基于四元数小波幅值相位特征的人脸识别方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸识别是一个典型的图像理解与模式分类问题,在信息安全、刑事侦破和出入口控制等领域有着广泛的应用前景。经过近几十年的发展,人脸识别技术取得了长足的进步。目前最好的人脸识别系统在受控条件下已经能够取得较好的识别性能,但测试和实践经验表明:非理想条件下(光照、表情和姿势变化等)的人脸识别技术尚未成熟。Gabor小波变换具有良好的空间局部性和方向选择性,是一种良好的人脸描述方法,所以被广泛应用于人脸识别领域。Gabor小波变换处理人脸图像有很多优势,但是计算Gabor特征时具有较高的计算复杂度并需要大量的存储空间。本文研究主要贡献在于:将四元数小波幅值相位特征应用到人脸识别,与传统Gabor小波变换比较,具有明显较低的时间复杂度,更有利于实际应用。
     本文首先研究了四元数小波变换的结构和紧标架、实信号的四元数小波变换及其相位特性,在此基础上提出了QWT幅值/相位特征人脸表示方法。该方法将四元数代数和小波理论结合,有良好的时移不变性,可以提取一个幅值和三个相位信息,从而对人脸表情及光照变化有较好的不敏感性。采用分块投票策略将幅值/相位矩阵分成若干子块,对每个子块根据最近邻原则进行分类,并对各子块分类结果进行投票以实现人脸图像的最终识别。
     与PCA比较,本文方法在Indian、Yale、ORL、YaleB扩展数据库和CMU-PIE数据库的识别率分别高出14.8%、31.5%、9.9%、13%和3.4%。在ORL数据库,本文方法识别率略高于LDA方法;在Indian、Yale、YaleB扩展数据库和CMU-PIE数据库,本文方法都具有更高的识别率。在FERET'96数据库四个测试子集(Fb、Fc、DupI和DupII),本文方法的识别结果分别为94.1%、56.7%、58.1%和47.1%。虽然EBGM在测试集Fc上识别精度高于本文方法,但是本文方法在其它三个子集上高于EBGM而且有较少的可调参数和较低的计算复杂度。选取FERET'96数据库中任意一幅人脸图像进行识别,像素大小为64×64时QWT完成特征提取的运行时间只有0.047s,而Gabor小波变换为0.566s。另外,采用七种不同的光照补偿方法在光照明显变化的YaleB扩展数据库和FERET'96数据库上对人脸图像进行预处理,验证了本文方法结合可控滤波器和基于离散余弦变换的归一化技术后的人脸识别率明显提高。
     研究结果表明本文提出的人脸识别方法不但可以获得很好的光照、表情以及姿势变化的鲁棒性而且识别精度比传统方法有了较大的提高,计算复杂度较低。该算法在图像配准、人脸检测和人脸特征定位中有潜在的应用价值。
Face recognition is a typical image understanding and pattern classification problem, which has a great deal of potential applications in information security, criminal detection and access control. After the development of recent decades, face recognition technology has made considerable progress. At present the best face recognition system under controlled conditions have been able to achieve better recognition performance, however, evaluation results and practical experience have shown that: the face recognition technology is not yet mature under non-ideal conditions (illumination, expression and pose changes, et al.). Gabor wavelet transform has good spatial locality and orientation selectivity, which is a good face description method, so it is widely used in face recognition domain. Even though Gabor wavelet based face image representation is optimal in many respects, it is computationally very complex and memory requirements for storing Gabor features are very high. The main contribution of this paper is: comparing with the Gabor wavelet of traditional method, the quaternion wavelet magnitude phase features are used for face recognition and they have a significantly lower time complexity and are more conducive to practical application.
     Firstly, the construction and tight frame of quaternion wavelet transforms (QWT), real signal of quaternion wavelet transform and quaternion wavelet transform phase characteristics are studied, and then the quaternion wavelet transform magnitude phase representation is proposed. Combining the quaternion algebra and wavelet theory, this method is a near shift-invariant tight frame representation, whose coefficients support a magnitude and three phase, therefore it has robustness to expression and illumination changes. These quaternion magnitude and phases are combined and divided into several sub-blocks, and then each sub-block is classified by a nearest neighbor classifier. These sub-block classification results are voted to complete the ultimate face recognition.
