翅片管换热器流程布置的数值计算与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能效是表征空调制冷设备质量的重要指标,提高空调设备能效指标的途径主要有:提高压缩机的性能和提高换热器的性能。对空调设备生产厂家来说,提高压缩机性能只能是选用性能比高的压缩机,因此,提高空调设备的能效比的主要途径之一是提高换热器的性能。
     本文首先建立了翅片管式蒸发器和冷凝器空气侧流动与传热模型以及制冷剂侧流动与传热模型,并基于VB.NET编程语言、Refprop制冷剂物性数据库和空气焓湿图开发了面向对象的蒸发器和冷凝器仿真模拟软件。并通过课题组搭建的翅片管换热性能实验台对蒸发器仿真模拟软件进行了准确性验证。实验结果表明:在相同工况下,仿真计算结果与实验结果基本上吻合,而且变化趋势也相同,证明了本仿真模型和算法是可靠的,计算精度可以满足工程应用上的需要。
     本文利用作者开发并通过实验验证的蒸发器仿真软件对蒸发器性能进行了仿真模拟计算,研究了管排数对换热性能的影响,管排数在不同迎面风速,不同风机功率下换热性能的影响规律,以及对比分析了管排数对R410A和R22换热器换热性能的影响。研究结果表明:每增加1排管,每排管的平均换热量减少18%左右,增加到7排管时,平均每排管换热量相对于3排管时的平均换热量降低了55%。这说明增加管排数尽管增大了传热面积,但不能使总换热量显著增加,因此并不是一种经济的增加换热量的方式。另外还得出:在相同条件下,制冷剂为R410A的换热量比R22大5%左右,管排数对使用这两种制冷剂的蒸发器换热性能影响趋势一致。
     本文还利用冷凝器仿真软件对翅片管式冷凝器性能进行了仿真计算研究,由于冷凝器空气侧只有干工况的情况,算法比蒸发器略简单。通过计算得出结论:当管排数增加到一定程度,管排数对压降的影响越来越小;增加管排数后,管后涡流区的范围会扩大,增强了其对换热的恶化作用,导致换热量的增加量越来越小;冷凝液膜所形成的制冷剂侧热阻对换热系数的影响较大,应及时将冷凝液排走,有助于强化管内侧换热性能。管排数增加到一定程度时,换热量变化很小,因此从成本经济性方面考虑,冷凝器设计中管排数一般不超过6排。
Energy efficiency is one of the most important indexes of air conditioning and refrigeration equipment. The measure to improve the energy efficiency mainly focuses on two aspects: one step is to enhance the performance of the compressor, and the other is to improve the heat exchanger’s performance. As to manufacturers, the former means to choose efficient compressors only. Therefore, the improvement of the heat exchanger’s performance can be one of the main ways to increase the air conditioning equipment’s energy efficiency ratio.
     The flow models and the heat transfer models have been firstly established in this paper, both on the air side and the refrigerant side of the fin–tube evaporator and condenser. Then, based on the refrigerants property database of Refprop7.0 and the enthalpy moisture graph of air, the object–oriented simulation calculation software of the heat exchangers was developed with VB.NET. And also, a wind–tunnel experiment apparatus was set up to test the accuracy of the evaporator software. Comparisons were conducted between simulation results and data from experiment. In the same condition, they are almost equal and have identical changing tendency. The results show that the software has a good accuracy. Therefore, the software can meet the needs of engineer applications.
     The evaporator simulation was conducted with the above software which has been validated by experiment. The influence and its law of number of tube rows on the heat transfer performances of evaporator were respectively analyzed at different head–on airflows and at different fan power. And also, comparative analysis of the above influence was conducted among the heat exchangers using R410A and using R22.The results indicated that the average heat transfer rate of each tube row reduces about 18% for one row added, and the row up to seven, the average value decreases 55%, relatively to three rows of tubes. The results showed that the total heat transfer rate increases indistinctively as number of tube rows increases, though the heat transfer area is enlarged. Therefore, increasing simply the row of tube is not an economic method. Besides, it also concluded that the total heat transfer of the evaporator using R410A is 5% larger than that using R22 in the same condition, but with uniform trend as the tube row increased.
