4) Cu2-xS nanoparticles applied in the detection of Pb2+by localized surface plasmon resonance (LSPR)
     Here, we report the novel method to detect Pb2+using Cu2-xS nanoparticles. First, we provide a simple approach for heavily doped Cu2-xS nanoparticles and demonstrate its LSPR in the Near IR region. Then, we can linearly tune the LSPR spectra by changing the amount of oil acid. Cu2-xS nanoparticles modified by GSH can produce high-sensitivity LSPR peaks. When Pb2+added in the solution, the modified nanoparticles may assemble and make the LSPR peaks frequency shift. Under the best condiction, the testing sensitivity achieVes0.25μM (52.5ppb) Pb2+. This work provides a non-toxic, convenient, low-cost method in the detection of food safety.
引文
[1]Liu R L, Song S H, et al. Rapid analysis of fatty acid profiles in raw nuts and seeds by microwaveultrasonic synergistic in situ extraction-derivatisation and gas chromatography mass spectrometry. Food Chemistry,2013,141(4):4269-4277
    [2]Ito E, H. Waki, et al. Structural Characterization of neutral glycosphingolipids using high-performance liquid chromatography-electrospray ionization mass spectrometry with a repeated high-speed polarity and MSN switching system. Glycoconjugate,2013, Journal:1-8
    [3]Buchinger S, Spira D, et al. Direct coupling of Thin-Layer chromatography with a Bioassay for the Detection of Estrogenic Compounds Applications for Effect-Directed Analysis. Analytical Chemistry,2013,85 (15):7248-7256
    [4]TomomoriS C, Sato S., et al. Immunoaffinity Purification of Protein Complexes from Mammalian Cells. Gene Regulation. M. Bina, Humana Press.2013,977:273-287
    [5]Small H, Miller T. E. Indirect photometric chromatography. Analytical Chemistry,1982, 54(3):462-469
    [6]Walorczyk S, Drozdzynski D, et al. Pesticide residues determination in Polish organic crops in 2007-2010 applying gas chromatography-tandem quadrupole mass spectrometry. Food Chemistry,2013, 139(1-4):482-487
    [7]Petrovic M, Barcel o D, Liquid Chromatography-tandem mass spectrometry. Analytical andBioanalytical Chemistry 2013,405 (18):5857-5858
    [8]陈智理,杨昌鹏,郭静婕.色谱技术在食品安全检测中的应用研究.化工技术与开发,2011,40(7):24-26
    [9]Elyasi M, Khalilzadeh M A, et al. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan Ⅰ in food samples. Food Chemistry,2013,141 (4):4311-4317
    [10]Aky u z M, Ata S. Seasonal variations of particle-associated nitrosamines by gas chromatography-mass spectrometry in the atmospheric environment of Zonguldak, Turkey. Environmental Science andPollution Research,2013,152(3):1-15
    [11]Thomatou A A, Zacharias I, et al. Determination andrisk assessment of pesticide residues in lake Amvrakia (W. Greece) after agriCultural landuse changes in the lake's drainage basin. International Journal of Environmental Analytical Chemistry,2012,93(7):780-799
    [12]tawila E, Neamatallah M, et al. Incidence of aflatoxins in commercial nuts in the holy city of Mekkah. Food control,2013,29(1):121-124
    [13]Baux A, colbach N, et al. Insights into temperature effects on the fatty acid composition of oilseed rape varieties. European Journal of Agronomy,2013,49(0):12-19
    [14]James A T, Martin A, Biochem.1952,50(0):679-690
    [15]Oliveira R V, Pietro A c, cASS Q B. Quantification of cephalexin as residue leVels in bovine milk by high-performance liquid chromatographywith on-line sample cleanup. Talanta,2007, 71(3):1233-1238
    [16]Muncke J. Endocrine disrupting chemicals andother substances of concern in food contact materials:An updated reView of exposure, effect andrisk assessment. The Journal of Steroid BioChemistry and Molecular Biology,2011,127(1-2):118-127
    [17]Engraff M, Solere c, et al. Aquatic toxicity of PAHs andPAH mixtures at saturation to benthic amphipods:Linking toxic effects to chemical activity. Aquatic Toxicology,2011,102(3-4):142-149
    [18]Kucharska M, Grabka J. A reView of chromatographic methods for determination of synthetic food dyes. Talanta,2010,80(3):1045-1051.
