不同制冷工质在螺旋槽花瓣形翅片管管外的冷凝传热强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了饱和蒸汽温度为39℃时,不同制冷工质R22、R134a、R410A和R407C在紫铜光管和螺旋槽花瓣形翅片管管外的冷凝传热性能。文章通过对实验数据的处理和对实验结果的分析,为螺旋槽花瓣形翅片管的工业应用提供一定的参考数据。
     通过测量各实验管进出口温度、管外饱和蒸汽温度,计算出各实验管的总传热系数,利用威尔逊图解法分离得出螺旋槽花瓣形翅片管管内对流传热系数。再由分离出的公式计算出管外冷凝传热系数。通过误差传递公式,对以实验数据计算得出的螺旋槽花瓣形翅片管的总传热系数K的相对误差进行了分析,结果表明:本实验冷凝器的总传热系数K的相对误差为2.05%。
     通过改变冷凝温度、冷热水的进出口温度,考察了各制冷工质的总传热系数、管外冷凝传热系数以及管内外热阻等参数。由于螺旋槽花瓣形翅片管能够有效切割管外冷凝液膜,降低传递热阻,螺旋槽花瓣形翅片管有效的提高了R22、R134a、R410A和R407C的管外冷凝传热性能,在相同的壁温差下,R22、R134a、R410A和R407C在螺旋槽花瓣形翅片管管外的冷凝传热系数是紫铜光管的8.60~13.16倍、7.76~11.54倍、10.14~16.28倍、5.52~5.82倍;在相同的热负荷下,螺旋槽花瓣形翅片管对各制冷工质总传热系数明显大于紫铜光管;在实验范围内,各实验管外的冷凝传热系数R410A>R22>R134a>R407C,这主要是由制冷工质的热物理性质决定的,热物理性质强的制冷工质在管外的冷凝传热系数要大于热物理性质弱的;对实验管内外热阻进行分析,发现对于R22、R134a和R410A,在管内雷诺数约小于28000时,冷凝时螺旋槽花瓣形翅片管的管内热阻占主导,是冷凝过程的控制热阻;在管内雷诺数约大于28000时,R22冷凝时螺旋槽花瓣形翅片管的管外热阻占主导,是冷凝过程的控制热阻;对于R407C,在实验范围内,螺旋槽花瓣形翅片管的管外热阻占主导,管外热阻是冷凝过程的控制热阻。
In this paper, the condensation heat transfer performance of R22, R134a, R407C and R410A on a purple copper plain tube and a helical groove petal-shaped fin tube were investigated at saturation temperature of 39℃. By means of processing experimental data and analyzing the experimental results, the reference data of helical groove petal-shaped fin tubes for industrial applications was provided.
     By means of measuring inlet and outlet temperature of each experimental tube, saturated vapour condensation temperature outside of each tube, the overall heat transfer coefficient of each experimental tube was calculated. Besides, the convection heat transfer coefficient was obtained by using wilson plot technology. The heat transfer coefficients(HTCs) on each tube were calculated by the formula of seperation. What’s more, basing on the Erro-transmission formula, a relative errors of overall heat transfer coefficient K have been analyzed. A final results show that relative errors of K is 2.05%.
     By means of altering condensing temperature, inlet and outlet temperature of each experimental tube, the overall heat transfer coefficient,condensation HTCs and thermal resistance were discussed. The experiment results show that the helical groove petal-shaped fin tube could improve the heat transfer performance of R22, R134a, R407C and R410A effectively, for the reason that a helical groove petal-shaped fin tube could cuts condensation film which is outside of a tube and reduce transfer resistance. Under a same temperature difference between outside-inside pipe, the condensation HTCs of R22, R134a, R407C and R410A on a helical groove petal-shaped fin tube are 8.60~13.16, 7.76~11.54, 10.14~16.28 and 5.52~5.58 times than those on a purple copper plain tube; Under the same heat load, the overall heat transfer coefficient of a helical groove petal-shaped fin tube is larger than a purple copper plain tube obviously; In the experimental range, the HTCs on each tube show that R410A>R22>R134a>R407C, which depend on a thermophysical properties; for R22, R134a and R410A, the inside thermal resistance of the enhanced tubes is the main resistance when Reynolds number is less than 28000, the outside thermal resistance of the enhanced tubes is the main resistance when Reynolds number is less than 28000. For R407C, the outside thermal resistance of the enhanced tubes is the main resistance.
