黑洞时空中的似正规模和幂率拖尾
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑洞物理学作为广义相对论与量子力学、粒子物理、弦理论、热力学和统计物理等诸多学科的交叉领域,在现代物理学中起着非常重要的作用。多年来,黑洞物理一直是人们极为关心的热门领域。然而黑洞物理学中还有许多问题人们尚未弄清楚,像黑洞熵的统计起源、黑洞信息疑难以及黑洞是否稳定等都是黑洞物理中非常重要而有待解决的问题。弄清这些问题,有助于现代物理学的发展,也有助于我们深入地认识自然。黑洞时空中的似正规模和幂率拖尾问题涉及到黑洞的认证和稳定性等问题。研究表明它还与AdS/CFT对应和Loop量子引力理论有着十分密切的联系。因此对黑洞时空中似正规模和幂率拖尾的研究具有很重要的意义。
     本文采用数值方法(P(?)shl-Teller势近似法、WKB近似法和连续分数法)和单值法分别研究了某些特殊黑洞时空中的似正规模频谱,然后应用Green函数法研究了整体单极子黑洞时空中的耦合标量场的幂率拖尾行为。本文的主要结论有:
     1、应用三阶WKB近似法,我们研究了被quintessence(一种暗能量的模型)包围的黑洞时空中标量场的似正规模频谱,发现它与这种暗能量的态参数(暗能量的压强和能量密度的比值)有关:当态参数的绝对值增大时,似正规模频谱的实部减小,而虚部的幅度增加。这表明暗能量的出现使标量场的衰减加快。因此暗能量对似正规模的振动起阻尼作用。
     2、采用P(?)shl-Teller势近似法和连续分数法研究了Garfinkle-Horowitz-Strominger伸缩子黑洞时空中Dirac场的似正规模,我们发现当伸缩子
Black hole physics plays an important role in the modern physics as it is an intersectionsl field of general relative theory, quantum mechanics, particle physics, string theory, thermodynamics and statistics. However, there exist many open questions to be addressed in the black hole physics, such as the statistical origin of black hole entropy, the information puzzle and stability of black holes, and so on. The full comprehension of these problems will promote the development of the modern physics more rapidly and help us to understand the nature from the further levels. The quasinormal modes and the late-time tails of perturbational fields in the black hole spacetime are related to the identification and stability of the black holes. Moreover, it is also found that they are connected closely with the AdS/CFT correspondence and loop quantum gravity. Therefore, it is of great importance to investigate the quasinormal modes and the late-time tails in the black hole spacetimes.In this thesis, we first investigate the quasinormal modes of some special black holes by using some numerical methods (such as Poshl-Teller approximation, Wentzel-Kramers-Brillouin(WKB) approximation and continue fraction method) and monodromy technique. Then we adopt to Green function method and study the late-time tails of a coupled scalar field in the black hole spacetime with global monopole. Our main works are as follows:(1) Using the third-order WKB approximation, we evaluate the quasinormal modes of scalar field in the black hole spacetime surrounded by quintessence and
    find that the quasinormal frequencies depend on the state parameter (i.e. the ratio between pressure and energy density of dark energy) of quintessence. As the absolute value of the state parameter increases, the real part of quasinormal frequencies decreases and the amplitude of the imaginary part increases. This means that the presence of dark energy makes scalar field damp more rapidly. It is also shown that dark energy restrains the oscillation of field in the black hole spacetime.(2) Adopting to the Poshl-Teller potential approximation and the continue fraction method, we investigate Dirac quasinormal modes in the Garfmkle-Horowitz-Strominger dilaton black hole spacetime. We find that as the paramter a of the dilaton field increases, the real parts of quasinormal frequencies increase, the imaginary part first increases and then decreases. When the overtone n is lower andI is larger, the space of the real part depends only on the parameter a and increases with the increase of a, but that of the imaginary part tends to zero. As the overtone n becomes larger, we find the imaginary part in direct proportion to the overtone n.(3) For the acoustic black hole, we study the quasinormal modes coupled scalar field by using the third-order WKB approximation, and find that, for the lower overtone, the real part increases and the imaginary part decreases as the coupled factor f increases. When f is larger, both the real and imaginary parts are almost the linear function of the coupled factor £.(4) In order to probe the universal validity of Hod conjecture, we adopt to the monodromy technique and investigate the asympotic quasinormal modes of the coupled scalar fields in the Garfinkle-Horowitz-Strominger, Gibbons-Maeda and acoustic black holes spacetimes and find their frequency formulas of high