    [19]李军,雍炜,李刚等.食品中苏丹色素的液相色谱分析方法.食品工业科技,2005,26(11):157-160
    [20]You J, Song c, et al. Dual-sensitive probe 1-imidazole-2-(5-benzoacridine)-ethanone for the determination of amines in environmental water using HPLC with fluorescence detection andonline atmospheric chemical ionization-mass spectrometry identification. Talanta,2010,80(3):1392-1399
    [21]Hashemi P, Raeisi F, et al. ReVersed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration andHPLC determination of oleuropein. Talanta,2010,80(5):1926-1931
    [22]cheng S c, Huang M Z, et al. Thin-Layer chromatography Laser-Induced Acoustic Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry,2009,81 (22):9274-9281
    [23]汪瑗,朱若华,陈惠.薄层色谱分析法及其进展.大学化学,2006,21(3):34-40
    [24]Sherma J. ReView of advances in the thin layer chromatography of pesticides:2010-2012. Journal of Environmental Science andHealth. Part B,2013,48(6):417-430
    [25]carvalho K L, Goncalves G, et al. Modelling uncertainty estimation for the determination of aflatoxin Ml in milk by visual anddensitometric thin-layer chromatography with immunoaffinity column clean-up. Food Additives & contaminants:Part A,2012,29(4):679-693
    [26]Fuchs B, Suβ R, et al. Lipid analysis by thin-layer chromatography—A reView of the Current state. Journal of chromatography A,2011,1218(19):2754-2774
    [27]梁洪军,高志贤.薄层色谱扫描测定粮食、蔬菜中有机氯农药残留量的方法研究.解放军预防医学杂志,1994,12(4):283-285
    [28]Tuzimski T, Soczewinski E. correlation of retention parameters of pesticides in normal andreVersed-phase systems andtheir utilization for the separation of a mixture of 14 triazines andurea herbicides by means of two-dimensional thin-layer chromatography. J chromatography A,2002, 961(2):277-283
    [29]Luo P, chen X, et al. Simultaneous determination of thiamphenicol, florfenicol andflorfenicol amine in swine muscle by liquid chromatography-tandem mass spectrometry with immunoaffinity chromatography clean-up. Journal of chromatography B,2010,878(2):207-212
    [30]Liu J, Yang K, et al. Preparation of a new type of affinity materials combining metal coordination with molecular imprinting, chemical communications,2011,47(13):3969-3971
    [31]Moretti V M, Water c. Automated highperformance liquid chromatographic determination of chloramphenicol in milk andswine muscle tissue using on-line immunoaffinity sample clean-up. J chromatogr,1992,583(1):77-82
    [32]Nardi E P, EVangelista F S, et al. The use of inductively coupled plasma mass spectrometry (IcP-MS) for the determination of toxic andessential elements in different types of food samples. Food Chemistry,2009,112(3):727-732
    [33]Lacina 0, Urbanova J, et al. Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometry. Journal of chromatography A,2010,1217(5):648-659
    [34]TengstrandE, Ros e n J, et al. A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography-mass spectrometry in combination with a metabolomics approach. Analytical andBioanalytical Chemistry,2013,405(4):1237-124
    [35]Motilva M J, Serra A, et al. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry:An overview. Journal of chromatography A,2013, 1292(0):66-82
    [36]Schollenberger M, Lauber U, Jara H T. Determination of eight trichothecenes by gas chromatography-mass spectrometry after sample clean-up by a two-stage solid-phase extraction. J chromatography A,1998,815(1):123-132
    [37]Rundberget T, Wilkins A L. Determination of Penicillium mycotoxins in foods andfeeds using liquid chromatography-mass spectrometry. Journal of chromatography A,2002,964(1-2):189-197
    [38]Leonard P, Hearty S, et al. Advances in biosensors for detection of pathogens in food andwater. Enzyme andMicrobial Technology,2003,32(1):3-13
    [39]Homola J. Surface Plasmon Resonance Sensors for Detection of chemical andBiological Species, chemical ReViews,2008,108(2):462-493