引文
[1]王志勇,刘泽华等.基于建筑环境的空调系统设计及节能分析,建筑热能通风空调. 2004(2): 54-57
    [2]国家统计局,中国统计年鉴2005[M].北京:国统计出版社, 2005.
    [3] Hwang,P.An experimental evaluation of flammable and non-flammable high pressure HFC replacements for R22[J].Proceedings of a 1995 International Refrigeration Conference. Purdue,1995:21-26.
    [4] Murphey,F.Comparison of R-407C and R410A with R22 in a10.5kW(3.0 TR) residential central air-conditioner[J].1995 International CFC and Halon Alternatives Conference&Exhibition. 1995:31-38.
    [5] Feldman,S.Energy consumption and TEWI conparison of R410A and R22 in a residential heat pump[J].Ptoceedings of a International CFC and Halon Alternative Conference,Washington DC,1995:359-368.
    [6] Linton,J.Conparison of R-407C and R410A with R22 in a 10.5 kW(3.0 TR) residential central air-conditioner[J]. Proceedings of a 1996 International Refrigeration Conference. Purdue, 1996:1-6.
    [7]徐敬东,R22替代物的分类和概述,四川制冷,1992(2)
    [8] Dongsoo Jung, Yongjae Song, Bongjin Park. Performance des meA langes de frigorigeA nesutiliseA s pour remplacer le HCFC22, International Journal of Refrigeration, 23(2000)466-474
    [9] Greco A, Experimental plant for testing R22 substitutes. In: Ree H V.19thInt. Congress of Ref. paris: 1995, IV b: 825-832
    [10] Air-conditioning and Refrigeration Institute. R22 and R502 Alternative Refrigerants Evaluation program. 1992-1997, Arlington, VA
    [11]陈斌,陈光明. R407C, R410A系统热力性能综述[ J].制冷,2003,22(3):24-30
    [12] UNEP, OzonAction, 1992-2001, (4-39)
    [13]牟春燕,崔胜民,李刚.汽车空调制冷工质R134a取代R12的分析研究[J].交通标准化, 2005(8): 21-23
    [14] Dongs oo Jung ,Chong 2Bo K im ,etc. Condensation heat transfer coefficients of R22 ,R407C and R410A on a horizontal plain , low fin , and turbo 2C tubes [J] Int. J. of Refrig, 2003 , 26 :48524911
    [15] http://www.air.org
    [16]陈敏恒,丛得滋,方图南,等.化工原理.上册[M].北京:化学工业出版社, 1998
    [17]杨世铭,陶文铨.传热学[M].北京:高等教育出版社, 1998, 205-215
    [18] Nusselt W. Die Oberflachencondensation dws Wasserdampfes. VDI,1916,60: 541-569
    [19] Collier J G, Thome J R. Convective boiling and condensation. 3rd ed. Oxford:Clarerdon Press,1994.169-219.
    [20]马学虎,汪明蜇,兰忠,王四芳,李晓楠.表面纳米结构及其自由能对滴状冷凝传热的影响.工程热物理学报,2009,30(10):1752-1754.
    [21]王贤林.低温冷凝实验研究[J].硕士论文.2005.
    [22] Maheshwari N K,Saha D,Sinha R K,Aritomi M.Investigation011 condensation in presence of a noncondensable gas for a、析de range of Reynolds number[J].Nuclear Engineering and Design,2@M,227(2):2 19-238.
    [23] Anasawa I,Ochiai J,Utaka Y,etal,JSME(B),1976,42.2846
    [24] W. Nusselt, Die Oberflachenkondensation Des Wasserdampfes. Z. Vereines Deutsch. Ing. 1916, 60: 541-546, 569-575
    [25] B. S. Yilbas, N. Altuntop. Condensation Heat Transfer of Freon-21 on Plain Horizontal Tubes. Indian Journal of Technology. 1990, 28:100-106.
