混合制冷剂HFC-161/227ea的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们全球环保意识的增强,传统型制冷剂的缺陷日益凸现,寻找环保的长期型替代制冷剂成为当前制冷空调领域的一个热点问题。根据课题组先期研究成果,本文确定以HFC-161为基础组元,通过引入阻燃组元HFC-227ea,重点展开了以下两项工作:
     (1)利用数据库Refprop,通过自编软件对二元混合制冷剂HFC-161/227ea的热工性能和循环性能进行计算,模拟和分析。理论计算表明:HFC-161/227ea的热工性能优良,虽然其循环冷量较其拟替代制冷剂R407C偏小,但其它关键循环性能参数如COP,排气温度等均大大优于R407C。进一步的理论计算发现,当HFC-161和HFC-227ea的质量组分达50/50时,其综合性能最优。
     (2)在电量热器制冷循环性能实验台上,分别对工质R407C和HFC-161/227ea(51.3/48.7 wt%)进行了变工况制冷性能测试。工况变化范围是:蒸发温度从-10℃变化到10℃,冷凝温度从35℃变化到54.4℃。分别得到了工质R407C和HFC-161/227ea(51.3/48.7 wt%)在上述工况范围内的一套完整的制冷循环基本参数。
     通过对比工质R407C和HFC-161/227ea(51.3/48.7 wt%)部分循环参数后发现:在上述工况范围内,HFC-161/227ea(51.3/48.7 wt%)的制冷量均小于R407C,在部分工况范围内,HFC-161/227ea(51.3/48.7 wt%)的COP优于R407C,其突出的循环性能优点是其排气温度低。
The disadvantages of the traditional refrigerants on environmental protection and the difficulties in exploring the pure refrigerant make alternative refrigerant researchers focus their eyes on HFCs mixtures.
     Among HFCs mixtures, HFC-161 is a kind of environmental benign refrigerant with excellent thermal properties. In this work, HFC-161 was employed as the main component, and HFC-227ea was introduced as an antiflaming component. The binary mixture HFC-161/227ea was first put forward as a new refrigerant mixture in this thesis.
     Thermal properties and cycle performance of HFC-161/227ea mixture were studied by a theoretical model. The calculation results show that the basic cycle performance parameters, such as COP and discharge temperature, overmatch R407C. Theoretical optimization on mixture ratio was conducted and the HFC-161/227ea (50/50 wt %) was recommended as the most potential alternative refrigerant to R407C.
     Under a set of working conditions, the head-to-head performance rating tests between HFC-161/227ea (51.3/48.7 wt %) and R407C were conducted on the electric calorimeter apparatus designed according to GB5773-2004.
     The experimental results confirmed that the discharge temperature of HFC-161/227ea (51.3/48.7 wt %) was enormously less than that of R407C in the whole test working conditions; the experimental results also confirmed that the refrigeration capacity of HFC-161/227ea (51.3/48.7 wt %) was less than that of R407C. The COP of the HFC-161/227ea (51.3/48.7 wt %) was not always higher than R407C in some of the test conditions.
引文
[1] Molina M J, Rowland FS. Stratospheric Sink for Chlorofluoromethane: Chlorine Atom Catalyzed Destruction of Ozone. Nature, 1974, 249: 810-812
    [2] http://www.ari.org/er/arep/intro.html
    [3] 李慧黎等.环保型制冷剂—氢氟烃的生产、性质及应应用.化学工业出版社,2003年6月
    [4] UNFCCC, United Nations framework convention on climate change, Kyoto protocol to the United Nations framework convention on climate change, FCCC/CP/L.7/add. 1, 1997, Kyoto
    [5] 吴业正,韩宝琦.制冷原理及设备.西安交通大学出版社,1997
    [6] 曹德胜,史琳.制冷剂使用手册.冶金工业出版社,2003
    [7] 丁国良,张春路.制冷空调新工质.上海交大出版社,2003
    [8] ARI, Air-Conditioning and Refrigeration Institute. ARI research plan. Virginia, U. S. A., March, 1992
    [9] Dongsoo Jung, Yongjae Song, Bongjin Park. Performance des mélanges de frigorigènes utilisés pour remplacer le HCFC22. Int J Refrigeration, 23 (2000) 466-474.