    [40]Papkovsky D B, DmitrieV R I. Biological detection by optical oxygen sensing. chemical Society ReViews.2013,43(1):43-47
    [41]Ananingsih V K, Sharma A, et al. Green tea catechins during food processing andstorage:A reView on stability anddetection. Food Research International,2013,50(2):469-479
    [42]Zhang H T, Jiang J Q, et al. Preparation andvalidation of monoclonal antibody-based indirect competitive ELISA for detecting testosterone leVels. Food andAgriCultural Immunology 2013,45(0):1-11
    [43]Singh A, Poshtiban S, et al. Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection. Sensors,2013,13(2):1763-1786
    [44]chaturvedi P, Taguchi M, et al. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. Planta,2013,238(3):599-614
    [45]Lee J I, Jang J H, et al. construction of a Bifunctional Enzyme Fusion for the combined Determination of Biogenic Amines in Foods. Journal of AgriCultural and Food Chemistry,2013, 15(5):17-22
    [46]Sheu S Y, Wang Y K, et al. Establishment of a competitive ELISA for detection of florfenicol antibiotic in food of animal origin. Journal of Immunoassay and Immuno Chemistry,2013,34(4):438-452
    [47]张占军,王富花.酶联免疫吸附技术及其在食品安全检测中的应用.食品研究与开发,2011,32(1):157-160
    [48]Jiao S N, Wang P, et al. Synthesis of novel hapten andproduction of generic monoclonal antibody for immunoassay of penicillins residues in milk. Journal of Environmental Science andHealth, Part B,2013,48(6):486-494
    [49]cheng L, Shen J, et al. A sensitive andspecific ELISA for determining a residue marker of three quinoxaline antibiotics in swine liver. Analytical andBioanalytical Chemistry,2013, 405(8):2653-2659
    [50]Wang X, Qiao X, et al. Simultaneous Determination of Nine Trace Organophosphorous Pesticide Residues in Fruit Samples Using Molecularly Imprinted Matrix Solid-Phase Dispersion Followed by Gas chromatography. Journal of AgriCultural and Food Chemistry,2013,61(16):3821-3827
    [51]Park M K, Li S, et al. Detection of Salmonella typhimurium Grown Directly on Tomato Surface Using Phage-Based Magnetoelastic Biosensors. Food andBioprocess Technology,2013,6(3):682-689
    [52]Rebe R, Liu S H, et al. Food Allergens Profiling with an Imaging Surface Plasmon Resonance-Based Biosensor. Analytical Chemistry,2010,82(20):8485-8491
    [53]Antiochia R, Vinci G, et al. Rapid anddirect determination of fructose in food:A new osmium-polymer mediated biosensor. Food Chemistry,2013,140(4):742-747
    [54]Wang W, Li Y, et al. Optical thin-film biochips for multiplex detection of eight allergens in food. Food Research International,2011,44(10):3229-3234
    [55]Makohliso S A, Leonard D, et al. Surface characterization of a Biochip Prototype for cell-Based Biosensor Applications. Langmuir,1999,15 (8):2940-2946
    [56]唐亚丽,卢立新,赵伟.生物芯片技术及其在食品营养与安全检测中的应用.食品与机械,2010,26 (5):164-168
    [57]Heidenreich B, Pohlmann c, et al. Detection of Escherichia coli in Meat with an Electrochemical Biochip. Journal of Food Protection,2010,73 (11):2025-2033
    [58]Cui D. Biochip. Microsystems andNanotechnology. Springer Berlin Heidelberg,2012,14(0):759-818
    [59]Jung D H, Min K, et al. Optimized magnetic bead-based immunoassay for automated detection of protein toxins. Biochip Journal,2012,6(3):293-298
    [60]Rohman A, Man Y B c. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International,2010,43(3):886-892
    [61]Rohman A, Man Y B c, et al. Application of FTIR Spectroscopy for the Determination of Virgin coconut Oil in Binary Mixtures with Olive Oil andPalm Oil. Journal of the American Oil chemists' Society,2010,87(6):601-606
    [62]Karoui R, Blecker c. Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—a ReView. Food andBioprocess Technology,2011,4(3):364-386