     Comparing with the PCA method, the recognition rate of this method is respectively higher on the Indian, Yale, ORL, YaleB Extended face database and the CMU-PIE face database by 14.8%, 31.5%, 9.9%, 13% and 3.4%. The recognition rate of the proposed method is slightly higher than the LDA method on the ORL face database and outperforms the LDA method on the Indian, Yale, YaleB Extended face database and the CMU-PIE face database. The recognition rates of the four FERET’96 probe sets achieve 94.1%, 56.7%, 58.1% and 47.1%, respectively. Although EBGM has better recognition rate on the probe set Fc, our method is superior on other three probe sets. Moreover, the method has few free parameters to adjust and has much lower computation complexity. Any one of the FERET’96 face database images is selected, when the pixel of face image is 64×64, the running time of QWT feature extraction is only 0.047s, and Gabor wavelet transform reaches 0.566s. In addition, seven different illumination compensation methods are used for face image preprocessing on the YaleB Extended face database and FERET’96 face database. Combining the steerable filter and discrete cosine transform of normalization techniques, the recognition rate of this algorithm has improved obviously.
     The study shows that not only the proposed face recognition method can get a good robustness to the illumination, expression and gesture, but also the recognition performance has greatly improved comparing with traditional methods. This algorithm has potentials for various applications in image registration, face detection and facial feature location.
引文
1谭铁牛.中国生物特征认证动态.西安:西北大学出版社, 2003
    2张敏贵,潘泉,张洪才,等.多生物特征识别.信息与控制, 2002, 31(6):524-528
    3王蕴红,谭铁牛.现代身份鉴别新技术——生物特征识别技术.中国基础科学, 2000, 9
    4王希光.生物特征识别技术的现状与发展趋势概述.信息与电脑(理论版), 2010, 20(4):25-27
    5山世光.人脸识别中若干关键问题的研究. [中国科学院计算技术研究所博士学位论文]. 2004, 27-28
    6 R. O. Duda, P. E. Hart, D. G. Stork著,李宏东,姚天祥,等译.模式分类.机械工业出版社, 2003
    7焦峰,山世光,崔国勤,等.基于局部特征分析的人脸识别方法.自动化学报, 2003, 15(1):53-58
    8 W. M. Zuo, K. Q. Wang, D. Zhang, et al. Combination of two novel LDA-based methods for face recognition. Neurocomputing, 2007, 70(4-6):735-742.
    9 C. J. Liu. Gabor based Kernel PCA with fractional power polynomial models for face recognition. IEEE Transactions on PAMI, 2004, 26(5)
    10 L. Wang, Y. P. Li. A novel 2D Gabor wavelets window method for face recognition. Lecture Notes in Computer Science, 2006, 4105:497-504
    11 A. Serrano, I. M. de Diego, C. Conde, et al. Recent advances in face biometrics with Gabor wavelets: A review. Pattern Recognition Letters, 2010, 31(5):372-381
    12 L. Wiskott, J. M. Fellous, N. Kruger, et al. Face recogniton by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(7):775-779
    13 V. Krueger. Gabor wavelet networks for object representation. DAGM Symposium, Kiel, Germany, 2000, 9:13-15
    14 C. Liu, H. Wechsler. Gabor feature based classification using the enhanced fisherlinear discriminantmodel for face recognition. IEEE Trans. Image Processing, 2002, 11(4):467-476
    15中国公共安全, 2010. http://www.isvision.com/cn/index/window.asp?OID=460
    16张晓华,山世光,曹波,等. CAS-PEAL大规模中国人脸图像数据库及其基本评价介绍.计算机辅助设计与图形学学报, 2005, 17(1):9-17
    17 M. Turk, A. Pentland. Eigenfaces for recognition. J. Cognitive Neurosci, 1991, 3(1):71-86
    18 H. Moon, P. J. Phillips. Computational and Performance aspects of PCA-based Face Recognition Algorithms. Perception, 2001, 30:303-321
    19 M. S. Bartlett, J. R. Movellan, T. J. Sejnowski. Face recognition by independent component analysis. IEEE Trans. on Neural Networks, 2002, 13(6):1450-1464
    20 P. Nicholl, A. Amira. DWT/PCA face recognition using automatic coefficient selection. Proceedings of the 4th IEEE International Workshop on Electronic Design, Test and Applications (DELTA’08), Hong Kong, 2008:390-393