     Similarly, the Fin–Tube condenser simulation was carried out with the condenser software. Its calculation is simpler than the evaporator, due to dry condition in the air side. The results indicated that the impact of the tube row on pressure drop become smaller and smaller with increase of the tube row, through the emulating calculation. Also, as the row increasing, the area of vortex expanded and led to reinforce the deterioration effect on heat transfer. Therefore, the increment of total heat transfer got less and less. The condensate should be drained off promptly to improve the heat transfer performance of the interior of tubes, since the thermal resistance formed by liquid film has great effect on the heat transfer coefficient. Generally, economy of operation normally requires that the number of tube rows should be less than six in design of condenser.
引文
[1]胡海涛.第五届全国制冷空调新技术会议反映的研究热点[J].制冷技术, 2008, (4): 19–25
    [2]邓斌,陶文铨,林澜.冷凝器流程布置的数值模拟研究(1) :数学模型的建立与验证[J].暖通空调, 2006, 36(2): 47–50
    [3]王鑫等.近年来国内外制冷剂的研究状况[J].暖通空调, 2007, 37(10): 40–43
    [4]姜盈霓,虎小红.流程布置对翅片管换热器换热性能影响的研究现状与展望[J].制冷与空调, 2007, 7(3): 14–20
    [5] S D Goldstein. A mathematically complete analysis of plate fin heat exchangers [J]. ASHR– AE Transaction, 1983, 89 (2A): 447–470
    [6] A A Agenda, J E R Coney, et al. A comparison of the predicted and experimental heat transfer performance of a finned tube evaporator [J]. Applied Thermal Engineering, 2000, 20 (6): 499–513
    [7] S Y Liang, T N Wong, G K Nathan. Study on refrigerant circuitry of condenser coils with energy destruction [J]. Applied Thermal Engineering, 2000, 20 (6): 559–577
    [8] C C Wang, Jiang, J Y Lai C C, et al. Effect of circuit arrangement on the performance of air cooled condensers [J]. International Journal of Refrigeration, 1999, 22 (6):275–282
    [9]张智.制冷剂流路对冷凝器换热特性的影响[J].暖通空调, 2002, 32(5): 61–63
    [10]郭进军.管路流程布置对换热器性能影响的数值模拟及试验研究[D].西安:西安交通大学,2003
    [11]陈蕴光.单回路不同布置形式的风冷冷凝器的模拟计算与分析[J].西安交通大学学报, 2003, 37 (11): 1186–1189
    [12]刘建.对具有复杂流路布置的翅片管换热器的性能仿真与分析[J].化工学报,2005, 56(1):47–56
    [13]邓斌,陶文铨,林澜.蒸发器流程布置的数值模拟研究与分析[J].制冷学报, 2006, 27(1): 28–33
    [14]韩维哲,丁国良翅片管式蒸发器流程布置的优化改进与实验验证.上海市制冷学会2007年学术年会,2007:78–81
    [15]肖彪.翅片管式换热器制冷剂流路对换热特性影响的实验研究[J].家电科技, 2008,(23): 60–62
    [16]邓斌. R22替代工质蒸发器的性能研究[J].低温与导热, 2005, 23(2): 15–19
    [17]申广玉.露点法和中点法确定R407C压缩机性能测试工况点之比较[J].制冷与空调, 2002, 2(1) : 55–57
    [18]张绍志.流程布置对非共沸制冷剂空冷冷凝器性能的影响[J].流体机械, 2001, 29 (1): 53–55
    [19] J H Lee , S W Bae, K H Bang, et al. Experimental and numerical research on condenser performance for R22 and R407C refrigerants[J]. International Journal of Refrigeration, 2002, 25(3): 372–382