    damped quasinormal modes are related to the coupled factor £. It is shown that the high damped quasinormal frequencies depend not only on the parameters of black hole spacetimes, but also on the coupled strength between the scalar field and the background metric. This means that Hod conjecture is not valid universally.(5) At last, we study the late-time tails of a coupled scalar field in the space-time of black hole with a global monopole. For the Schwarzschild, Reissner-Nordstrom black holes, the decay factor of the late-time tails depends only on the multiple moment / and the mass \x of perturbationaJ field. However, in the spacetime of black hole with a global monopole, we find that the decay factor depends not only on the the multiple moment I and the mass /n, but also on the coupling between the scalar field and the background spacetime. Furthermore, the scalar field decays more rapidly as the coupled factor £ increases.
引文
[1] T. Regge and J. A. Wheeler, Stability of a Schwarzschild Singularity[J]. Phys. Rev., 1957, 108(4): 1063-1069.
    [2] R. Ruffini and J. A. Wheeler, Introducing the black hole[J]. Phys. Today., 1971, 24(1): 30-41.
    [3] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation[M]. San Francisco: Freeman, 1973.
    [4] J. D. Bekenstein, Black holes and entropy[J]. Phys. Rev. D, 1973, 7: 2333-2346.
    [5] 王永久,黑洞物理学[M].长沙:湖南师范大学出版社,2000:106-468.
    [6] 王永久,广义相对论和宇宙学[M].长沙;湖南科学技术出版社,2000:436-597.
    [7] F. J. Zerilli, Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordstrom geometry[J]. Phys. Rev. D, 1974, 9(4): 860-868.
    [8] S. Teukolsky, Rotating black holes-separable wave equations for gravitational and electromagnetic perturbations[J]. Phys. Rev. Lett., 1972, 29(16): 1114-1118.
    [9] K. D. Kokkotas and B. G. Schmidt, Quasi-normal modes of stars and black Holes[J]. Living Rev. Relativ., 1999, 2: 2.
    [10] H. P. Nollert, Quasinormal modes: the characteristic'sound' of black holes and neutron stars[J]. Class. Quant. Gray. 1999, 16: R159-R216.
    [11] C. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole[J]. Nature(London), 1970, 227(5261): 936-938.
    [12] B. Schutz and C. Will, Black hole normal modes-A semianalytic approach[J]. Astrophys. J., 1985, 291(2): L33-L36.
    [13] S. Iyer and C. M. Will, Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering[J]. Phys. Rev. D 1987, 35: 3621-3631
    [14] S. Iyer and C. M. Will, Black-hole normal modes: A WKB approach. Ⅱ. Schwarzschild black holes[J]. Phys. Rev. D 1987, 35: 3632-3636.
    [15] R. A. Konoplya, Quasinormal behavior of the D-dimensional Schwarzschild black hole and the higher order WKB approach[J]. Phys. Rev. D 2003, 68: 024018.
    [16] V. Ferrari and B. Mashoon, Oscillations of a Black Hole [J]. Phys. Rev. Lett.,1984, 52: 1361-1364.
    [17] V. Ferrari and B. Mashoon, New approach to the quasinormal modes of a black hole[J]. Phys. Rev. D, 1984, 30(2): 295-304.
    [18] E. Leaver, An analytic representation for quasi-normal modes of Kerr black holes[J]. Proc. R. Soc. London A, 1985, 402: 285-298.
