乙烯三聚/四聚合成1-己烯/1-辛烯铬系催化剂的分子设计和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1-已烯和1-辛烯是重要的化工中间体,主要用作共聚单体制备高性能聚烯烃产品。自上个世纪七十年代,乙烯三聚/四聚生产1-已烯/1-辛烯逐渐成为学术界和工业界的研究热点,多种乙烯选择性三聚催化体系被成功开发,其中Chevron-Phillips乙烯三聚催化体系已成功工业化。自2004年以来,几种基于含氮或磷类配体铬系催化体系成功用于乙烯选择性四聚,但目前尚没有乙烯选择性四聚生产1-辛烯的工业化报道。乙烯选择性三聚和四聚反应机理尚存在争议,虽然普遍认为乙烯选择性齐聚遵循金属环状机理,但活性中心结构和价态上存在争议,制约了催化体系的开发。本文选取了两个典型的乙烯选择性四聚体系,分别通过二维定量构效关系方法和密度泛函理论进行了系统研究。通过不同氮上取代的PNP型铬系催化体系的二维定量构效关系研究,考察了催化体系对1-已烯和1-辛烯选择性的影响,建立了相关的线性模型并设计和预测了新型PNP型铬系催化体系。采用密度泛函理论方法研究双吡啶铬系催化体系中乙烯选择性三聚/四聚的转化现象,证明乙烯选择性四聚的反应主要发生在二价铬单核金属活性中心模型上,并遵循金属环状机理。主要研究内容如下:
     首先,采用二维定量构效关系方法结合密度泛函理论考察了氮上烷基取代PNP型铬系催化体系,建立了该催化体系1-已烯、1-辛烯选择性的线性回归模型。同时采用了启发式方法和最佳多元线性回归方法,考察了自定义描述符和铬金属活性中心价态(包括Cr(Ⅰ)和Cr(Ⅱ))对线性回归模型的影响。研究发现:(1)基于密度泛函理论计算结果的自定义描述符的引入能够明显提高模型的相关性和稳定性;(2)基于一价Cr的活性中心模型更适合关联乙烯三聚选择性,二价Cr的活性中心模型更适合关联乙烯四聚选择性;(3)PNP-Cr骨架几何结构尤其是较小的PNP角度是获得较高1-已烯和1-辛烯选择性的关键。最后,根据最佳线性回归模型对新型PNP配体进行了预测,发现了9种新的PNP配体结构可能具有更高的1-辛烯或1-已烯/1-辛烯共选择性。
     其次,同样采用二维定量构效关系方法结合密度泛函理论对芳基取代的PNP型铬系催化体系进行了研究,考察了样本集、描述符集、回归方法和活性中心氧化态对线性回归的影响,基于一价Cr的活性中心模型建立了1-已烯选择性模型,基于二价Cr的活性中心模型建立了1-辛烯选择性的模型。研究发现PNP-Cr骨架结构具有好的对称性和平面性可以增加反应中1-辛烯的选择性,而增大氮上和磷上的取代基可以增加1-已烯的选择性。本文同样设计了6种PNP型配体,并根据最佳的线性回归模型对其铬系催化体系乙烯三聚/四聚性能进行了预测。对比两个不同取代的PNP型铬系催化体系研究结果,确认了基于密度泛函理论的二维定量构效关系方法可以有效的应用于铬系乙烯选择性齐聚催化体系,并进行新型配体分子设计研究。
     最后,采用密度泛函理论结合能量延展模型研究(2-C5H4N)2NR铬系催化体系的乙烯选择性四聚反应机理,该催化体系是目前报道的唯一的液态产物中1-辛烯选择性大于99%的催化体系,本文设计了单核和双核活性中心模型,考察了一价铬和二价铬两种活性中心价态,并对实验报道中的配体上取代基位置转换引起的乙烯选择性三聚/四聚转化现象进行了研究。结果表明,双核金属活性中心在反应条件下并不能够稳定存在,同时发现,乙烯选择性四聚可能发生在二价铬单核活性中心上,并遵循金属环状反应机理,同时,反应中发生了一次电子自旋跃迁现象。
1-Hexene and1-octene are important comonomers for the synthesis of high performance polyolefins. Ethylene selective oligomerization with advantages of high atomic efficiency and a simple reaction procedure has attracted comprehensive interests to match the increasing demand of highly valuable linear a-olefins (LAOs) including1-hexene and1-octene in the last decades. Many catalytic systems were carried out for ethylene selective trimerization, and ethylene trimerization was first commercialized over Cr-pyrrole catalyst system by Chevron-Phillips Company in2003at Qatar. Since the first ethylene tetramerization report in2004, several chromium based catalytic system were reported to be effective to catalyze ethylene tetramerizaiton. However, no commercialization of ethylene tetramerization is reported yet. Although the metallacyclic mechanism is well accepted for ethylene selective oligomerization, the active site structures and the redox valence are still controversial. In this work, two ethylene selective tetramerization systems were studied using the quantitative structure activity/property relationship (QSAR/QSPR) and the density functional theory (DFT) methods, respectively. The alkyl and aryl substituted Cr-bis(diphenylphosphino)amine (PNP-Cr) catalysts which show the potential as excellent candidates for highly selective ethylene trimerization/tetramerization were studied with QSPR method based on DFT calculations. The linear regression models of1-hexene selectivity and1-octene selectivity were established over the alkyl and aryl substituted PNP-Cr systems, respectively. Several new kinds PNP ligand proposed by molecular design were predicted to be with a better ethylene trimerization/tetramerization performance. A switching mechanism between ethylene tetramerization and trimerization on the Cr-2,2-dipyridylamine catalyst was studied using DFT calculation. And a Cr(II)/Cr(IV) metallacycle reaction pathway on the mononuclear active site was found to be most plausibly responsible for ethylene tetramerization.
     A series of alkyl-substituting PNP-Cr catalysts were studied by QSPR method based on DFT calculations in Chapter2. The heuristic method (HM) and best multi-linear regression (BMLR) were used for establishing the best linear regression models to describe the relationship between catalyst selectivity and its structure. Both Cr(I) and Cr(II) active site models for ethylene trimerization/tetramerization were considered. It was found that:(1) Using self-defined descriptors from DFT calculations could increase the relativity and stability of the models.(2) Monovalent Cr(I) center was the most plausible active site for ethylene trimerization, while ethylene tetramerization was most possibly proceeded over divalent Cr(II) active site.(3) The skeleton structures of the PNP-Cr system especially a small PNP angle were crucial for achieving excellent catalytic selectivity. Nine new PNP ligands with high selectivity towards ethylene trimerization/tetramerization were predicted based on the best linear regression models providing a good basis for further development of novel catalyst systems with better performance.