    [26] B. Cheng, W. Q. Tao. Experimental Study of R-152a Film Condensation on Single Horizontal Smooth Tube and Enhance Tubes. Journal of Heat Transfer. 1994, 116:266-270
    [27] M. Belghazi, A. Bontemps, J. C. Signe, et al. Condensation Heat Transfer of a Pure Fluid and Binary Mixture outside a Bundle of Smooth Horizontal Tubes: Comparison of Experimental Results and a Classical Model. International Journal of Refrigeration. 2001, 24: 841-855
    [28] W. W. Huebsch, M. B. Pate. A Comparative Study of Shell-Slide Condensation on Integral-Fin tubes with R114 and R236ea. AHSRAE Transaction: Research. 2004, 40-52
    [29] Bwlghazi. Armophysical properties of binary liquid mixtures of polyear and n-alkane[J]. Fluid Phase Equilibria, 1999, 164(2):225-255
    [30] W. Y. Cheng, C. C. Wang, Y. Z. Hu. Film Condensation of HCFC-22 on Horizontal Enhanced Tubes. International Communications in Heat Transefr. 1996, (23): 79-90
    [31]张正国,林培森,王世平.花瓣形翅片管的开发及其纵向冲刷冷凝强化传热的研究.石油化工设备. 1996, 25(3): 3-6
    [32] L. E. Rewert, J. B. Huber, M. B. Pate. A Eeffct of R-123 Condenste Inundation and VaPour Enhanced Tube Geometries. AHSRAE Transaction 102 Part2. 1996: 273- 284
    [33] L. E. Rewert, J. B. Huber, M. B. Pate. A Eeffct of R-134a Inundation on Enhanced Tube Geometries. AHSRAE Transaction 102 Part2. 1996: 285- 296
    [34]彭海涛,李芳明,李斌. R22饱和蒸气在水平双侧强化管外冷凝换热的实验研究.西安交通大学学报. 1997, 31(2): 51-56
    [35]马济成,陈瑞球,陈蓓蕾,等.双侧强化换热高效冷凝管的实验研究.天津商学院学报. 1997, (4): 6-10
    [36] M. Belghazi, A. Bontemps, C.Marvillet. Condensation Heat Transfer on Enhanced Surface Tubes: Experimental Results and Predictive Aory. Journal of Heat Transfer. 2002, 124:754~761
    [37] H. Honda, N. Takata, H. Takamatsu, et al. Condensation of Downward-Flowing HFC-134a in a Staggered Bundle of Horizontal Finned Tubes: Eeffct of Fin Geometry. International Journal of Rerfigeration. 2002, 25: 3-10
    [38] D. L. Randall, S. J. Eckels. Effect of Iinundation upon Condensation Heat Transfer Performance of R-134a: Part I-Facility Overview and Data Analysis. International Journal of HVAC&R Research. 2005, 11(4): 527~54
    [39] D. L. Randall, S. J. Eckels. Effect of Inundation upon Condensation Heat Transfer Performance of R-134a: Part II-Results. International Journal of HVAC&R Research. 2005, 11(4): 543~56
    [40] D. Gstoehl, J. R. Thome. Film Condensation of R-134a on Tube Array with Plain and Enhanced Surfaces: Part II-Empirical Prediction of Inundation Effects. Journal of Heat Transfer. 2006, 128: 33-43
    [41]周光辉,张定才. R134a在水平强化管外凝结换热的实验研究[J].制冷学报, 2006, 27(6): 1865-1868
    [42] Chamra, Louay M, Pedro J. Mago. Modeling of Condensation heat transfer of refrigerantmixture in mixture in micro-fin tubes[J]. International Journal of Heat and Mass Transfer. 2006. 49(11-12): 1915-1921
    [43] Chamra, Louay M, Pedro J. Mago, Meng-Onn Tan, Chea-Chun Kung. Modeling of Condensation heat transfer of pure refrigerant in micro-fin tubes[J]. International Journal of Heat and Mass Transfer. 2005. 48(7):1293-1302
    [44] Chamra, R. L. Webb, M. R. Randlett. Advanced micro-fin tubes for condensation[J]. International Journal of Heat and Mass Transfer. 1996. 39(9): 1839-1846
    [45] Chamra, R. L. Webb, M. R. Randlett. Advanced micro-fin tubes for condensation[J]. International Journal of Heat and Mass Transfer. 1996. 39(9): 1827-1838
    [46] Chamra, Louay M, Pedro J. Mago, Meng-Onn Tan, Chea-Chun Kung. Evaluation of existing condensation heat transfer models in horizontal micro-fin tubes[J]. Experimental Armal and Fluid Science. 2004. 28(6): 617-628
    [47] Rin Yun, Jaehyeok Heo, Yongchan Kim. Film condensation heat transfer characteristics of R134a on horizontal stainless steel integral-fin tubes at low heat transfer rate[J]. International Journal of Refrigeration, 2009,32(5): 865-873
    [48] J. Mitrovic. Condensation of pure refrigerants R12, R134a and air mixture on a horizontal tube with capillary structure: An experimental study[J]. Forsch Ingenieurwes, 1999, (64): 345-359.