    [10] 杨昭,刘志刚等.新型HCFCs替代物筛选及性能实验.太阳能学报,1998,19(2):133-139
    [11] Douglas. D J, Braun. J E, Groll. E A, Tree. D R, A Cost-based method for comparing alternative refrigerants applied to R22 Systems. International Journal of Refrigeration, 1999, 222( ): 107-125
    [12] Kim M H, Bullard C W. Dynamic characteristics of a R-410A spilit air-conditioning system. Internationai Journal of Refrigeration, 2001, 247( ): 652-659
    [13] Sami S M, Dahmani A. Numerical prediction of dynamic performance of vapour-compression heat pump using new HFC alternatives to HCFC-22. Applied Thermal Engineering, 1996, 16 (8/9): 691-705
    [14] Sami S M, Tribes C. Numerical prediction of capillary tube behaviour and binary alternative refrigerants. Applied Thermal Engineering, 1998, 18 (6): 491-502
    [15] Aprea C, Greco A. Performance evaluation of R22 and R407C in a vapour compression plant with reciprocating compressor. Applied Thermal Engineering 2003, 23 (2): 215-227
    [16] Jongmin Choi, Yongchan Kim. Influence of the expansion device on the performance of a heat pump using R407C under a range of charging conditions. International Journal of Refrigeration, 2004, 274( ): 378-384
    [17] Dongsoo Jung, Hak-Jun Kim, etc. A study on the performance of multi-stage heat pumps using mixtures. International Journal of Refrigeration, 1999, 22 (5): 402-413
    [18] Dongsoo Jung, Yongjae Song, Bongjin Park. Performance des mélanges de frigorigènes utilisés pour remplacer le HCFC22. International Journal of Refrigeration, 2000, 23 (6): 466-474
    [19] Devotta S, Waghmare A V, Sawant N N, Domkundwar B M. Alternatives to HCFC-22 for air conditioners Applied Thermal Engineering, 2001, 216( ): 703-715
    [20] Stegou-Sagia A, Damanakis M. Binary and ternary blends of R-134a as alternative refrigerants to R-22. Energy Conversion & Management, 2000, 4113( ): 1345-1359
    [21] Kul I, Desmarteau D D, et al. Vapor-liquid equilibria of novel chemicals and their mixtures as R22 alternatives. Fluid Phase Equilibria, 2000, 173 (2): 263-276
    [22] Kul I, DesMarteau D D, Beyerlein A L. Vapor-liquid equilibria for CF_3OCF_2H/fluorinated ethane and CF_3SF_5/fluorinated ethane mixtures as potential R22 alternatives. Fluid Phase Equilibria, 2001, 185 (1-2): 241-253
    [23] Sekiya A, Misaki S. The potential ofhydrofluoroethers to replace CFCs, HCFCs and PFCs. Journal of Fluorine Chemistry, 2000, 101 (2): 215-221
    [24] 王文,史琳,朱明善.节能型环保制冷剂的热物性规律研究.流体机械,2001,294():46-49
    [25] 张昌,史琳等.THR01a制冷剂在汽车空调中替代R12的研究.汽车技术,2001,(2):16-19
    [26] 朱明善.CFC的替代物及我国的对策.化工进展,1993,(5):1-7
    [27] 史琳,赵晓宇,韩礼钟,朱明善.HCFC-22的替代物THR03的研究.工程热物理学报,1999,20 (5):538-541
    [28] 史琳,韩礼钟,朱明善,张青等.HCFC-22替代制冷剂THR03的试验研究.暖通空调,2000,30 (2):1-4
    [29] 段远源,史琳.三氟碘甲烷(CF_3I)的热物理性质.清华大学学报:自然科学版,2000,406():60-63
    [30] 段远源,史琳.1,1,1,2,3,3,3-七氟丙烷的热力性质.清华大学学报:自然科学版,2000,40 (10):73-76
    [31] 史琳,刘晓军等.1,1,1,2,3,3,3.七氟丙烷(HFC-227ea)的输运物性.清华大学学 报:自然科学版,2001,41 (6):81-84
    [32] 史琳,王文等.HFC-227ea热力学物性的分子动力学模拟.清华大学学报:自然科学版,2002,42 (10):1347-1349