     A series of aryl-substituted PNP-Cr catalysts were studied by QSPR method based on DFT calculations in Chapter3. The effects of the sample set, data set, linear regression method and the active site oxidation state on the linear regression models were investigated separately. The best1-hexene selectivity linear model was built with the Cr(Ⅰ) active site, while the best1-octene selectivity linear model was built with the Cr(Ⅱ) sites. It was also found that the skeleton structures of the PNP-Cr system with good complanation and symmetry were crucial for achieving excellent catalytic selectivity of1-octene, while the PNP-Cr backbone with a large steric effect on N atom would benefit ethylene trimerization. Six new PNP ligands with high selectivity towards ethylene trimerization/tetramerization were predicted based on descriptor analysis and the best linear regression models. By comparing the QSPR results of Chapter2and Chapter3, it is found that QSPR method is effective to study the relationship between the chromium based catalyst systems and its ethylene selective oligomerizaion properties. The QSPR study can also provide a good basis for further development of novel catalyst systems with better performance.
     The switching mechanism between ethylene tetramerization and trimerization using a different substituting Cr-2,2-dipyridylamine catalysts were disclosed with DFT calculation and turnover of frequency (TOF) calculation in Chapter4. This catalyst system was reported to be able to catalyze ethylene tetramerization with a very high1-octene selectivity (>99%). Both the binuclear site and the mononuclear site were proposed to be possible active site model for the ethylene tetramerization. And different oxidation states were considered for the calculations. The binuclear models were predicted to be unstable in the experimental conditions. The metalacyclic mechanism over Cr(Ⅱ) mononuclear active site was confirmed to be responsible for ethylene tetramerization, while one spin flipping from the quintet potential energy surfaces to triplet potential energy surfaces was found in the calculations. Consequently, the divalent mononuclear active site which involves a mixing of quintet and triplet potential energy surfaces was found to be responsible for the switching between ethylene tetramerization and trimerization.
引文
[1]J. T. Dixon, M. J. Green, F. M. Hess, D. H. Morgan. Advances in selective ethylene trimerization-a critical overview. Journal of Organometallic Chemistry.2004,689 (23): 3641-3668
    [2]T. Agapie. Selective Ethylene Oligomerization:Recent Advances in Chromium Catalysis and Mechanistic Investigations. Coordination Chemistry Reviews.2011,255 (7-8): 861-880
    [3]D. S. McGuinness. Olefin Oligomerization via Metallacycles:Dimerization, Trimerization, Tetramerization, and Beyond. Chemical Reviews.2011,2321-2341
    [4]P. W. N. M. van Leeuwen, N. D. Clement, M. J. L. Tschan. New processes for the selective production of 1-octene. Coordination Chemistry Reviews.2011,255 (13-14): 1499-1517
    [5]W. Keim. Oligomerization of Ethylene to a-Olefins:Discovery and Development of the Shell Higher Olefin Process (SHOP). Angewandte Chemie International Edition.2013, 522-7
    [6]B. L. Small, M. Brookhart. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear alpha-olefins. Journal of the American Chemical Society.1998,120 (28):7143-7144
    [7]G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J. McTavish, G. A. Solan, A. J. P. White, D. J. Williams. Novel olefin polymerization catalysts based on iron and cobalt. Chemical Communications.1998, (7):849-850
    [8]E. G. Samsel, F. N. Brooks, US Patent (2002), BP Corporation North America, Inc., USA.
    [9]D. T. Fakultat. Selective Tri-and Tetramerization of Ethylene-from Ligand Design to Mini-Plant Operation.2006, Doctoral Dissertation
    [10]R. C. Bohley, G. B. Jacobsen, H. L. Pelt, B. J. Schaart, M. Schenk, D. A. Van Oeffelen, WO Patent (1992), Dow Benelux N.V., Neth..
    [11]G. B. Jacobsen, H. L. Pelt, B. J. Schaart, WO Patent (1991), Dow Benelux N. V., Neth..
    [12]J. Briggs, J. Patton, S. Vermaire-Louw, P. Margl, H. Hagen, D. Beigzadeh, WO Patent (2010), Dow Global Technologies Inc., USA.
    [13]H. Meche. Hydrocarbon Process.2011,90 (3) http://www.hydrocarbonprocessing.com/ Article/2775056/Search/North-America.html
    [14]R. M. Manyik, W. E. Walker, T. P. Wilson, US Patent (1967), Union Carbide Corp..
    [15]R. M. Manyik, W. E. Walker, T. P. Wilson. Soluble Chromium-Based Catalyst for Ethylene Trimerization and Polymerization. Journal of Catalysis.1977,47 (2):197-209
    [16]J. R. Briggs. The Selective Trimerization of Ethylene to Hex-1-Ene. Journal of the Chemical Society, Chemical Communications.1989, (11):674-675
    [17]J. W Freeman, J. L. Buster, R. D. Knudsen, US Patent (1999), Phillips Petroleum Company, USA.
    [18]D. F. Wass, WO Patent (2002), BP Chemicals Limited, UK.
    [19]D. F. Wass. Chromium-catalyzed ethene trimerization and tetramerization-breaking the rules in olefin oligomerization. Journal of the Chemical Society, Dalton Transactions. 2007, (8):816-819
    [20]A. Carter, S. A. Cohen, N. A. Cooley, A. Murphy, J. Scutt, D. F. Wass. High activity ethylene trimerization catalysts based on diphosphine ligands. Chemical Communications. 2002, (8):858-859
    [21]A. Bollmann, K. Blann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan, A. Neveling, S. Otto, M. Overett, A. M. Z. Slawin, P. Wasserscheid, S. Kuhlmann. Ethylene Tetramerization:A New Route to Produce 1-Octene in Exceptionally High Selectivities. Journal of the American Chemical Society. 2004,126 (45):14712-14713
    [22]W. K. Reagen, M. P. McDaniel, US Patent (1995), Phillips Petroleum Co., USA.
    [23]W. K. Reagen, J. W. Freeman, B. K. Conroy, T. M. Pettijohn, E. A. Benham, CA Patent (1994), Phillips Petroleum Co., USA.
    [24]W. K. Reagan, J. W. Freeman, B. K. Conroy, T. M. Pettijohn, E. A. Benham, EP Patent (1994), Phillips Petroleum Co., USA; Conocophillips Company.
    [25]W. K. Reagen, B. K. Conroy, CA Patent (1991), Phillips Petroleum Co., USA.