    [63]Karoui R, Downey G, et al. Mid-Infrared Spectroscopy coupled with chemometrics:A Tool for the Analysis of Intact Food Systems andthe Exploration of Their Molecular Structure-Quality Relationships-A ReView. chemical ReViews,2010,110(10):6144-6168
    [64]李敏,李宪华,奚星林等.近红外技术在食品分析中的研究进展.检验检疫科学,2008,18(6):69-71
    [65]Karoui R, Baerdemaeker J. A reView of the analytical methods coupled with chemometric tools for the determination of the quality andidentity of dairy products. Food Chemistry,2007, 102(3):621-640
    [66]王加多,周向阳,金同铭等.近红外光谱检测技术在农业and食品分析上的应用.光谱学与光谱分析,2004,24(4):447-450
    [67]Koppen R, Koch M, et al. Determination of mycotoxins in foods:Current state of analytical methods andlimitations. Applied Microbiology andBiotechnology,2010,86(6):1595-1612
    [68]Ruoff K, Karoui R, Dufour E, et al. Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study. J AgriCultural andFood Chemistry,2005, 53(5):1343-1347
    [69]Fernandez P, Vermeulen J A, et al. NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food andfeed. Chemometrics and Intelligent Laboratory Systems,2012,117(0):233-239
    [70]Vargas A M, Kim M S, Tao Y, et al. Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery. Food Science,2005,70(8):471-476
    [71]Raman C V.Krishnan K S. A New Type of Secondary Radiation. Nature,1928,121:501-502
    [72]Deinum, G, Rodriguez D, et al. Histological Classification of Raman Spectra of Human Coronary Artery Atherosclerosis Using Principal Component Analysis.1999 Applied Spectroscopy 53(8):938-942
    [73]Guicheteau J, Argue L, et al. Bacillus Spore Classification via Surface-Enhanced Raman Spectroscopy and Principal Component Analysis. Applied Spectroscopy,2008,62(3):267-272
    [74]Strachan C J, Pratiwi D, et al. Quantitative analysis of polymorphic mixtures of carbamazepine by Raman spectroscopy and principal components analysis. Journal of Raman Spectroscopy,2004,35(5): 347-352
    [75]Choo-Smith L P, Edwards H G M, et al. Medical applications of Raman spectroscopy:From proof of principle to clinical implementation. Biopolymers,2002,67(1):1-9
    [76]Behrendt A, Nakamura T, et al. "Combined Raman Lidar for the Measurement of Atmospheric Temperature, Water Vapor, Particle Extinction Coefficient, and Particle Backscatter Coefficient. Applied Optics 2002,41(36):7657-7666
    [77]Amos R D. Geometries, harmonic frequencies and infrared and Raman intensities for H20, NH3 and CH4. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics,1987, 83(9):1595-1607
    [78]Salzmann C, Kohl I, et al. The Raman Spectrum of Ice XII and Its Relation to that of a New "High-Pressure Phase of H20 Ice".The Journal of Physical Chemistry B,2001,106(1):1-6
    [79]Brooker M H, Hancock G, et al. Raman frequency and intensity studies of liquid H20, H2180 and D20. " Journal of Raman Spectroscopy,1989,20(10):683-694
    [80]Lyon L A, Keating c D, et al. Raman Spectroscopy. Analytical Chemistry,1998,70(12):341-362
    [81]Mulvaney S P, Keating c D. Raman Spectroscopy. Analytical Chemistry,2000,72 (12):145-158
    [82]Lewis I R, Griffiths P R. Raman Spectrometry with Fiber-Optic Sampling. Appl. Spectrosc,1996, 50(10):12A-30A
    [83]Samiramis S, Nazlin K. The effects of freeze-drying andstorage on the FT-Raman spectra of Atlantic mackerel (Scomber scombrus) andhorse mackerel (Trachurus trachurus). Food Chemistry,2007, 103(1):62-70
    [84]Vitek P, Ali E M A, et al. EValuation of portable Raman spectrometer with 1064nm excitation for geological andforensic applications. Spectrochimica Acta Part A:Molecular andBiomolecular Spectroscopy,2012,86(0):320-327
    [85]EVerall N J. Modeling and Measuring the Effect of Refraction on the Depth Resolution of Confocal Raman Microscopy. Applied Spectroscopy,2000,54(6):773-782
    [86]Cai W B, B Ren, et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope:dependence of surface roughening pretreatment. Surface Science,1998,406(1-3):9-22