    [20]申广玉.关于R407C房间空调器换热器管路设计的探讨[J].制冷技术, 2003, (2): 36–37
    [21]郑刚.使用R407C冷媒的翅片管冷凝器的计算机模拟[J].建筑热能通风空调, 2005, 24(1): 18–21
    [22]Kim Y, Seo K, Chung J K. Evaporation heat transfer characteristics of R410A in 7 and 9.52 mm smooth/micro–fin tubes [J]. International Journal of refrigerant, 2002, 25: 716–730
    [23] D. Jung et al. Condensation heat transfer coefficients of R22, R407C, and R410A on a horizontal plain, low fin, and turbo–C tubes. Int. J. of Refrigerant, 2003, 26: 485–491
    [24]邓斌,陶文铨等.流程布置对R407C冷凝器性能的影响[J].制冷, 2006, 25(4): 57–62
    [25]邓斌,陶文铨等.流程布置对R410A冷凝器性能的影响[J].制冷技术, 2006,(2): 8–12
    [26]刘建,丁国良.以R410A为工质的空调换热器性能仿真与实验[J].上海交通大学学报, 2006, 40(02): 262–266
    [27]刘鹏,邬志敏,王芳等.基于换热成本比的R410A风冷式冷凝器优化[J].上海理工大学学报, 2007, 29(04): 358–362
    [28]胡海涛,丁国良,汪振策等. R410A–油在7mm水平直强化管内流动沸腾阻力特性[J].上海交通大学学报,2007(3)
    [29] Ju–Suk Byun, Jinho Lee, Jun–Young Choi. Numerical analysis of evaporation performan– ce in a finned–tube heat exchanger [J]. International Journal of Refrigeration, 2007, 30: 812–820
    [30]刘洋. R410A空调器系统的实验研究[J].制冷学报, 2005, 24(4): 20–23
    [31]张会勇等.水平微圆管内R22和R410a凝结压降的实验研究[J].制冷学报, 2007, 28(3): 1–5
    [32]杨长威,姜爱华,周勤,等.肋片管式蒸发器的计算机辅助设计[J].机电工程, 2002, 9(5): 1–3
    [33]郑钢,杨强.翅片管换热器最佳回路长度的仿真计算[J].制冷与空调, 2006, 6(4): 48–51
    [34]董玉军,包涛,胡跃明,等.板式蒸发器换热性能的数值模拟Ⅰ:数学模型[J].制冷空调与电力机械, 2004, 25(4): 10–13
    [35]席战利,曹小林,崔大光.翅片式蒸发器换热性能的数学模型[J].制冷, 2006, 25(2): 65–68
    [36]李永鹏,陈爱玲.船舶冷库蒸发器建模的MATLAB实现[J].青岛远洋船员学院学报, 2004, 25(2): 9–14
    [37]宣宇清,胡益雄.基于分布参数的房间空调蒸发器的数学模型及其仿真研究[J].制冷与空调, 2004, 4(3): 32–35
    [38]程金强,梅宁,赵杰.风冷翅片管换热器传热特性研究[J].热科学与技术, 2008, 7(2): 120–124
    [39]黄兴华,王启杰,王如竹.基于分布参数模型的满液式蒸发器性能模拟[J].上海交通大学学报, 2004, 38(7): 1164–1169
    [40]邓敏锋,廖胜明,赵凤娇,等.多元平行流蒸发器数值模拟与性能分析[J].建筑热能通风空调, 2006, 26(2): 14–18
    [41]周俊杰,李光熙,屈治国,等.开缝肋片表面的数值模拟及特性分析[J].暖通空调, 2005, 35(7): 68–71
    [42]任效明,梁新刚.百叶窗和针肋的传热与流阻特性的数值研究[J].工程热物理学报, 2007, 28(1): 113–115
    [43]靳世文,马崇扬,赖天伟,等.空调用翅片管式蒸发器的模拟与分析[J].制冷与空调, 2008, 8(4): 101–104
    [44]尹斌,丁国良,欧阳惕.蒸发器建模仿真与试验的比较[J].制冷学报, 2007, 28(2): 51–55
    [45]黄东,孙敏超,贾杰楠,等.风速分布对单流路双排管蒸发器性能影响的模拟研究[J].西安交通大学学报, 2009, 43(5): 36–38
    [46]刘彦军,崔健.扁管直翅换热器翅片肋效率的计算[J].内蒙古民族大学学报(自然科学版), 2009, 24(3): 298–300
    [47]刘彦军,王良璧,宋克伟.不同计算方法所得扁管直翅换热器翅片肋效率的比较[J].兰州交通大学学报, 2009, (3): 144–147
    [48]徐百平,朱冬生,黄晓峰,顾雏军.管外翅片强化传热途径与研究进展[J].石油化工设备,2004, 33(5): 41–44
    [49]胡振武,李军,徐斌等.翅片管蒸发器、冷凝器结构设计的通用程序开发[J].河南科技大学学报, 2003, 24(4): 36–39
    [50]郑贤德.制冷原理与装置[M].第一版.北京:机械工业出版社.2000:173–209
    [51]彦启森,石文星,田长青.空气调节用制冷技术[M].第三版.北京:.中国建筑工业出版社.2004:76–111
    [52]陈汝东.制冷技术及其应用[M].第二版.上海:同济大学出版社, 2005:87–88
    [53]苏全伟,张波,张莉萍.水平光管和内螺纹强化管内换热性能的研究[J].河南机电高等专科学校学报, 2005, 13(2):40–41