    [26]W. K. Reagen, CA Patent (1991), Phillips Petroleum Co., USA.
    [27]E. Tanaka, H. Urata, T. Oshiki, T. Aoshima, R. Kawashima, S. Iwade, H. Nakamura, S. Katsuki, T. Okano, EP Patent (1994), Mitsubishi Kasei Corp., Japan.
    [28]G. Wang, M. Xie, S. Wang, J. Qu, J. Zhao, B. Zhang, Q. Chen, Z. Yuan, X. Han, L. Li, CN Patent (2001), Research Inst. of Daqing Petro-Chemical Branch, Chinese Petroleum Group, Peop. Rep. China.
    [29]J. T. Dixon, J. J. C. Grove, A. Ranwell, WO Patent (2001), Sasol Technology (Pty) Ltd, S. Afr..
    [30]J. Sui, X. Du, T. Li. Synthesis of 1-hexene by trimerization of ethylene. Hecheng Shuzhi Ji Suliao.2001,18 (2):23-25
    [31]Y. Yang, H. Kim, J. Lee, H. Paik, H. G. Jang. Roles of chloro compound in homogeneous [Cr(2-ethylhexanoate)(3)/2,5-dimethylpyrrole/triethylaluminum/chloro compound] catalyst system for ethylene trimerization. Applied Catalysis A:General.2000,193 (1-2): 29-38
    [32]Y. Fang, Y. Liu, Y. Ke, C. Guo, N. Zhu, X. Mi, Z. Ma, Y. Hu. A new chromium-based catalyst coated with paraffin for ethylene oligomerization and the effect of chromium state on oligomerization selectivity. Applied Catalysis A:General.2002,235 (1-2):33-38
    [33]T. Aoyama, T. Yamamoto, H. Mitsumura, M. Oguri, Y. Koie, JP Patent (1998), to (Tosoh Corp., Japan).
    [34]H. Mimura, T. Aoyama, T. Yamamoto, M. Oguri, Y. Koie, JP Patent (1997), to (Tosoh Corp., Japan).
    [35]M. Okuri, H. Okada, Y. Koie, JP Patent (1998), Tosoh Corp., Japan.
    [36]K. H. Theopold. Homogeneous chromium catalysts for olefin polymerization. European Journal of Inorganic Chemistry.1998, (1):15-24
    [37]H. Mahomed, A. Bollmann, J. T. Dixon, V. Gokul, L. Griesel, C. Grove, F. Hess, H. Maumela, L. Pepler. Ethylene trimerisation catalyst based on substituted cyclopentadienes. Applied Catalysis A:General.2003,255 (2):355-359
    [38]J. J. C. Grove, H. A. Mahomed, L. Griesel, WO Patent (2003), Sasol Technology (Proprietary) Limited, S. Afr..
    [39]S. Licciulli, K. Albahily, V. Fomitcheva, I. Korobkov, S. Gambarotta, R. Duchateau. A Chromium Ethylidene Complex as a Potent Catalyst for Selective Ethylene Trimerization. Angewandte Chemie International Edition.2011,50 2345-2349
    [40]D. Commereuc, S. Drochon, L. Saussine, EP Patent (2001), to (Institut Francais du Petrole, Fr.).
    [41]D. H. Morgan, S. L. Schwikkard, J. T. Dixon, J. J. Nair, R. Hunter. The effect of aromatic ethers on the trimerisation of ethylene using a chromium catalyst and aryloxy ligands. Advanced Synthesis & Catalysis.2003,345 (8):939-942
    [42]J. R. Briggs, US Patent (1987), Union Carbide Corp., USA.
    [43]I. J. Levine, F. J. Karol, US Patent (1988), Union Carbide Corp., USA.
    [44]F.-J. Wu, CA Patent (1994), Ethyl Corp., USA.
    [45]T. Yoshida, T. Yamamoto, H. Okada, H. Murakita, US Patent (2002), Tosoh Corporation, Japan.
    [46]D. S. McGuinness, J. A. Suttil, M. G. Gardiner, N. W. Davies. Ethylene oligomerization with Cr-NHC catalysts:Further insights into the extended metallacycle mechanism of chain growth. Organometallics.2008,27 (16):4238-4247
    [47]J. Zhang, A. Li, T. S. A. Hor. Crystallographic Revelation of the Role of AlMe3 (in MAO) in Cr [NNN] Pyrazolyl Catalyzed Ethylene Trimerization. Organometallics.2009,28 (10): 2935-2937
    [48]J. Zhang, A. Li, T. S. A. Hor. Ligand effect on ethylene trimerisation with [NNN]-heteroscorpionate pyrazolyl Cr(III) catalysts. Journal of the Chemical Society, Dalton Transactions.2009, (42):9327-9333
    [49]M. Oguri, H. Mitsumura, H. Okada, JP Patent (2000), Tosoh Corp., Japan.
    [50]D. S. McGuinness, P. Wasserscheid, W. Keim, C. Hu, U. Englert, J. T. Dixon, C. Grove. Novel Cr-PNP complexes as catalysts for the trimerization of ethylene. Chemical Communications.2003, (3):334-335
    [51]C. Klemps, E. Payet, L. Magna, L. Saussine, X. F. Le Goff, P. Le Floch. PCNCP Ligands in the Chromium-Catalyzed Oligomerization of Ethylene:Tri-versus Tetramerization. Chemistry-A European Journal.2009,15 (33):8259-8268
    [52]C. Klemps, A. Buchard, R. Houdard, A. Auffrant, N. Mezailles, X. F. Le Goff, L. Ricard, L. Saussine, L. Magna, P. Le Floch. Chromium (Ⅲ)-bis(iminophosphoranyl)methanido complexes:synthesis, X-ray crystal structures and catalytic ethylene oligomerization. New Journal of Chemistry.2009,33 (8):1748-1752
    [53]K. Albahily, D. Al-Baldawi, S. Gambarotta, R. Duchateau, E. Koc, T. J. Burchell. Preparation and Characterization of a Switchable Single-Component Chromium Trimerization Catalyst. Organometallics.2008,27 (21):5708-5711
    [54]K. Albahily, D. Al-Baldawi, S. Gambarotta, E. Koc, R. Duchateau. Isolation of a Chromium Hydride Single-Component Ethylene Polymerization Catalyst. Organometallics.2008,27 (22):5943-5947
    [55]J. Zhang, P. Braunstein, T. S. A. Hor. Highly selective chromium(Ⅲ) ethylene trimerization catalysts with [NON] and [NSN] heteroscorpionate ligands. Organometallics.2008,27 (17):4277-4279
    [56]D. S. McGuinness, P. Wasserscheid, W. Keim, D. Morgan, J. T. Dixon, A. Bollmann, H. Maumela, F. Hess, U. Englert. First Cr(Ⅲ)-SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene. Journal of the American Chemical Society.2003,125 (18):5272-5273
    [57]M. E. Bluhm, O. Walter, M. Doering. Chromium imine and amine complexes as homogeneous catalysts for the trimerization and polymerization of ethylene. Journal of Organometallic Chemistry.2005,690 (3):713-721
    [58]N. Peulecke, B. H. Mueller, S. Peitz, B. R. Aluri, U. Rosenthal, A. Woehl, W. Mueller, M. H. Al-Hazmi, F. M. Mosa. Immobilized Chromium Catalyst System for Selective Ethene Trimerization to 1-Hexene with a PNPNH Ligand. ChemCatChem.2010,2 (9): 1079-1081
    [59]S. Peitz, N. Peulecke, B. R. Aluri, S. Hansen, B. H. Mueller, A. Spannenberg, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa, A. Woehl, W. Mueller. A selective chromium catalyst system for the trimerization of ethene and its coordination chemistry. European Journal of Inorganic Chemistry.2010, (8):1167-1171
    [60]S. Heinig, A. Wohl, W. Muller, M. H. Al-Hazmi, B. H. Miiller, N. Peulecke, U. Rosenthal. The Effect of Substituents in PNPN H Ligands on Activity and Selectivity of a Chromium-Based Catalyst System for Highly Selective Ethylene Trimerization. ChemCatChem.2013,5 (10):3107-3113
    [61]M. Oguri, H. Okada, Y. Koie, JP Patent (1998), Tosoh Corp., Japan.