    [87]Williams K P J, Pitt G D, et al. Confocal Raman Microspectroscopy Using a Stigmatic Spectrograph and CCD Detector. Applied Spectroscopy,1994,48(2):232-235
    [88]Caspers P J, Lucassen G W, et al. Automated depth-scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin. Journal of Raman Spectroscopy,2000,31(8-9):813-818
    [89]Ren B, Lin X F, et al. Optimizing Detection Sensitivity on Surface-Enhanced Raman Scattering of Transition-Metal Electrodes with confocal Raman Microscopy. Appl. Spectrosc,2003,57(4):419-427
    [90]钱晓凡,肖怡琳,徐存英等.新鲜水果显微拉曼光谱研究.光散射学报,2001,13(1):59-61
    [91]Xu H, Bjerneld E J, et al. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Physical reView letters,1999,83(21):4357-4360
    [92]Carolina V, Di A, Lluis F. Marsalb M. Pilar callao, et al. Surface Enhanced Raman Spectroscopy (SERS) andmultivariate analysis as a screening tool for detecting Sudan I dye in Culinary spices. Spectrochim Acta A:Mol Biomol Spectrosc,2012,87(2):135-141
    [93]Blatchford c G, campbell J R, et al. Plasma resonance-enhanced Raman scattering by absorbates on gold colloids:The effects of aggregation. Surface Science,1982,120(2):435-455
    [94]Filip T, Uwe K, Hainer W, et al. Redox processes in pressurised smoked salmon studied by resonance Raman spectroscopy. Food Chemistry,2009,112(2):482-486
    [95]Wang S Y, Ho T J, et al. Chromaligner:a web server for chromatogram alignment. Bioinformatics,2010,26(18):2338-2339
    [96]Tang T, Qian K, et al. Monitoring the contents of biogenic amines in sufu by HPLC with SPE and pre-column derivatization. Food Control,2011,22(8):1203-1208
    [97]Fonken L K, Workman J L, et al. Light at night increases body mass by shifting the time of food intake. Proceedings of the National Academy of Sciences,2010,107(43):18664-18669
    [98]Karrman A, Domingo J, et al. Biomonitoring perfluorinated compounds in Catalonia. Spain: concentrations and trends in human liver and milk samples. Environmental Science and Pollution Research 2010,17(3):750-758
    [99]Wustholz K L, Henry A I, et al. Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society,2010, 132(31):10903-10910
    [100]Kahraman M, Sur I 1, et al. Label-Free Detection of Proteins from Self-Assembled Protein-Silver Nanoparticle Structures using Surface-Enhanced Raman Scattering. Analytical Chemistry,2010, 82(18):7596-7602
    [101]Tuschel, D D, Mikhonin A V, et al. Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection. Applied Spectroscopy,2010,64(4):425-432
    [102]Andreou c, Hoonejani M R, et al. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy andMicrofluidics. AcS Nano,2013,7(8):7157-7164
    [103]cebeci M, Kwok K, et al. Rapid classification of pharmaceutical ingredients with Raman spectroscopy using compressive detection strategy with PLS-DA multivariate filters. Journal of Pharmaceutical andBiomedical Analysis,2013,80(0):63-68
    [104]Vangala K, Yanney M, et al. Sensitive Carbohydrate Detection Using Surface Enhanced Raman Tagging. Analytical Chemistry,2010,82(24):10164-10171
    [105]Ju H, Zhang X, et al. Carbohydrate Detection Using Nanostructured Biosensing. NanoBiosensing, 2011,4:393-424
    [106]药林桃,刘木华,王映龙.基于激光拉曼光谱的脐橙内部品质无损检测.农业工程学报,2008,24(11):233-238
    [107]马寒露,董英,张孝芳.拉曼光谱法快速检测掺入梨汁的浓缩苹果汁.分析测试学报,2009,5(0):535-538
    [108]Brasseur C, Dekeirsschieter J, et al. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. Journal of Chromatography A,2012,1255(0):163-170
    [109]Lu X, Rasco B A, et al. Investigating Antibacterial Effects of Garlic (Allium sativum) Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy. Applied and Environmental Microbiology 2011,77(15):5257-5269
    [110]Bailey G F, Horvat R J. Raman spectroscopic analysis of the ciflrans isomer composition of edible vegetable oils. American oil Chemistry Society,1972,49(0):494-498