    [19] P. Anninos, D. Hobill, E. Seidel, L. Smarr and W. M. Suen, Collision of two black holes [J]. Phys. Rev. Lett., 1993, 71: 2851-2854..
    [20] R. J. Gleiser, C. O. Nicasio, R. H. Price and J. Pullin, Colliding Black Holes:How Far Can the Close Approximation Go?[J]. Phys. Rev. Lett., 1996, 77:4483-4486.
    [21] F. Echeverria, Gravitational-wave measurements of the mass and angular momentum of a black hole [J]. Phys. Rev. D., 1984, 40: 3194.
    [22] L. S. Finn, Detection, measurement, and gravitational radiation [J]. Phys.Rev. D., 1992, 46: 5236-5249.
    [23] H. Nakano, H. Takahashi, H. Tagoshi, M. Sasaki, An effective search method for gravitational ringing of black holes [J] Phys.Rev. D., 2003, 68: 102003.
    [24] V. Cardoso, Quasinormal Modes and Gravitational Radiation in Black Hole Spacetimes[M]. PhD thesis;arXiv, 2004, gr-qc/0404093.
    [25] M. B. Green, J. H. Schwarz, E. Witten, Superstring theory [M], (Cambridge University Press, Cambridge, 1987);J. Polchinski, String theory[M], (Cambridge University Press, Cambridge, 1998).
    [26] Juan M. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity [J]. Adv. Theor. Math. Phys., 1998, 2: 231-252;Int. J. Theor.Phys., 1999, 38: 1113-1133;arXiv, 1997, hep-th/9711200.
    [27] D. Christodoulou, Reversible and Irreversible Transformations in Black-Hole Physics [J] Phys. Rev. Lett.,1970, 25: 1596-1597.
    [28] D. Christodoulou and R. Ruffini, Reversible Transformations of a Charged Black Hole [J] Phys. Rev. D, 1971, 4:3552 (1971).
    [29] S. Hod, Best Approximation to a Reversible Process in Black-Hole Physics and the Area Spectrum of Spherical Black Holes Phys.Rev. D,1999,59: 024014.
    [30] S. Hod, Bohr's Correspondence Principle and the Area Spectrum of Quantum Black Holes [J]. Phys. Rev. Lett., 1998, 81(20): 4293-4296.
    [31] H. P. Nollert, Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts[J] Phy. Rev. D 1993, 47: 5253-5258.
    [32] 0. Dreyer, Quasinormal Modes, the Area Spectrum, and Black Hole En-tropy[J] Phy. Rev. Lett.,2003, 90: 081301.
    [33] L. Motl, An analytical computation of asymptotic Schwarzschild quasi-normal frequencies [J] Adv. Theor. Math. Phys., 2003, 6: 1135-1162.
    [34] L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies [J] Adv. Theor. Math. Phys., 2003, 7: 307-330.
    [35] N. Andersson and C. J. Howls, The asymptotic quasinormal mode spectrum of non-rotating black holes [J] Class. Quantum Grav. 2004, 21: 1623-1642.
    [36] K. S. Thome, in Magic without Magic: John Archibald Wheeler[M]. Edited by J. Klauder, San Francisco: Freeman, 1972, p. 231.
    [37] E. Seidel and S. Iyer, Black-hole normal modes: A WKB approach. IV. Kerr black holes [J] Phys. Rev. D., 1990, 41: 374-382.
    [38] H. Onozawa, A detailed study of quasinormal frequencies of the Kerr black hole[J]. Phys.Rev. D55 (1997) 3593-3602
    [39] E. Berti, V. Cardoso and S. Yoshida Highly Damped Quasinormal Modes of Kerr Black Holes: A Complete Numerical Investigation [J]. Phys. Rev. D., 2004, 69: 124018
    [40] Jing Ji-Liang and Pan Qi-Yuan, Dirac Quasinormal frequencies of the Kerr-Newman black hole [J]. Nucl.Phys. B., 2005, 728: 109-120.