    [62]S. Murtuza, S. B. Harkins, G. S. Long, A. Sen. Tantalum- and titanium-based catalytic systems for the synthesis of hyperbranched polyethene. Journal of the American Chemical Society.2000,122 (9):1867-1872
    [63]M. Oguri, H. Mitsumura, H. Okada, JP Patent (2000), Tosoh Corp., Japan.
    [64]H. Mimura, M. Oguri, T. Yamamoto, H. Okada, O. Yoshida, JP Patent (2001), Tosoh Corp., Japan.
    [65]M. Oguri, T. Yamamoto, H. Mimura, H. Okada, O. Yoshida,JP Patent (2000), Tosoh Corp., Japan.
    [66]S. Murakita, T. Yamamoto, H. Okada, O. Yoshida, JP Patent (2001), Tosoh Corp., Japan.
    [67]H. Monoi, H. Torigoe, M. Fushimi, M. Yamamoto, JP Patent (1997), Showa Denko Kk, Japan.
    [68]H. Monoi, H. Torigoe, M. Fushimi, M. Yamamoto, JP Patent (1997), Showa Denko Kk, Japan.
    [69]T. Monoi, Y. Sasaki. Silica-supported Cr[N(SiMe3)2]3/isobutylalumoxane catalyst for selective ethylene trimerization. Journal of Molecular Catalysis A:Chemical.2002,187 (1):135-141
    [70]C. Andes, S. B. Harkins, S. Murtuza, K. Oyler, A. Sen. New Tantalum-Based Catalyst System for the Selective Trimerization of Ethene to 1-Hexene. Journal of the American Chemical Society.2001,123 (30):7423-7424
    [71]C. Pellecchia, D. Pappalardo, G.-J. Gruter. Branched Polyethylene Produced by a Half-Titanocene Catalyst. Macromolecules.1999,32 (13):4491-4493
    [72]C. Pellecchia, D. Pappalardo, L. Oliva, M. Mazzeo, G.-J. Gruter. Selective Co-oligomerization of Ethylene and Styrenes by Half-Titanocene Catalysts and Synthesis of Polyethylenes with 4-Aryl-l-butyl Branches. Macromolecules.2000,33 (8): 2807-2814
    [73]J. Huang, T. Wu, Y. Qian. Ethylene trimerization with a half-sandwich titanium complex bearing a pendant thienyl group. Chemical Communications.2003, (22):2816-2817
    [74]E. Otten, A. A. Batinas, A. Meetsma, B. Hessen. Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization. Journal of the American Chemical Society.2009,131 (14):5298-5312
    [75]Y. Zhang, H. Ma, J. Huang. Highly selective ethylene trimerization catalyzed by half-sandwich indenyl titanium complexes with pendant arene groups and MAO. Journal of Molecular Catalysis A:Chemical.2013,373 (0):85-95
    [76]T. Jiang, X. Liu, Y. Ning, H. Chen, M. Luo, L. Wang, Z. Huang. Performance of various aluminoxane activators in ethylene tetramerization based on PNP/Cr(Ⅲ) catalyst system. Catalysis Communications.2007,8 (7):1145-1148
    [77]S. Kuhlmann, K. Blann, A. Bollmann, J. T. Dixon, E. Killian, M. C. Maumela, H. Maumela, D. H. Morgan, M. Pretorius, N. Taccardi, P. Wasserscheid. N-substituted diphosphinoamines:Toward rational ligand design for the efficient tetramerization of ethylene. Journal of Catalysis.2007,245 (2):279-284
    [78]K. Blann, A. Bollmann, H. De Bod, J. T. Dixon, E. Killian, P. Nongodlwana, M. C. Maumela, H. Maumela, A. E. McConnell, D. H. Morgan, M. J. Overett, M. Pretorius, S. Kuhlmann, P. Wasserscheid. Ethylene tetramerization:Subtle effects exhibited by N-substituted diphosphinoamine ligands. Journal of Catalysis.2007,249 (2):244-249
    [79]T. Agapie, M. W. Day, L. M. Henling, J. A. Labinger, J. E. Bercaw. A chromium-diphosphine system for catalytic ethylene trimerization:Synthetic and structural studies of chromium complexes with a nitrogen-bridged diphosphine ligand with ortho-methoxyaryl substituents. Organometallics.2006,25 (11):2733-2742
    [80]X. Gao, C. A. G. Carter, L. D. Henderson, WO Patent (2010), Nova Chemicals (International) S.A., Switz..
    [81]X. Gao, C. A. G. Carter, L. D. Henderson, WO Patent (2010), Nova Chemicals (International) S. A., Switz..