    21 L. Shen, Z. Ji, L. Bai, et al. DWT based HMM for face recognition. Journal of Electronics, 2007, 24(6):835-837
    22 B. S. Manjunath, R. Chellappa, C. vonder Malsburg. A feature based approach to face recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’92), 1992:373-378
    23 P. S. Penev, J. J. Atick. Local feature analysis: a general statistical theory for object representation. Network: Computation in Neural Systems, 1996, 7 (3):477-500
    24 N. Nefian, M. H. Hayes. Face recognition using an embedded HMM. Proceedings of the IEEE Conference on Audio and Video-based Biometric Person Authentication, 1999:19-24
    25 G. Guo, S. Z. Li, K. L. Chan. Support vector machines for face recognition. Image Comput, 2001,19:631- 638
    26 A. S. Georghiades, P. N. Bellhumeur, D. J. Kriegman. From few to many: generative models for recognition under variable pose and illumination. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001, 23(6):643-660
    27 H. A. Rowley, S. Baluja, T. Kanade. Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(1):23-28
    28 J. Duan, C. Zhou, X. Liu, et al. The methods of improving variable illumination for face recognition. Proc. of the Third Int. Conf. Machine learning and Cybernetics, 2004:3918-3923
    29 R. Ishiyama, S. Sakamoto. Geodesic illumination basis: Compensating for illumination variations in any pose for face recognition. Proc. 16th Int. Conf. Pattern Recognition, 2002, 4:297-301
    30 A. U. Batur, M. H Hayes. Linear subspaces for illumination robust face recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 2
    31 X. Xie, K. M. Lam. Face recognition under varying illumination based on a 2D face shape model. Pattern Recognition, 2005, 38(2):221-230
    32 D. Liu, K. M. Lam, L. S. Shen. Illumination invariant face recognition. Pattern Recognition, 2005, 38(10):1705-1716
    33 S. W. Lee, S. H. Moon, S. W. Lee. Face recognition under arbitrary illumination using illuminated exemplars. Pattern Recognition, 2007, 40:1605-1620
    34 T. Zhang, Y. Y. Tang, B. Fong, et al. Face recognition under varying illumination using gradientfaces. IEEE Trans. Image Processing, 2009, 18(11):2599-2606
    35 Y. Cheng, C. L. Wang, Z. Y. Li, et al. Multiscale principal contour direction for varying lighting face recognition. Electronics Letters, 2010, 46(10):680-682
    36 C. Xie, M. Savvides, B. V. K. Vijaya Kumar. Quaternion correlation filters for face recognition in wavelet domain. IEEE Inter. Conf. on Acoustics Speech, 2005:85-88
    37 M. Savvides, B. V. K. Vijaya Kumar. Quad-phase minimum average correlation energy filters for reduced-memory illumination-tolerant face authentication. Audio and Visual Biometrics based Person Authentication (AVBPA), 2003
    38 M. Savvides, B. V. K. Vijaya Kumar, P. K. Khosla.‘Corefaces’-Robust Shift Invariant PCA based correlation filter for illumination tolerant face recognition. IEEE Computer Vision and Pattern Recognition (CVPR), 2004:834-841
    39 M. Savvides, B. V. K. Vijaya Kumar, P. K. Khosla. Eigenphases vs. Eigenfaces. IEEE International Conference in Pattern Recognition (ICPR), Cambridge, U.K. 2004
    40 J. Sergent. Microgenesis of face perception. //H. D. Ellis, M. A. Jeeves, F. Newcombe, et al. Aspects of Face Processing. Dordrecht: Nijhoff, 1986
    41 C. Nastar, B. Moghaddam, A. Pentland. Flexible images: Matching and recognition using learned deformations. Computer Vision and Image Understanding, 1997, 65(2):171-191
    42 C. Nastar, N. Ayache. Frequency-based non-rigid motion analysis. IEEE Trans. Pattern Anal. Mach. Intel., 1996, 18(11):1067-1079
    43 I. G. P. Wijaya, K. Uchimura, Zhencheng Hu. Face recognition based on dominant frequency features and multiresolution metric. International Journal of Innovative Computing, Information and Control, 2009, 5(3):641-651