    [33] 陈曙辉,郑飞,王剑锋,陈光明,HCFC22替代工质的吸收制冷特性,工程热物理学报,1999,20 (4):410-412
    [34] Chen Qi, Hong Rong-hua, Chen Guang-ming, PVTx properties in the gas phase for binary HFC-161/125system, Fluid Phase Equilibria, 2006, 240(1): 63-66
    [35] Xuan Yongmei, Chen Guangming, Experimental study on HFC-161 mixture as an alternative refrigerant to R502, International Journal of Refrigeration, 2005, 28(3): 436-441
    [36] 宣永梅,陈光明,陈斌,王勤.一种替代HCFC-22新型替代制冷剂的实验研究.工程热物理学报,2004,25 (2):201-204
    [37] 张锐,陈光明.R502新型替代制冷剂爆炸极限实验研究,爆炸与冲击,2005,25(2):189-192
    [38] 韩晓红,陈光明,崔晓龙,王勤.新型混合替代制冷剂R125/R161的汽液相平衡.中国制冷学会2006年制冷空调学术年会论文集(昆明),2005(10):67-71
    [39] Chen Qi, Hong Rong-hua, Chen Guang-ming, Vapor pressure measurements of ethyl fluoride, Journal of Chemical and Engineering Data, 2005, 50 (5): 1586-1588
    [40] 宣永梅,新型替代制冷剂的理论及实验研究.[博士论文]杭州:浙江大学,2004年5月
    [41] 蒋能照,HCFC22替代技术的进展,制冷技术1997 (4):25-26
    [42] 谭周芳等.家用空调器工质R22的替代研究,制冷,1996 (1):15-19
    [43] 吴植华等.有家用空调中用丙烷(R290)替代R22的研究(二),制冷技术,1998 (3):10-12
    [44] 刘宪英.房间空调器应用HFC32/HFC152a非共沸混合工质的试验.制冷技术,1996 (2):7-14
    [45] 扬昭等.七种新的R22替代物的变工况性能分析及实验,制冷学报,1997 (1):7-12
    [46] 何茂刚,刘志刚等.新型环保制冷剂氟化醚类物质的热力学分析.工程热物理学报,2002,22 (2):145-147
    [47] Yang Z, Ma Y T, et al. The performance of some substitutes for HCFC22 under varying operating conditions. Applied Thermal Engineering, 1999, 19 (7): 801-806
    [48] 王怀信等.HCs在空调系统中替代HCFC22研究.天津大学学报,2001 (4):430-434
    [49] 王怀信,李丽新,王康迪,赵兴.小型空调系统中碳氢化合物替代HCFC22的研究.太阳能学报,2002,231():11-16
    [50] 史琳,朱明善等,制冷空调新技术进展,上海交大出版社,2003
    [51] Calm JM, Didion D A. Trade-offs in refrigerant selections: past present,and future. Int J. Refrig., 1998, 21(4): 308-321
    [52] 龙恩深,冷热源工程,重庆大学出版社,2002,
    [53] 俞炳丰,制冷与空调应用新技术,化工工业出版社,2002,39-40:13-15
    [54] 田贯三.可燃制冷剂爆炸理论于燃烧爆炸抑制机理的研究.[博士论文]天津:天津大学,2000
    [55] Calm J. M. and Hourahan G. C., Refrigerant Data Update, Heating/Piping/Air Conditioning Engineering,, 2007, 179(1): 50-64
    [56] 王怀信,李海龙,马利敏.碳氢化合物/阻燃剂混合工质替代HCFC22的研究.工程热物理学报.2003,24(1):13-18
    [57] NIST (National Institute of Science and Technology) Standard Reference Database 23, Version 7.0.2002
    [58] Reed TM, Gubbins K E. Applied Statistical Mechanics. McGraw-Hill, New York, 1973
    [59] Bett K E, Rowlinson J W. Saville G. Thermodynamics for Chemical Engineers. The MIT Press, Cambridge, MA, 1975
    [60] Leland T W, Chappelear P S. The corresponding states principle. Ind Eng Chem, 1968, 80: 249-261
    [61] Huber M L, Ely J F. A predictive extended corresponding states model for pure and mixed refrigerants including an equation of state for R134a. International Journal of Refrigeration, 1994, 17 (1): 18-31
    [62] 中广玉,露点法和中点法确定R407C压缩机性能测试工况点之比较,制冷与空调,2002,2 (1):55-57
    [63] 马一太等,多元混合工质筛选及配比原则的研究,工程热物理学报,1997,18(1):17-20
    [64] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.容积式制冷剂压缩机性能试验方法.2004-06-09发布
    [65] 王怀信,郑臣明,马利敏.工质循环性能性能实验的客观性探讨,化工学报,2005,56(2):215-219
    [66] 王怀信,马利敏,王继宵.工质循环性能对比实验评价方法的改进探讨,中国工程热物理学会学术会议论文集(2006):822-829

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700