    [82]G. P. Belov. Tetramerization of ethylene to octene-1 (a review). Petroleum Chemistry. 2012,52 (3):139-154
    [83]T. Jiang, S. Zhang, X. Jiang, C. Yang, B. Niu, Y. Ning. The effect of N-aryl bisphosphineamine ligands on the selective ethylene tetramerization. Journal of Molecular Catalysis A:Chemical.2008,279 (1):90-93
    [84]E. Killian, K. Blann, A. Bollmann, J. T. Dixon, S. Kuhlmann, M. C. Maumela, H. Maumela, D. H. Morgan, P. Nongodlwana, M. J. Overett, M. Pretorius, K. Hoefener, P. Wasserscheid. The use of bis(diphenylphosphino)amines with N-aryl functionalities in selective ethylene tri-and tetramerization. Journal of Molecular Catalysis A:Chemical. 2007,270 (1-2):214-218
    [85]T. Jiang, H. Chen, Y. Ning, W. Chen. Preparation of 1-octene by ethylene tetramerization with high selectivity. Chinese Science Bulletin.2006,51 (5):521-523
    [86]T. Jiang, Y. Tao, X. Gao, G. Mao, H. Chen, C. Cao, Y. Ning. Ethylene tetramerization with a highly active and long-lifetime trinuclear diphenylphosphinoamine/Cr(Ⅲ)/MAO catalyst. Chinese Science Bulletin.2012,57 (13):1510-1515
    [87]S.-K. Kim, T.-J. Kim, J.-H. Chung, T.-K. Hahn, S.-S. Chae, H.-S. Lee, M. Cheong, S. O. Kang. Bimetallic Ethylene Tetramerization Catalysts Derived from Chiral DPPDME Ligands:Syntheses, Structural Characterizations, and Catalytic Performance of [(DPPDME)CrCl3]2(DPPDME=S,S-and R,R-chiraphos and meso-achiraphos). Organometallics.2010,29 (22):5805-5811
    [88]L. E. Bowen, M. Charernsuk, T. W. Hey, C. L. McMullin, A. G. Orpen, D. F. Wass. Ligand effects in chromium diphosphine catalysed olefin co-trimerisation and diene trimerisation. Journal of the Chemical Society, Dalton Transactions.2010,39 (2): 560-567
    [89]Y. Shaikh, K. Albahily, M. Sutcliffe, V. Fomitcheva, S. Gambarotta, I. Korobkov, R. Duchateau. A Highly Selective Ethylene Tetramerization Catalyst. Angewandte Chemie International Edition.2012,51 (6):1366-1369
    [90]Y. Shaikh, J. Gurnham, K. Albahily, S. Gambarotta, I. Korobkov. Aminophosphine-Based Chromium Catalysts for Selective Ethylene Tetramerization. Organometallics.2012,31 (21):7427-7433
    [91]Y. Yang, Z. Liu, B. Liu, R. Duchateau. Selective Ethylene Tri-/Tetramerization by in Situ-Formed Chromium Catalysts Stabilized by N,P-Based Ancillary Ligand Systems. ACS Catalysis.2013,2353-2361
    [92]S. Licciulli, I. Thapa, K. Albahily, I. Korobkov, S. Gambarotta, R. Duchateau, R. Chevalier, K. Schuhen. Towards Selective Ethylene Tetramerization. Angewandte Chemie International Edition.2010,49 (48):9225-9228
    [93]K. P. Bryliakov, E. P. Talsi. Frontiers of mechanistic studies of coordination polymerization and oligomerization of a-olefins. Coordination Chemistry Reviews.2012, 256 (23-24):2994-3007
    [94]D. S. McGuinness, A. J. Rucklidge, R. P. Tooze, A. M. Z. Slawin. Cocatalyst influence in selective oligomerization:Effect on activity, catalyst stability, and 1-hexene/1-octene selectivity in the ethylene trimerization and tetramerization reaction. Organometallics. 2007,26 (10):2561-2569
    [95]I. Y. Skobelev, V. N. Panchenko, O. Y. Lyakin, K. P. Bryliakov, V. A. Zakharov, E. P. Talsi. In Situ EPR Monitoring of Chromium Species Formed during Cr-Pyrrolyl Ethylene Trimerization Catalyst Formation. Organometallics.2010,29 (13):2943-2950
    [96]Y. Qi, Q. Dong, L. Zhong, Z. Liu, P. Qiu, R. Cheng, X. He, J. Vanderbilt, B. Liu. Role of 1,2-Dimethoxyethane in the Transformation from Ethylene Polymerization to Trimerization Using Chromium Tris(2-ethylhexanoate)-Based Catalyst System:A DFT Study. Organometallics.2010,29 (7):1588-1602
    [97]D. S. McGuinness, D. B. Brown, R. P. Tooze, F. M. Hess, J. T. Dixon, A. M. Z. Slawin. Ethylene trimerization with Cr-PNP and Cr-SNS complexes:Effect of ligand structure, metal oxidation state, and role of activator on catalysis. Organometallics.2006,25 (15): 3605-3610
    [98]A. Jabri, C. Temple, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau. Role of the metal oxidation state in the SNS-Cr catalyst for ethylene trimerization:Isolation of di-and trivalent cationic intermediates. Journal of the American Chemical Society.2006,128 (28):9238-9247
    [99]C. Temple, A. Jabri, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau. The Question of the Cr Oxidation State in the{Cr(SNS)} Catalyst for Selective Ethylene Trimerization:An Unanticipated Re-Oxidation Pathway. Angewandte Chemie International Edition.2006,118 (42):7208-7211
    [100]E. Y.-X. Chen, T. J. Marks. Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chemical Reviews. 2000,100 (4):1391-1434
    [101]A. Jabri, C. B. Mason, S. Gambarotta, T. J. Burchell, R. Duchateau. Isolation of single-component trimerization and polymerization chromium catalysts:the role of the metal oxidation state. Angewandte Chemie International Edition.2008,47 (50): 9717-9721
    [102]Y. Yang, Z. Liu, L. Zhong, P. Qiu, Q. Dong, R. Cheng, J. Vanderbilt, B. Liu. Spin Surface Crossing between Chromium(Ⅰ)/Sextet and Chromium(Ⅲ)/Quartet without Deprotonation in SNS-Cr Mediated Ethylene Trimerization. Organometallics.2011,30 (19):5297-5302
    [103]T. Agapie, S. J. Schofer, J. A. Labinger, J. E. Bercaw. Mechanistic studies of the ethylene trimerization reaction with chromium-diphosphine catalysts:Experimental evidence for a mechanism involving metallacyclic intermediates. Journal of the American Chemical Society.2004,126 (5):1304-1305
    [104]T. Agapie, J. A. Labinger, J. E. Bercaw. Mechanistic studies of olefin and alkyne trimerization with chromium catalysts:Deuterium labeling and studies of regiochemistry using a model chromacyclopentane complex. Journal of the American Chemical Society. 2007,129(46):14281-14295