    44 L. Shen, L. Bai, M. Fairhurst. Gabor wavelets and general discriminant analysis for face identification and verification. Image and Vision Computing, 2007, 25(5):553-563
    45 O. Pichler, A. Teuner, B. J. Hosticka. A comparison of texture feature extraction using adaptive Gabor filtering pyramidal and tree structured wavelet transforms. Pattern Recognition, 1996, 29(5):733-742
    46 X. Wang, X. Ding, C. Liu. Optimized Gabor filter based feature extraction for character recognition. Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), 2002, 4:223-226
    47 M. Lades, J. C. Vorbrueggen, J. Buhmann, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 1993, 42(3):300-311
    48 B. Zhang, S. Shan, X. Chen, et al. Histogram of Gabor Phase Patterns (HGPP): A novel object representation approach for face recognition. IEEE Trans. Image Processing, 2007, 16(1):57-68
    49 S. Shan, P. Yang, X. Chen, et al. AdaBoost gabor fisher classifier for face Recognition. Proceeding of IEEE International Workshop on Analysis and Modeling of Faces andGestures, AMFG 2005, 3723:278-291
    50 S. F. Xie, S. G. Shan, X. L. Chen, et al. Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Trans. Image Process., 2010, 19(5)
    51 W. Zhang, S. Shan, W. Gao, et al. Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A novel non-statistical model for face representation and recognition. Proc. Int. Conf. Computer Vision, 2005:786-791
    52 D. H. Liu, K. M. Lam, L. S. Shen. Optimal sampling of Gabor features for face recognition. Pattern Recognition Letters, 2004, 25(2):267-276
    53 L. Nanni, D. Maio. Weighted sub-Gabor for face recognition. Pattern Recognition Letters, 2007, 28(4):487-492
    54 W. P. Choi, S. H. Tse, K. W. Wong, et al. Simplified Gabor wavelets for human face recognition. Pattern Recognition, 2008, 41(3):1186-1199
    55 Linlin Shen, Li Bai. MutualBoost learning for selecting Gabor features for face recognition, Pattern Recognition Letters, 2006, 27(15):1758-1767
    56 T. Bülow. Hyper-complex spectral signal representation for the processing and analysis of images. Ph.D. dissertation, Christian Albrechts University, Germany, 1999
    57 Bayro Corrochano. Image analysis using phase concept of the quaternion wavelet transforms. Special Issue of Numerical Analysis, 2004
    58 J. Zhou, Y. Xu, X. Yanga. Quaternion wavelet phase based stereo matching for uncalibrated images. Pattern Recogination letters, 2007, 28(12):1509-1522
    59 W. L. Chan, H. Choi, R. G. Baraniuk. Coherent multiscale image processing using dual-tree quaternion wavelets. IEEE Trans. Image Process., 2008, 17(7):1069-1082
    60 R. Soulard, P. Carré. Quaternionic wavelets for texture classification. International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2010)
    61 R. Soulard, P. Carré. Quaternionic wavelets for image coding. European Signal Processing Conference (EUSIPCO 2010)
    62 Bayro Corrochano. The theory and use of the quaternion wavelet transform. Journal of Mathematical Imaging and Vision, 2006, 24(1):19-35
    63柳莲花,丁万山.四元数小波变换在图像处理中的应用.电子科技, 2010,23(4):89-93
    64许姜严,王卫星.结合四元数与小波的彩色图像边缘检测算法.计算机应用研究, 2010, 27(5):1981-1983
    65李洪波. Clifford代数.几何计算和几何推理.数学进展, 2003, 32(4):405-415
    66陈武凡.小波分析及其在图像处理中的应用.北京:科学出版社, 2002
    67 M. Vetterli, J. Kovacevic. Wavelets and Subband Coding. Englewood Cliffs, NJ: Prentice Hall, 1995
    68 J. M. A. Grossmann, R. Kronland-Martinet. Reading and understanding continuous wavelet transforms. in Wavelets: Time-Frequency methods and phase space, Berlin: Springer-Verlag, 1989:2-20
    69 H. F. Ates, M. T. Orchard. A nonlinear image representation in wavelet domain using complex signals with single quadrant spectrum. Proc. Asilomar Conf. Signals, Systems, and Computers, 2003
    70 R. van Spaendonck, T. Blu, R. Baraniuk, et al. Orthogonal Hilbert transform filter banks and wavelets. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), 2003, 6:505-508