    [49] Ravi kumar, H. K. Varma, K. N. Agrawal, Bikash mohanty. A Comprehensive Study of Modified Wi lson Plot Technique to Determine a Heat Transfer Coefficient during Condensation of Steam and R-134a over Single Horizontal Plain and Finned Tubes[J]. HeatT ransfer Engineering, 2001,22:3-12
    [50] Dongsoo Jung,Youngmok Cho,Kiho Park. Flow condensation heat transfer coeffcients of R22, R134a, R407C, and R410A inside plain and microfin tubes[J]. International Journal of Refrigeration, 2004, 27: 25-32
    [51] Ki-JungPark, DongsooJung. Optimum fin density of low fin tubes for a condensers of building chillers with HCFC123[J]. Energy Conversion and Management,2008,49:2090-2094
    [52] Man-Hoe Kim,Joeng-Seob Shin. Condensation heat transfer of R22 and R410A in horizontal smooth and microfin tubes[J]. 2005, 28: 949-957
    [53]王学印,王凯,张玲. R134a在水平直齿外翅片管表面冷凝传热实验研究[J].制冷学报,2006, 27(6): 1865-1868
    [54]刘文毅,李妩,陶文铨.替代工质R123水平强化单管外凝结换热实验研究[J].现代电力,2005,22(1):52-55
    [55] Dongsoo Jung,Youngmok Cho,Kiho Park. Flow condensation heat transfer coecients of R22,R134a, R407C, and R410A inside plain and microfin tubes[J]. International Journal ofRefrigeration, 2004, 27: 25-32
    [56] Dongsoo Jung and so on. Condensation heat transfer coecients of R22, R407C, and R410Aon a horizontal plain, low fin, and turbo-Ctubes[J]. International Journal of Refrigeration, 2003,26: 485-491
    [57] Ki-Jung Park, Dongsoo Jung. Condensation Heat Transfer Coefficients of HCFC22, R410A,R407C and HFC134a at Various Temperatures on a Plain Horizontal Tube[J]. Journal ofMechanical Science and Technology, 2007, 21: 804-813
    [58]武永强,罗忠. R410A和R22在水平强化管内的蒸发和冷凝性能[J].工程热物理学报, 2006,27(2):292-294
    [59]段雪涛,高凤玲,邬志敏,王芳. R410A替代R22空调蒸发器的换热性能[J].河南科技大学学报:自然科学版, 2009, 30(2): 54-61
    [60] Zhang Huiyong, Li Junming, Wang Buxuan. Experimental investigation on condensation heattransfer of R22 and R410a in microtubes[J]. Chinese Journal of Mechanical Engineering,2008,44(3):70-74
    [61] Dongsoo Jung, et al. Condensation heat transfer coefficients of binary HFC mixtures on Lowfin and Turbo-Ctubes[J]. International Journal of Refrigeration, 2005, 28: 212-217
    [62]张正国,文磊,高学农,丁静. R407C水冷冷凝器传热强化的实验研究[J].工程热物理学报, 2002, 23(4): 482-484
    [63] Louay M. Chamra, Pedro J.Mago. Modeling of condensation heat transfer of refrigerantmixture in micro-fin tubes[J]. International Journal of Heat and Mass Transfer, 2006, 49:1915-1921
    [64] Tord Karlsson, Lennart Vamling. Reasons for drop in shell-and-tube condenserperformanceWhen replacing R22 withz eotropic mixtures. Part 2: investigation of mass transferresistance effects[J]. International Journal of Refrigeration, 2004, 27: 561-566
    [65]陈海波等.非共沸混合工质的冷凝强化传热研究[J].化工进展,2001,12:8-11
    [66] J. H. Lee, S. W. Bae. Experimental and numerical research on condenser performance for R-22and R-407 Crefrigerants[J]. International Journal of Refrigeration. 2002, 25: 372-382