    [111]李占龙周密左剑红外光谱和拉曼光谱法分析玉米种子的成分分析化学2007,11:1636-1638
    [112]Pedersen D k, Sophie M, Henrik J, et al. Early prediction of water-holding capacity in meat by multivariate vibrational spectroscopy. Meat Science,2003,65(0):581-592
    [113]Porayette P, Gallego M J, et al. Differential Processing of Amyloid-β Precursor Protein Directs Human Embryonic Stem Cell Proliferation and Differentiation into Neuronal Precursor Cells. Journal of Biological Chemistry,2009,284(35):23806-23817
    [114]Guthalu K, Joshi-Gokhale N S, et al. Parathyroid Hormone-Related Protein Enhances Human β-Cell Proliferation and Function With Associated Induction of Cyclin-Dependent Kinase 2 and Cyclin E Expression. Diabetes,2010,59(12):3131-3138
    [115]Stettner, M. R., J. A. Nance, et al. (2009). "SMAD proteins of oligodendroglial cells regulate transcription of JC virus early and late genes coordinately with the Tat protein of human immunodeficiency virus type 1. Journal of General Virology 90(8):2005-2014
    [116]He L, Rodda T, et al. Detection of a Foreign Protein in Milk Using Surface-Enhanced Raman Spectroscopy coupled with Antibody-Modified Silver Dendrites. Analytical Chemistry,2011, 83(5):1510-1513
    [117]Pallaoro A, Braun G B, et al. Mapping Local pH in Live cells Using Encapsulated Fluorescent SERS Nanotags. Small,2010,6(5):618-622
    [118]霍明明.常压和高压条件下五种类胡萝卜素拉曼光谱的研究.哈尔滨: 哈尔滨工业大学,2009: 1-46
    [119]袁玉峰, 陶站华, 军贤, 等.拉曼镊子分析红酵母合成类胡萝卜素[J].光谱学与光谱分析,2011,31(4):1001-1005
    [120]林星.核酸的激光喇曼光谱.华侨大学学报,1992,13(3):316-321
    [121]Bardhan R, Grady N K, cole J R, et al. Fluorescence enhancement by Au nanostructures:nanoshells andnanorods. AcS Nano,2009,3 (3):744-52
    [122]Mayer K M, Hafner J H, Localized Surface Plasmon Resonance Sensors. chemical ReViews,2011, 111(6):3828-3857
    [123]Mie G. Beitrage zur Optik truber Medien, speziell kolloidaler Metal losungen. Ann Phys 1908,25:377-445
    [124]Ritchie R H. Plasma Losses by Fast Electrons in Thin Films. Physical ReView,1957, 106(5):874-881
    [125]Ritchie R H, Arakawa E T, et al. Surface-Plasmon Resonance Effect in Grating Diffraction. Physical reView letters,1968,21 (22):1530-1533
    [126]Liedberg B, Nylander c, et al. Surface plasmon resonance for gas detection andbiosensing. Sensors andActuators,1983 4(0):299-304
    [127]Zhang H, Yang L, et al. Ultrasensitive and selective gold film-based detection of mercury (Ⅱ) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosensors and Bioelectronics,2013,47(0):391-395
    [128]Wang, J, Munir A, et al. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy. Talanta, 2009,79(1):72-76
    [129]Cervantes T, Hassan a, et al. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. Lab on a Chip,2013,13(13):2541-2546
    [130]Wang B S, Sadeghi H, et al. Inhibitory effect of growth-enhancing antibody on the interaction between growth hormone andgrowth hormone binding protein. Molecular andcellular Endocrinology,1993, 92 (2):161-166
    [131]Homola J. Present andfuture of surface plasmon resonance biosensors. Analytical andBioanalytical Chemistry,2003,377(3):528-539
    [132]Pouget J P, Douki T, et al. DNA Damage Induced in cells by y andUVA Radiation As Measured by HPLC/Gc-MS andHPLC-Ec andcomet Assay, chemical Research in Toxicology,2000,13(7):541-549
    [133]Leonard P, Hearty S, et al. Advances in biosensors for detection of pathogens in food andwater. Enzyme andMicrobial Technology,2003,32(1):3-13
    [134]Mullett W, Lai E P c, et al. Immunoassay of Fumonisins by a Surface Plasmon Resonance Biosensor. Analytical Biochemistry,1998,258(2):161-167
    [135]Lauer B, Ottleben I, et al. Production of a Single-chain Variable Fragment Antibody against Fumonisin B1. Journal of AgriCultural and Food Chemistry,2005,53(4):899-904