    [54]丁国良.制冷空调装置的计算机仿真技术[J].科学通报, 2006, 51(9):998–1010
    [55]康海军,李妩,李慧珍.平直翅片管换热器传热与阻力特性的实验研究[J].西安交通大学学报, 1994, 28(1): 91–98
    [56]Bernard W G. Heat and mass transfer of fluid solid system [J]. Chemical Engineering Progress, 1951, 47(1): 10–28
    [57]辛荣昌,李慧珍,康海军.三角形波纹翅片管传热与阻力特性的实验研究[J].西安交通大学学报, 1994, 28(2): 77–84
    [58]Madi M A, John R A, Heikal M R. Performance characteristics correlation for round tube and plate finned heat exchangers [J]. Int. J. Refrigerant. 1998, 21(7): 507–517
    [59]Du YJ, Wang CC. An experimental study of the air–side performance of the super slit fin and tube heat exchangers [J]. Int. J. Heat Mass Transfer, 2000, 43(24):4475–4482
    [60]A. Grecoa, GP. Vanolib. Flow–boiling of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube [J]. International Journal of Refrigeration, 2005(28): 872–880
    [61]M.Goto, N. Inoune, N.Ishiwatari. Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes [J]. International Journal of Refrigeration, 2001, 24: 628–638
    [62]H.S.Wang, H. Honda. Condensation of refrigerants in horizontal micro–fin tubes: comparison of prediction methods for heat transfer [J]. International Journal of Refrigeration, 2003(26): 452–460
    [63]Luu M, Bergles AE. Enhancement of horizontal in–tube condensation of refrigerant 113[J]. ASHRAE Transfer ,1980, 86(pt I): 293–312.
    [64]Cavallini A, Doretti L, Klammsteiner N, Longo LG,Rossetto L. Condensation of new refrigerants inside smooth and enhanced tubes. In: Proc. 19th Int. Cong. Refrigeration,vol. IV, Hague. The Netherlands, 1995, p. 105–114.
    [65]Shikazono N, Itoh M, Uchida M, Fukushima T, Hatada T. Predictive equation proposal for condensation heat transfer coefficient of pure refrigerants in horizontal micro fin tubes[J]. Trans Jap Soc Mech Engrs, 1998, 64: 196–203
    [66]Kedzierski MA, Goncalves JM. Horizontal convective condensation of alternative refrigerants within a micro fin tube [J]. Enhanced Heat Transfer, 1999, 6(2–4): 161–78
    [67]Yu J, Koyama S. Condensation heat transfer of pure refrigerants in micro fin tubes. In: Proc. Int. Refrigeration Conference at Purdue University, West Lafayette, USA, 1998. p. 325–330.
    [68]Wang HS, Honda H, Nozu S. Modified theoretical models of film condensation in horizontal micro fin tubes [J]. International Journal Heat Mass Transfer, 2002, 45: 1513–1523
    [69]R. Yun, Y. Kim, Y. Kim. Air–Side Heat Transfer Characteristics of Plate Finned Tube Heat Exchangers with Slit Fin Configuration under Wet Conditions [J]. Applied Thermal Engineering, 2009, 29: 1314–1320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700