    [105]I. Vidyaratne, G. B. Nikiforov, S. I. Gorelsky, S. Gambarotta, R. Duchateau, I. Korobkov. Isolation of a Self-Activating Ethylene Trimerization Catalyst. Angewandte Chemie International Edition.2009,48 (35):6552-6556
    [106]A. J. Rucklidge, D. S. McGuinness, R. P. Tooze, A. M. Z. Slawin, J. D. A. Pelletier, M. J. Hanton, P. B. Webb. Ethylene tetramerization with cationic chromium(I) complexes. Organometallics.2007,26 (10):2782-2787
    [107]A. Bruckner, J. K. Jabor, A. E. C. McConnell, P. B. Webb. Monitoring Structure and Valence State of Chromium Sites during Catalyst Formation and Ethylene Oligomerization by in Situ EPR Spectroscopy. Organometallics.2008,27 (15): 3849-3856
    [108]J. Rabeah, M. Bauer, W. Baumann, A. E. C. McConnell, W. F. Gabrielli, P. B. Webb, D. Selent, A. Bruckner. Formation, Operation and Deactivation of Cr Catalysts in Ethylene Tetramerization Directly Assessed by Operando EPR and XAS. ACS Catalysis.2013,3 95-102
    [109]L. E. Bowen, M. F. Haddow, A. G. Orpen, D. F. Wass. One electron oxidation of chromium N,N-bis(diarylphosphino)amine and bis(diarylphosphino) methane complexes relevant to ethene trimerisation and tetramerisation. Journal of the Chemical Society, Dalton Transactions.2007, (11):1160-1168
    [110]A. Jabri, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau. Isolation of a cationic chromium(II) species in a catalytic system for ethylene tri-and tetramerization. Organometallics.2006,25 (3):715-718
    [111]S. Peitz, N. Peulecke, B. R. Aluri, B. H. Muller, A. Spannenberg, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa, A. Wohl, W. Muller. Activation and Deactivation by Temperature: Behavior of Ph2PN(iPr)P(Ph)N(iPr)H in the Presence of Alkylaluminum Compounds Relevant to Catalytic Selective Ethene Trimerization. Chemistry-A European Journal. 2010,16(40):12127-12132
    [112]S. Bhaduri, S. Mukhopadhyay, S. A. Kulkarni. Density functional studies on chromium catalyzed ethylene trimerization. Journal of Organometallic Chemistry.2009,694 (9-10): 1297-1307
    [113]W. J. van Rensburg, J.-A. van den Berg, P. J. Steynberg. Role of MAO in Chromium-Catalyzed Ethylene Tri-and Tetramerization:A DFT Study. Organometallics. 2007,26(4):1000-1013
    [114]B. Blom, G. Klatt, J. C. Q. Fletcher, J. R. Moss. Computational investigation of ethene trimerisation catalysed by cyclopentadienyl chromium complexes. Inorganica Chimica Acta.2007,360 (9):2890-2896
    [115]W. J. Van Rensburg, C. Grove, J. P. Steynberg, K. B. Stark, J. J. Huyser, P. J. Steynberg. A DFT Study toward the Mechanism of Chromium-Catalyzed Ethylene Trimerization. Organometallics.2004,23 (6):1207-1222
    [116]K. Albahily, V. Fomitcheva, S. Gambarotta, I. Korobkov, M. Murugesu, S. I. Gorelsky. Preparation and Characterization of a Reduced Chromium Complex via Vinyl Oxidative Coupling:Formation of a Self-Activating Catalyst for Selective Ethylene Trimerization. Journal of the American Chemical Society.2011,133 (16):6380-6387
    [117]W. H. Monillas, G. P. A. Yap, K. H. Theopold. A tale of two isomers:A stable phenyl hydride and a high-spin (S=3) benzene complex of chromium. Angewandte Chemie International Edition.2007,46 (35):6692-6694
    [118]M. Benard, M.-M. Rohmer, X. Lopez, K. H. Theopold. A Tale of Two Isomers (Continued):Is the Phenyl Hydride Complex of Chromium More Stable than Its Benzene-Bridged Isomer? Angewandte Chemie International Edition.2008,47 (30): 5597-5599
    [119]R. D. Kohn. Reactivity of Chromium Complexes under Spin Control. Angewandte Chemie International Edition.2008,47 (2):245-247
    [120]E. J. Arlman, P. Cossee. Ziegler-Natta catalysis.Ⅲ. stereospecific polymerization of propene with the catalyst system TiCl3-AlET3. Journal of Catalysis.1964,3 (1):99-104
    [121]P. Cossee. Ziegler-Natta catalysis. I. Mechanism of polymerization of alpha-olefins with Ziegler-Natta catalysts. Journal of Catalysis.1964,3 (1):80-88
    [122]J. X. McDermott, J. F. White, G. M. Whitesides. Preparation and thermal decomposition of platinum(II) metallocycles. Journal of the American Chemical Society.1973,95 (13): 4451-4452
    [123]J. X. McDermott, M. E. Wilson, G. M. Whitesides. Synthesis and reactions of bis(cyclopentadienyl)titanium(IV) metallocycles. Journal of the American Chemical Society.1976,98 (21):6529-6536
    [124]S. Peitz. An Alternative Mechanistic Concept for Homogeneous Selective Ethylene Oligomerization of Chromium-Based Catalysts:Binuclear Metallacycles as a Reason for 1-Octene Selectivity? Chemistry:A European Journal.2010,16 (26):2670-2676
    [125]S. J. Schofer, M. W. Day, L. M. Herding, J. A. Labinger, J. E. Bercaw. Ethylene trimerization catalysts based on chromium complexes with a nitrogen-bridged diphosphine ligand having ortho-methoxyaryl or ortho-thiomethoxy substituents: Well-defined catalyst precursors and investigations of the mechanism. Organometallics. 2006,25 (11):2743-2749
    [126]A. Wohl, W. Miiller, N. Peulecke, B. H. Miiller, S. Peitz, D. Heller, U. Rosenthal. Reaction kinetics of the ethene tetramerization catalyst system CrC13(THF)3, Ph2PN(iPr)PPh2 and MAO:The unexpected and unusual formation of odd-numbered 1-olefins. Journal of Molecular Catalysis A:Chemical.2009,297 (1):1-8
    [127]P. J. W. Deckers, B. Hessen, J. H. Teuben. Catalytic Trimerization of Ethene with Highly Active Cyclopentadienyl-Arene Titanium Catalysts. Organometallics.2002,21 (23):5122-5135