    [41] S. Hod, Late-time evolution of realistic rotating collapse and the no-hair theorem[J]. Phys. Rev. D, 1998, 58(10): 104022.
    [42] S. Hod, Radiative Tail of Realistic Rotating Gravitational Collapse[J]. Phys. Rev. Lett., 2000, 84(1): 10-13.
    [43] L. Barack and A. Ori, Late-Time Decay of Scalar Perturbations Outside Rotating Black Holes[J]. Phys. Rev. Lett., 1999, 82(22): 4388-4391.
    [44] L. Barack, Late time dynamics of scalar perturbations outside black holes. I. A shell toy model[J]. Phys. Rev. D, 1999, 59(4): 044016.
    [45] W. Krivan, Late-time dynamics of scalar fields on rotating black hole backgrounds[J]. Phys. Rev. D, 1999, 60(10): 101501.
    [46] L. M. Burko and G. Khanna, Radiative falloff in the background of rotating black holes[J]. Phys. Rev. D, 2003, 67(8): 081502(R).
    [47] L. M. Burko and G. Khanna, Universality of massive scalar field late-time tails in black-hole spacetimes[J]. Phys. Rev. D, 2004, 70(4): 044018.
    [48] Pan Qi-Yuan and Jing Ji-Liang, Late-time tails in a stationary axisymmetric EMDA black hole geometry[J]. Chin. Phys., 2005, 14(2): 268-273.
    [49] Pan Qi-Yuan and Jing Ji-Liang, Asymptotic Tails of Massive Scalar Fields in a Stationary Axisymmetric EMDA black hole geometry[J]. Chin. Phys. Lett., 2004, 21(10): 1873-1876;arXiv, 2004, gr-qc/0405129.
    [50] R. H. Price, Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations[J]. Phys. Rev. D, 1972, 5(10): 2419-2438.
    [51] R. H. Price, Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields[J]. Phys. Rev. D, 1972, 5(10): 2439-2454.
    [52] E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry [J]. Phys. Rev. D, 1986, 34(2): 384-408.
    [53] J. Bicak, Gravitational collapse with charge and small asymmetries. I. Scalar perturbations [J]. Gen. Relativ. Gravit., 1972, 3(4): 331-349.
    [54] C. Gundlach, R. H. Price and J. Pullin, Late-time behavior of stellar collapse and explosions. I. Linearized perturbations [J]. Phys. Rev. D, 1994, 49(2): 883-889.
    [55] C. Gundlach, R. H. Price and J. Pullin, Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution [J]. Phys. Rev. D, 1994, 49(2): 890-899.
    [56] E. S. C. Ching, P. T. Leung, W. M. Suen and K. Young, Wave propagation in gravitational systems: Late time behavior[J]. Phys. Rev. D, 1995, 52(4): 2118-2132.
    [57] N. Andersson, Evolving test fields in a black-hole geometry[J]. Phys. Rev. D, 1997, 55(2): 468-479.
    [58] L. M. Burko and A. Ori, Late-time evolution of nonlinear gravitational collapse[J]. Phys. Rev. D, 1997, 56(12): 7820-7832.
    [59] S. Hod and T. Piran, Late-time evolution of charged gravitational collapse and decay of charged scalar hair. I[J]. Phys. Rev. D, 1998, 58(2): 024017.
    [60] S. Hod and T. Piran, Late-time evolution of charged gravitational collapse and decay of charged scalar hair. II[J]. Phys. Rev. D, 1998, 58(2): 024018.
    [61] S. Hod and T. Piran, Late-time evolution of charged gravitational collapse and decay of charged scalar hair. III. Nonlinear analysis[J]. Phys. Rev. D, 1998, 58(2): 024019.
    [62] S. Hod and T. Piran, Late-time tails in gravitational collapse of a self-interacting (massive) scalar-field and decay of a self-interacting scalar hair[J]. Phys. Rev. D, 1998, 58(4): 044018.