    [136]Vyas P 0, Kane A A. Determination of Vitamin B(12)in Fortified Bovine Milk -Based Infant Formula Powder, Fortified Soya-Based Infant Formula Powder, Vitamin Premix, and Dietary Supplements by Surface Plasmon Resonance:collaborative Study. Journal of Aoac International,2011,9(4):1217-1226
    [137]Li H, cai H Y, et al. continuous Immunoassay for Sulfamethazine by Surface Plasmon Resonance-Based Biosensor. Analytical Letters 2010,43(3):499-507
    [138]Ko S, Park T J, et al. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for deVelopment of gold nanoparticle-based SPR immunosensors. Biosensors and Bioelectronics 2009,24(8):2592-2597
    [139]Leonard P, Hearty S, et al. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosensors andBioelectronics,2004,19(10):1331-1335
    [140]Piliarik M, Vala M, et al. compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosensors and Bioelectronics,2009,24(12):3430-3435
    [141]Sospedra I, Marin R, et al. Rapid whole protein quantification of staphylococcal enterotoxin B by liquid chromatography. Food Chemistry 2012,133(1):163-166
    [142]Frisch M J, Trucks G W, Schlegel H B,. Gaussian 09, ReVision A.02.2008
    [143]Seminario J M. Preface to density functional theory. Theoretical andcomputational Chemistry. Seminario,1996,4(0):v-x
    [144]Papenbrock T. Density-functional theory for fermions in the unitary regime. Physical ReView A, 2005,72(4):041603
    [145]Bickelhaupt F M, Baerends E J. Kohn-Sham Density Functional Theory:Predicting andUnderstanding Chemistry. ReViews in computational Chemistry, John Wiley & Sons,2007, Inc.:1-86
    [146]Liu Z, Wang X, et al. Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces:tip regeneration, probe molecule, and enhancement effect. Journal of Raman Spectroscopy,2009,40(10):1400-1406
    [147]Zeisel D, Deckert V, Zenobi R. Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem. Phys. Lett.1998,283(5-6):381-385
    [148]Vo-Dinh T, Zhang Y. Single-cell monitoring using fiberoptic nanosensors. Wiley Interdi-sciplinary ReViews:Nanomedicine and Nanobiotechnology,2011,3(1):79-85
    [149]Costa L, camino G. Thermal behaviour of melamine. Journal of thermal analysis,1988, 34(2):423-429
    [150]Okazaki S. Rapid nondestructive screening for melamine in dried milk by Raman spectroscopy, Forensic Toxicol,2009 27:94-97
    [151]Cheng Y, Dong Y. Y, Wu J G, et al. Screening melamine adulterant in milk powder with laser Raman spectrometry. Journal of Food composition andAnalysis,2010,23(2):199-20
    [152]Lee S Y, Ganbold E 0, Jaebum C, Joo S W. Detection of Melamine in Powdered Milk Using Surface-Enhanced Raman Scattering with No Pretreatment, Analytical Letters,2010,43(14):2135-2141
    [153]Thurston J T, Dudley J R, et al. cyanuric chloride Derivatives. I. Aminochloro-s-triazines. Journal of the American chemical Society,1951,737:2981-2983
    [154]Brown C A, Jeong K S, et al. Outbreaks of Renal Failure Associated with Melamine andcyanuric Acid in Dogs andcats in 2004 and 2007. Journal of Veterinary Diagnostic Investigation,2007, 195:525-531
    [155]Avrameas S, Taudou B, et al. Glutaraldehyde, cyanuric choloride and tetraazotiexe 0-dianisidine as coupling reagents in the passive hemagglutination test. Immuno Chemistry,1969, 61:67-76
    [156]Ranganathan A, Pedireddi V R, et al. Hydrothermal Synthesis of Organic channel Structures: 1:1 Hydrogen-Bonded Adducts of Melamine with cyanuric andTrithiocyanuric Acids. Journal of the American chemical Society,1999,1218:1752-1753
    [157]He L L, Liu Y, Lin M S, et al. A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Ramanspectroscopy coupled with gold nanosubstrates, Sens & Instrumen, Food Qual,2008 2:66-71
    [158]Tanzer J M. Xylitol chewing gum anddental caries. International dental journal,1995,451 Suppl 1:65-76
    [159]Makinen K K, Bennett c A, et al. Xylitol chewing Gums andcaries Rates:A 40-month cohort Study. Journal of Dental Research,1995,7412:1904-1913