    [128]A. Wohl, W. Miiller, S. Peitz, N. Peulecke, B. R. Aluri, B. H. Muller, D. Heller, U. Rosenthal, M. H. Al-Hazmi, F. M. Mosa. Influence of Process Parameters on the Reaction Kinetics of the Chromium-Catalyzed Trimerization of Ethylene. Chemistry-A European Journal.2010,16 (26):7833-7842
    [129]R. D. Kohn, M. Haufe, S. Mihan, D. Lilge. Triazacyclohexane complexes of chromium as highly active homogeneous model systems for the Phillips catalyst. Chemical Communications.2000, (19):1927-1928
    [130]R. Walsh, D. H. Morgan, A. Bollmann, J. T. Dixon. Reaction kinetics of an ethylene tetramerisation catalyst. Applied Catalysis A:General.2006,306 184-191
    [131]S. Kuhlmann, J. T. Dixon, M. Haumann, D. H. Morgan, J. Ofili, O. Spuhl, N. Taccardi, P. Wasserscheid. Influence of elevated temperature and pressure on the chromium-catalyzed tetramerization of ethylene. Advanced Synthesis and Catalysis.2006, 348(10-11):1200-1206
    [132]H. Hagen. Determination of kinetic constants for titanium-based ethylene trimerization catalysis. Industrial & Engineering Chemistry Research.2006,45 (10):3544-3551
    [133]T. de Bruin, P. Raybaud, H. Toulhoat. A DFT chemical descriptor to predict the selectivity in alpha-olefins in the catalytic metallacyclic oligomerization reaction of ethylene according to the (hemi)labile ligand coordinating to titanium. Organometallics. 2008,27 (19):4864-4872
    [134]S. Kuhlmann, C. Paetz, C. Haegele, K. Blann, R. Walsh, J. T. Dixon, J. Scholz, M. Haumann, P. Wasserscheid. Chromium catalyzed tetramerization of ethylene in a continuous tube reactor-Proof of concept and kinetic aspects. Journal of Catalysis.2009, 262 (1):83-91
    [135]T. Agapie, J. A. Labinger, J. E. Bercaw.2007. On the olefin trimerization reaction with chromium catalysts:Ligand effects, deuterium labeling, and studies of regiochemistry using a model chromacyclopentane complex. In Abstracts of Papers,233rd ACS National Meeting, Chicago, IL, United States, March 25-29,2007. INOR-013.
    [136]K. Blann, A. Bollmann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. H. Morgan, A. Neveling, S. Otto, M. J. Overett. Highly selective chromium-based ethylene trimerization catalysts with bulky diphosphinoamine ligands. Chemical Communications. 2005, (5):620-621
    [137]P. R. Elowe, C. McCann, P. G. Pringle, S. K. Spitzmesser, J. E. Bercaw. Nitrogen-linked diphosphine ligands with ethers attached to nitrogen for chromium-catalyzed ethylene tri-and tetramerizations. Organometallics.2006,25 (22):5255-5260
    [138]D. S. McGuinness, P. Wasserscheid, D. H. Morgan, J. T. Dixon. Ethylene trimerization with mixed-donor ligand (N,P,S) chromium complexes:Effect of ligand structure on activity and selectivity. Organometallics.2005,24 (4):552-556
    [139]M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, D. Haasbroek, E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan. Mechanistic Investigations of the Ethylene Tetramerization Reaction. Journal of the American Chemical Society.2005,127 (30): 10723-10730
    [140]N. Cloete, H. G. Visser, I. Engelbrecht, M. J. Overett, W. F. Gabrielli, A. Roodt. Ethylene Tri-and Tetramerization:a Steric Parameter Selectivity Switch from X-ray Crystallography and Computational Analysis. Inorganic Chemistry.2013,52 (5): 2268-2270
    [141]D. S. McGuinness. Oligomerization of alpha-Olefins via Chromium Metallacycles. Organometallics.2009,28 (1):244-248
    [142]P. H. M. Budzelaar. Ethene trimerization at CrⅠ/CrⅢ-A density functional theory (DFT) study. Canadian Journal of Chemistry.2009,87 (7):832-837
    [143]A. R. Katritzky, V. Lobanov, M. Karelson. CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis). University of Florida, Gainesville, FL.
    [144]M. Shahlaei. Descriptor Selection Methods in Quantitative Structure-Activity Relationship Studies:A Review Study. Chemical Reviews.2013,113 (10):8093-8103
    [145]G. Occhipinti, H.-R. Bjorsvik, V. R. Jensen. Quantitative Structure-Activity Relationships of Ruthenium Catalysts for Olefin Metathesis. Journal of the American Chemical Society.2006,128 6952-6964
    [146]S. M. Green, G. R. Marshall.3D-QSAR:a current perspective. Trends in Pharmacological Sciences.1995,16 (9):285-291
    [147]P. C. Mohring, N. J. Coville. Quantification of the influence of steric and electronic parameters on the ethylene polymerisation activity of (CpR)2ZrCl2/ethylaluminoxane Ziegler-Natta catalysts. Journal of Molecular Catalysis.1992,77 (1):41-50
    [148]S. Yao, T. Shoji, Y. Iwamoto, E. Kamei. Consideration of an activity of the metallocene catalyst by using molecular mechanics, molecular dynamics and QSAR. Computational and Theoretical Polymer Science.1999,9 (1):41-46
    [149]M. Linnolahti, T. A. Pakkanen. Theoretical study on the factors controlling the accessibility of cationic metal centers in zirconocene polymerization catalysts. Macromolecules.2000,33 (25):9205-9214
    [150]S. G. Yao, Y. Tanaka. Theoretical consideration of the external donor of heterogeneous Ziegler-Natta catalysts using molecular mechanics, molecular dynamics, and QSAR analysis. Macromolecular Theory and Simulations.2001,10 (9):850-854
    [151]V. Cruz, J. Ramos, A. Munoz-Escalona, P. Lafuente, B. Pena, J. Martinez-Salazar. 3D-QSAR analysis of metallocene-based catalysts used in ethylene polymerisation. Polymer.2004,45 (6):2061-2072
    [152]V. L. Cruz, J. Ramos, S. Martinez, A. Munoz-Escalona, J. Martinez-Salazar. Structure-activity relationship study of the metallocene catalyst activity in ethylene polymerization. Organometallics.2005,24 (21):5095-5102