    [63] H. Koyama and A. Tomimatsu, Asymptotic power-law tails of massive scalar fields in a Reissner-Nordstrom background[J]. Phys. Rev. D, 2001, 63(6): 064032.
    [64] H. Koyama and A. Tomimatsu, Asymptotic tails of massive scalar fields in a Schwarzschild background[J]. Phys. Rev. D, 2001, 64(4): 044014.
    [65] R. Moderski and M. Rogatko, Late-time evolution of a charged massless scalar field in the spacetime of a dilaton black hole[J]. Phys. Rev. D, 2001, 63(8): 084014.
    [66] R. Moderski and M. Rogatko, Late-time evolution of a self-interacting scalar field in the spacetime of a dilaton black hole[J]. Phys. Rev. D, 2001, 64(4): 044024.
    [67] Hongwei Yu, Decay of massive scalar hair in the background of a black hole with a global monopole[J]. Phys. Rev. D, 2002, 65(8): 087502.
    [68] H. Koyama and A. Tomimatsu, Slowly decaying tails of massive scalar fields in spherically symmetric spacetimes[J]. Phys. Rev. D, 2002, 65(8): 084031.
    [69] E. Poisson, Radiative falloff of a scalar field in a weakly curved spacetime without symmetries[J]. Phys. Rev. D, 2002, 66(4): 044008.
    [70] G. Fodor and I. Racz, Massive fields tend to form highly oscillating self-similarly expanding shells[J]. Phys. Rev. D, 2003, 68(4): 044022.
    [71] Vitor Cardoso, Shijun Yoshida, Oscar J. C. Dias and Jose P. S. Lemos, Late-time tails of wave propagation in higher dimensional spacetimes[J]. Phys. Rev. D, 2003, 68(6): 061503(R).
    [72] Jiliang Jing, Late-time behavior of massive Dirac fields in a Schwarzschild background[J]. Phys. Rev. D, 2004, 70(6): 065004.
    [73] Jiliang Jing, Late-time evolution of charged massive Dirac fields in the Reissner-Nordstrom black-hole background[J]. arXiv, 2004, gr-qc/0408090, accepted for publication in Phys. Rev. D.
    [74] L. Barack, Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry[J]. Phys. Rev. D, 1999, 59(4): 044017.
    [75] A. G. Riess et al.Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant [J], Astron. J. 1998, 116: 1009-1038;A. G. Riess et al.,Type Ia Supernova Discoveries at z>1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution [J] Astrophys. J. 2004, 607: 665-687
    [76] P. de Bernardis et al., A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation [J] Nature 2000, 404: 955-959;A. D. Miller et al. A Measurement of the Angular Power Spectrum of the CMB from 1 = 100 to 400 [J] Astrophys. J. Lett. 1999, 524: L1-L4.
    [77] R. Scranton et al. Physical Evidence for Dark Energy , astro-ph/0307335;M. Tegmark et al., Cosmological parameters from SDSS and WMAP[J] Phys. Rev. D, 2004, 69: 103501.
    [78] P. J. E. Peebles, B. Ratra, The cosmological constant and dark energy [J] Rev. Mod. Phys. 2003, 75: 559-606.
    [79] S. Weinberg, The cosmological constant problem [J] Rev. Mod. Phys. 1989, 61: 1-23.
    [80] B. Ratra and P. J. E. Peebles, Cosmological consequences of a rolling homogeneous scalar field [J] Phys. Rev. D 1988, 37: 3406-3427.
    [81] T. Chiba, T. Okabe and M. Yamaguchi, Kinetically driven quintessence [J] Phys. Rev. D, 2000, 62: 023511.
    [82] R. R. Caldwell, A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state [J] Phys. Lett. B 2002, 545: 23-29.
    [83] S. Nojiri and S. D. Odintsov, Quantum deSitter cosmology and phantom matter[J] Phys. Lett. B, 2003, 562: 147-152;S. Nojiri and S. D. Odintsov, deSitter brane universeinduced by phantom and quantum effects [J] Phys. Lett B, 2003, 565: 1-9 .