    [160]Kontiokari T, Uhari M, et al. Antiadhesive effects of xylitol on otopathogenic bacteria. Journal of Antimicrobial chemotherapy,1998,415:563-565
    [161]Veij M D, Vandenabeele P, Beer T D, et al. Reference database of Raman spectra of pharmaceutical excipients. Journal of Raman Spectroscopy,2009,40:297-307
    [162]Ali M B, Kalfat R, et al. Sensitive cyclodextrin-polysiloxane gel membrane on EIS structure andISFET for heavy metal ion detection. Sensors andActuators B:chemical,2000,623:233-237
    [163]ntidean I, Ahlqvist J, et al. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosensors andBioelectronics,2003,185(6):547-553
    [164]Trajanovska, S., M. Britz, et al.1997. Detection of heavy metal ion resistance genes in Gram-positive andGram-negative bacteria isolated from a lead-contaminated site. Biodegradation 82:113-124
    [165]Daniel M c, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, andApplications toward Biology, catalysis, and Nanotechnology. chemical ReViews, 2003,1041:293-346
    [166]chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications.chemical ReViews,2007,1077:2891-2959
    [167]Law W c, Yong K T, et al. Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods. Optics Express 2009,17(21):19041-19046
    [168]Singh S c, Swarnkar R K, et al. Synthesis of Titanium Dioxide Nanomaterial by Pulsed Laser Ablation in Water. Journal of Nanoscience andNanotechnology,2009,99:5367-5371
    [169]Wang M, Hou W, et al. Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based on Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4:YbEr Upconversion Fluorescent Nanoparticles and Gold Nanoparticles. Analytical Chemistry,2009,81(21):8783-8789
    [170]Phillips K S, cheng Q. Recent advances in surface plasmon resonance based techniques for bioanalysis. Analytical andBioanalytical Chemistry.2007,3875:1831-1840
    [171]Steiner G. Surface plasmon resonance imaging. Analytical and Bioanalytical. Chemistry,2004, 3793:328-331
    [172]Luther J M, Prashant K J. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Materials,2011,10:361-366
    [173]Hessel C M, Pattani V P, et al. copper Selenide Nanocrystals for Photothermal Therapy. Nano Letters,2011,11 (6):2560-2566
    [174]Liu X, Law W c, et al. Cu2-xSe Nanocrystals with Localized Surface Plasmon Resonance as Sensitive contrast Agents for In Vivo Photoacoustic Imaging:Demonstration of Sentinel Lymph Node Mapping. Advanced Healthcare Materials,2013,2(7):952-957.
    [175]Yang X, Skrabalak S E, et al. Photoacoustic Tomography of a Rat cerebral cortex in vivo with Au Nanocages as an Optical contrast Agent. Nano Letters,2007,712:3798-3802
    [176]Chen W, Zhang J Z, Joly A G. Optical properties and potential applications of doped semiconductor nanoparticles, J Nanosci Nanotechnol,2004,4:919-947
    [177]Zhao Y, Pan H, et al. Plasmonic Cu2-xS Nanocrystals:Optical andStructural Properties of copper-Deficient copperl Sulfides. Journal of the American chemical Society,2009,13112:4253-4261
    [178]Dorfs D, Hartling T, et al. ReVersible Tunability of the Near-Infrared Valence BandPlasmon Resonance in Cu2-xSe Nanocrystals. Journal of the American chemical Society,2011,13329:11175-11180
    [179]Manthiram K, Alivisatos A P. Tunable Localized Surface Plasmon Resonances in Tungsten Oxide Nanocrystals. Journal of the American chemical Society,2012,134(9):3995-3998
    [180]Scher E c, Manna L, et al. Shape control and applications of nanocrystals. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,2003,361(1803):241-257
    [181]Tian Q, Hu J, et al. Sub-10 nm Fe3O4 Cu2-xS core-Shell Nanoparticles for Dual-Modal Imaging andPhotothermal Therapy. Journal of the American chemical Society,2013,13523:8571-8577

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700