    71 M. Wakin, M. Orchard, R. G. Baraniuk, et al. Phase and magnitude perceptual sensitivities in nonredundant complex wavelet representations. Proc. Asilomar Conf. Signals, Systems, and Computers, 2003
    72 F. Fernandes, M. Wakin, R. G. Baraniuk. Non-redundant, linear-phase, semi-orthogonal, directional complex wavelets. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), 2004
    73 N. G. Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. J. App. Harm. Analysis, 2001, 10:234-253
    74 W. L. Chan. Coherent multiscale image processing using Quaternion Wavelets. Master of Science, Rice University, Houston, Texas, 2006
    75 S. L. Hahn. Multidimensional complex signals with single-orthant spectra. Proceedings of the IEEE, 1992, 80:1287-1300
    76 T. Bulow, G. Sommer. A novel approach to the 2d analytic signal. CAIP, 1999
    77 S. L. Hahn. Hilbert Transforms in Signal Processing. Artech House, London, 1996
    78 C. S. Burrus, R.A. Gopinath, H. Guo. Introduction to Wavelets and Wavelet Transforms. ch. 7. Prentice Hall, 1998
    79 I. W. Selesnick, R. G. Baraniuk, N.G. Kingsbury. The dual-tree complex wavelet transforms. IEEE Signal Processing Magazine November, 2005
    80 N. G. Kingsbury. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. Proceedings of the IEEE Int. Conf. on Image Proc., 2000
    81 A. Korn, M. Korn. Mathematical Handbook for Scientists and Engineers. McGray-Hill Book Company, 1968
    82苏光大.图像并行处理技术.北京:清华大学出版社, 2002
    83袁勇,李天牧.一种新的人脸特征定位及识别的方法.云南大学学报(自然科学版), 2001, 23(3):181-186
    84 Vidit Jain, Amitabha Mukherjee. The Indian Face Database. http://viswww. cs.umass.edu/vidit/IndianFaceDatabase/, 2002
    85 P. N. Belhumeur. Yale face database. http://cvc.yale.edu/projects/yalefaces/ yalefaces. html, 2002
    86 The Oliver research laboratory in Cambridge. UK. (The ORL face database). http://www.uk.research.att.Com/pub/data/att_faces.zip.
    87 K. C. Lee, J. Ho, D. Kriegman. Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, 2005, 27( 5):684-698
    88 T. Sim, S. Baker, M. Bsat. The CMU Pose, Illumination and Expression (PIE) Database of Human Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12):1615-1618
    89 P. Phillips, H. Moon, S. Rizvi, et al. The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10):1090-1104
    90 The FERET Database. http://www.itl.nist.gov/iad/humanid/feret
    91 J. Ross Beveridge, D. Bolme, B. A. Draper, et al. The CSU face identificationevaluation system: Its purpose, features, and structure. Machine Vision and Applications, 2005, 16:128-138
    92 Gareth Loy. Fast computation of the gabor wavelet transforms. In Digital Image Computing Techniques and Applications, Melbourne, Australia, January 2002
    93 http://luks.fe.uni-lj.si/en/staff/vitomir/index.html
    94 D. J. Jobson, Z. Rahman, G. A. Woodell. Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 1997, 6(3):451-462
    95 D. J. Jobson, Z. Rahman, G. A. Woodell. A multiscale retinex for bridging the gap between color images and the human observations of scenes. IEEE Transactions on Image Processing, 1997, 6(7):965-976
    96 Y. K. Park, S. L. Park, J. K. Kim. Retinex method based on adaptive smoothing for illumination invariant face recognition. Signal Processing, 2008, 88(8):1929-1945
    97 T. Zhang, B. Fang, Y. Yuan, et al. Multiscale facial structure representation for face recognition under varying illumination. Pattern Recognition, 2009, 42(2):252-258
    98 G. Heusch, F. Cardinaux, S. Marcel. Lighting normalization algorithms for face verification. IDIAP, 2005
    99 W. Chen, M. J. Er, S. Wu. Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithmic domain. IEEE Transactions on Systems, Man and Cybernetics, 2006, 36(2):458-466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700