    [84] G. W. Gibbons and S. W. Hawking, Cosmological event horizons, thermodynamics, and particle creation[J] Phys. Rev. D, 1977, 15: 2738-2751.
    [85] S. Carlip, Statistical mechanics of the (2+1)-dimensional black hole [J] Phys. Rev. D, 1995, 51: 632-637;S. Carlip, Statistical mechanics of the three-dimensional Euclidean black hole[J] Phys. Rev. D, 1997, 55: 878-882.
    [86] S. Hawking, Breakdown of predictability in gravitational collapse [J] Phys. Rev. D 1976, 14: 2460-2473.
    [87] U. H. Danielsson, Quantum mechanics, common sense, and the black hole information paradox [J] Phys. Rev. D,1993, 48: 4779-4784.
    [88] S. Hod, Discrete Black-Hole Radiation and the Information Loss Paradox [J] Phys. Lett. A, 2002,299: 144-148.
    [89] J. D. Bekenstein, Universal upper bound on the entropy-to-energy ratio for bounded systems[J] Phys. Rev. D, 1981, 23: 287-298.
    [90] R. Bousso, The holographic principle [J] Rev. Mod. Phys. 2002,74: 825-874.
    [91] L. Susskind, The World as a Hologram [J] J. Math. Phys. 1995, 36: 6377-6396.
    [92] A. Zhidenko,Quasi-normal modes of Schwarzschild-de Sitter black holes, Class. Quant. Grav. 2004, 21: 273-280.
    [93] V. Cardoso and J. P. S. Lemos, Quasinormal modes of the near extremal Schwarzschild-de Sitter black hole, Phys.Rev. D, 2003,67: 084020.
    [94] C. Molina, Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant, Phys.Rev. D, 2003,68: 064007.
    [95] A. Maassen van den Brink, Approach to the extremal limit of the Schwarzschild-de Sitter black hole, Phys. Rev. D, 2003,68: 047501.
    [96] V. Suneeta, Quasinormal modes for the SdS black hole: an analytical approximation scheme, Phys.Rev. D, 2003, 68: 024020.
    [97] Jiliang Jing, Dirac quasinormal modes of the Reissner-Nordstr(o|¨)m de Sitter black hole, Phys.Rev. D, 2004, 69: 084009.
    [98] V. V. Kiselev, Quintessence and black holes[J] Class. Quant. Grav. 2003, 20: 1187-1198.
    [99] S. Chen and J. Jing, Quasinormal modes of a black hole surrounded by quintessence[J] Class.Quant.Grav. 2005, 22: 4651-4657.
    [100] W. G. Unruh, Experimental Black-Hole Evaporation?[J] Phys. Rev. Lett. 1981, 46: 1351-1353.
    [101] M. Novello and M. Visser, Artificial black holes[M],2002, editored by G. Volovik (World Scientific: Singapore).
    [102] M. Visser, Acoustic black holes: horizons, ergospheres, and Hawking radiation [J] Class. Quantum Grav. 1998, 15: 1767-1791.
    [103] T. K. Das, Transonic Black Hole Accretion as Analogue System [J] 2004: gr-qc / 0411006.
    [104] C. Barcel'o, S. Liberati and M. Visser, Towards the observation of Hawking radiation in Bose-Einstein condensates [J] Int. J. Mod. Phys. A 2003, 18: 3735-3738.
    [105] R. Schutzhold and W. G. Unruh, Hawking Radiation in an Electromagnetic Waveguide?[J] Phys. Rev. Lett. 2005, 95: 031301
    [106] H. Nakano, Y. Kurita, K. Ogawa and C. M. Yoo, Quasinormal ringing for acoustic black holes at low temperature[J] Phys. Rev. D 2005, 71: 084006.
    [107] V. Cardoso, J. P. S. Lemos and S.Yoshida, Quasinormal modes and stability of the rotating acoustic black hole: Numerical analysis [J] Phys. Rev. D 2004, 70: 124032.