    [67]成昌锐,王秋旺等. R40C在水平单管外凝结换热的实验研究[J].工程热物理学报,2001,22(增刊):50-52
    [68] Dave Sajjan,Tord Karlsson. Reasons for drop in shell-and-tube condenser performance Whenreplacing R22 with zeotropic mixtures.Part1.Analysis of experimental findings[J]. InternationalJournal of Refrigeration, 2004, 24: 552-560
    [69] Wang H S, Honda H. Condensation of refrigerants in horizontal microfin tubes-comparison ofprediction methods for heat transfer[J]. Int. J. of Refrig, 2003, 26:4 52-460
    [70] Mvan-Hoe Kim, Joeng-Seob Shin. Condensation heat transfer of R22 and R410A in horizontalsmooth and microfin tubes. International Journal of Refrigeration[J]. 28(2005): 949-957
    [71] K. O. Beatty, D. L. Katz. Condensation of Vapours on Outside of Finned Tubes. ChemicalEngineering Progress. 1948, 44(1): 55-70
    [72] V. A. Karkhu, V. P. Borovkov. Film Condensation of Vapour at Finely-Finned Horizontal Tubes.Heat Transfer-Soviet Research. 1971, (3):183-191
    [73] R. G. Sardesai, R. G. Owen, R. A. Smith. IChemE. SymP. Series.1983, 75: 415-428
    [74] J. W. Rose. An Approximate Equation for a Vapour-side Heat Transfer Coefficient forCondensation on Low-Finned Tubes. International Journal of Heat and Mass Transfer. 1994,37(1): 865-875
    [75] A. Briggs, J. W. Rose. Effect of Fin Efficiency on a Model for Condensation Heat Transfer on aHorizontal Integral-Fin Tube. International Journal of Heat and Mass Transfer. 1994, 37(1):457-463
    [76]王晓璐.螺旋槽管在冷凝器中的应用.郑州纺织工学院学报. 1995, 6(4):15-20
    [77]顾红芳,孙丹,章燕谋,等.水平螺旋管外V型槽强化冷凝换热的理论研究.西安交通大学学报. 1997, 33(7): 57-61
    [78] M. Belghazi, A. Bontemps, C. Marvillet. Condensation Heat Transfer on Enhanced SurfaceTubes: Experimental Results and Predictive Aory. Journal of Heat Transfer. 2002, 124: 754-761
    [79]张立强,公茂琼,吴剑峰,徐烈.低温共沸混合工质HC170 /HFC23池沸腾传热实验研究[J].低温物理学报,2007,29(1):38-41
    [80]陈民,陶文铨.西安交通大学学报, 1994, 26(6): 74-79
    [81] D. L Randall, S. J. Eckels. Effect of Inundation upon Condensation Heat Transfer Performance of R-134a: PartⅡ-Results. International Journal of HVAC&R Research. 2005, 11(4): 543-562
    [82]思勤等.多组分蒸汽在水平管内冷凝传热的算方法及验证[J].化学工程,1988, 16 (6) : 16~21
    [83]冯健美,屈宗长,王迪生.混合制冷工质蒸气冷凝换热计算[J].流体机械, 2001, 29(1):56-58
    [84] E. E. Wilson. A basis for rational design of heat transfer apparatus, ASME J. Heat Transfer, 1915(37): 47-82
    [85] Iwabuchi,M.et al.日本冷冻协会论文集,1991,8(1):83-90
    [86]梁晋文,陈林才,何贡.误差理论与数据处理[M].北京:中国计量出版社, 1989
    [87]吕崇德.热工参数测量与处理[M].第二版.北京:清华大学出版社, 2001
    [88]吴道娣.非电量电测技术[M].第二版.西安:西安交通大学出版社, 2001
    [89] Ki-Jung Park, Dongsoo Jung. External condensation heat transfer coefficients of R22 alternative refrigerants on enhanced tubes at three saturation temperatures. Journal of Mechanical Engineering Science, 2008(222): 987-994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700