    [153]V. L. Cruz, S. Martinez, J. Martinez-Salazar, J. Sancho. Proposed polymerization termination mechanism for 3-R-indenyl ansa-zirconocenes (R= n-alkyl) based on DFT calculations and experimental observations. Macromolecules.2007,40 (20):7413-7415
    [154]V. L. Cruz, J. Martinez, J. Martinez-Salazar, J. Ramos, M. L. Reyes, A. Toro-Labbe, S. Gutierrez-Oliva. QSAR model for ethylene polymerization catalyzed by supported bis(imino)pyridine iron complexes. Polymer.2007,48 (26):7672-7678
    [155]V. L. Cruz, S. Martinez, J. Martinez-Salazar, D. Polo-Ceron, S. Gomez-Ruiz, M. Fajardo, S. Prashar.3D-QSAR study of ansa-metallocene catalytic behavior in ethylene polymerization. Polymer.2007,48 (16):4663-4674
    [156]T. A. Manz, S. Sharma, K. Phomphrai, K. A. Novstrup, A. E. Fenwick, P. E. Fanwick, G. A. Medvedev, M. M. Abu-Omar, W. N. Delgass, K. T. Thomson, J. M. Caruthers. Quantitative Effects of Ion Pairing and Sterics on Chain Propagation Kinetics for 1-Hexene Polymerization Catalyzed by Mixed Cp /ArO Complexes. Organometallics. 2008,27 (21):5504-5520
    [157]占杰2008.非茂过渡金属催化剂的定量构效关系研究.中国科学院长春应用化学研究所,博士论文
    [158]V. Tognetti, G. Fayet, C. Adamo. Can Molecular Quantum Descriptors Predict the Butene Selectivity in Nickel(Ⅱ) Catalyzed Ethylene Dimerization? A QSPR Study. International Jouranl of Quantum Chemistry.2010,110 (3):540-548
    [159]A. R. Katritzky, U. Maran, V. S. Lobanov, M. Karelson. Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. Journal of Chemical Information and Computer Sciences.2000,40 (1):1-18
    [160]M. Karelson, V. S. Lobanov, A. R. Katritzky. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chemical Reviews.1996,96 1027-1043
    [161]B. Lucic, N. Trinajstic. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. Journal of Chemical Information and Computer Sciences.1999,39(1):121-132
    [162]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. L. Caricato, X., H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. E. Hada, M., K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, P. Jr., J. E., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision A.01; Gaussian, Inc.:Wallingford CT, 2009.
    [163]A. D. Becke. Density-functional thermochemistry(iii):The role of exact exchange. Journal of Chemical Physics.1993,98 (7):5648-5652
    [164]C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B:Condensed Matter. 1988,37 (2):785-789
    [165]J. N. Harvey, M. Aschi, H. Schwarz, W. Koch. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theoretical Chemistry Accounts.1998,99 (2): 95-99
    [166]R. Marti, G. Reinelt. The Linear Ordering Problem, Exact and Heuristic Methods in Combinatorial Optimization.2011
    [167]Q. Liu, R. Gao, J. Hou, W. Sun. Tridentate PANAP Chromium Complexes:Synthesis, Character-ization and Their Ethylene Oligomerization and Polymerization. Chinese Journal of Organic Chemistry.2013,33 (4):808
    [168]L. H. Do, J. A. Labinger, J. E. Bercaw. Spectral Studies of a Cr(PNP)-MAO System for Selective Ethylene Trimerization Catalysis:Searching for the Active Species. ACS Catalysis.2013,32582-2585
    [169]E. Carter, K. J. Cavell, W. F. Gabrielli, M. J. Hanton, A. J. Hallett, L. McDyre, J. A. Platts, D. M. Smith, D. M. Murphy. Formation of [Cr(CO)x(Ph2PN(iPr)PPh2)]+ Structural Isomers by Reaction of Triethylaluminum with a Chromium N,N-Bis(diarylphosphino)amine Complex [Cr(CO)4(Ph2PN(iPr)PPh2)]+:An EPR and DFT Investigation. Organometallics.2013,32 (6):1924-1931
    [170]A. Alzamly, S. Gambarotta, I. Korobkov. Polymer-Free Ethylene Oligomerization Using a Pyridine-Based Pincer PNP-Type of Ligand. Organometallics.2013,
    [171]S. Q. Niu, M. B. Hall. Theoretical studies on reactions of transition-metal complexes. Chemical Reviews.2000,100 (2):353-405
    [172]L. Jan.2004. Propagators in quantum chemistry, (2nd Ed.). LAVOISIER S.A.S.
    [173]K. Capelle. A Bird's-Eye View of Density-Functional Theory. Brazilian Journal of Physics.2006,36 (4A):1318-1343
    [174]N. Matsunaga, S. Koseki. In Reviews in Computational Chemistry, Vol (Eds.:John Wiley & Sons, Inc.,2004; 101-152.
    [175]K. P. Kepp. Consistent descriptions of metal-ligand bonds and spin-crossover in inorganic chemistry. Coordination Chemistry Reviews.2013,257 (1):196-209
    [176]A. Uhe, S. Kozuch, S. Shaik. Automatic Analysis of Computed Catalytic Cycles. Journal of Computational Chemistry.2011,32 (5):978-985
    [177]M. Brynda, L. Gagliardi, B. O. Roos. Analysing the chromium-chromium multiple bonds using multiconfigurational quantum chemistry. Chemical Physics Letters.2009, 471 (1-3):1-10
    [178]K. A. Kreisel, G. P. A. Yap, O. Dmitrenko, C. R. Landis, K. H. Theopold. The Shortest Metal-Metal Bond Yet:Molecular and Electronic Structure of a Dinuclear Chromium Diazadiene Complex. Journal of the American Chemical Society.2007,129 14162-14163
    [179]A. Noor, G. Glatz, R. Miiller, M. Kaupp, S. Demeshko, R. Kempe. Metal-Metal Distances at the Limit:Cr-Cr 1.73 A-the Importance of the Ligand and its Fine Tuning. Zeitschrift fur anorganische und allgemeine Chemie.2009,635 (8):1149-1152
    [180]Z. Liu, R. Cheng, X. He, X. Wu, B. Liu. DFT Functional Benchmarking on the Energy Splitting of Chromium Spin States and Mechanistic Study of Acetylene Cyclotrimerization over the Phillips Cr(Ⅱ)/Silica Catalyst. The Journal of Physical Chemistry A.2012,116 (28):7538-7549
    [181]Z. Liu, R. Cheng, X. He, B. Liu. Reactivity and Regioselectivity of Methylacetylene Cyclotrimerization over the Phillips Cr/Silica Catalyst:A DFT Study. ACS Catalysis. 2013,3(6):1172-1183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700