    [108] S. Lepe and J. Saavedra, Quasinormal modes, Superradiance and Area Spectrum for 2+1 Acoustic Black Holes[J] Phys. Lett. B 2005, 617: 174-181.
    [109] E. Berti, V. Cardoso and J. P. S. Lemos, Quasinormal modes and classical wave propagation in analogue black holes [J] Phys. Rev. D 2004, 70: 124006.
    [110] S. Chen and J. Jing, Quasinormal modes of a coupled field in the acoustic black hole spacetime[J] Chin. Phys. Lett. 2006, 23(1): 21-24.
    [111] H. T. Cho, Dirac quasinormal modes in Schwarzschild black hole space-times[J] Phys. Rev. D 2003 68: 024003.
    [112] A. Zhidenko, Quasi-normal modes of Schwarzschild-de Sitter black holes [J] Class. Quant. Grav. 2004, 21: 273-280.
    [113] Jiliang Jing, Dirac quasinormal modes of the Reissner-Nordstrom de Sitter black hole [J] Phys. Rev. D 2004, 69: 084009.
    [114] K. H. C. Castello-Branco, R. A. Konoplya and A. Zhidenko, High overtones of Dirac perturbations of a Schwarzschild black hole[J] Phys. Rev. D,2005, 71: 047502.
    [115] Jiliang Jing, Dirac quasinormal modes of Schwarzschild black hole [J] Phys. Rev. D 2005, 71: 124006.
    [116] Jiliang Jing, Neutrino quasinormal modes of the Reissner-Nordstrom black hole[J] J. H. E. Phys. 2005, 0512: 005-015.
    [117] Jiliang Jing, Dirac quasinormal frequencies in Schwarzschild-AdS space-time[J] Phys. Rev. D 2005, 71: 024007.
    [118] Jiliang Jing and Qiyuan Pan, Dirac quasinormal frequencies of Schwarzschild-anti-de Sitter and Reissner-Nordstrom-anti-de Sitter black holes[J] Phys. Rev. D 2005, 71: 124011.
    [119] S. Chen and J. Jing, Dirac quasinormal modes of the Garfinkle-Horowitz- Strominger dilaton black hole spacetime[J] Class.Quant.Grav. 2005, 22: 1129-1141.
    [120] S. Chen and J. Jing, Quasinormal modes of Dirac fields in the dilaton black hole spacetime[J] 2006, 在审.
    [121] D. Garfinkle, G. T. Horowitz and A. Strominger, Charged black holes in string theory[J] Phys. Rev. D 1991, 43: 3140-3143.
    [122] D. R. Brill and J. A. Wheeler, Interaction of Neutrinos and Gravitational Fields [J] Rev. Mod. Phys, 1995, 29: 465-479.
    [123] A. Anderson and R. H. Price Intertwining of the equations of black-hole perturbations[J] Phys. Rev. D, 1991, 43: 3147.
    [124] S. Chen and J. Jing, Asymptotic quasinormal modes of the Garfinkle-Horowitz-Strominger dilaton black hole [J] Chin. Phys. Lett. 2004, 21(11): 2109-2112.
    [125] S. Chen and J. Jing, Asymptotic quasinormal modes of a coupled scalar field in the Garfinkle-Horowitz-Strominger dilaton spacetime [J] Class.Quant.Grav. 2005, 22: 533-540.
    [126] S. Chen and J. Jing, Asymptotic quasinormal modes of a coupled scalar field in the Gibbons-Maeda dilaton spacetime [J] Class.Quant.Grav. 2005, 22: 2159-2165.
    [127] S. Chen and J. Jing, Late-time behavior of a coupled scalar field in background of a Schwarzschild black hole with a global monopole[J], arxiv: 2005, gr-qc/0511098.
    [128] M. Barriola and A. Vilenkin, Gravitational field of a global monopole [J] Phys. Rev. Lett. 1989, 63: 341-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700