R22的混合制冷剂替代研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
R22在制冷行业的广泛应用和禁用日期的不断提前使得其替代工作日益成为工
    质研究的重点。从现有的条件来考虑,纯质替代存在一定局限性,因此选择混合物
    作为替代路线。
     本文从保护大气环境的观点出发,依据替代制冷剂的选择标准,按照优势互补
    的原则,对多种HFC和HC类物质组成的混合物进行了研究。首先利用理论循环建
    立计算模型,分析各组元对混合物总体热工性能、安全性能以及环境性能的影响,
    并依据一定的优先原则对其进行筛选和配比优化, 确定了采用
    R32/R134a/R227ea(20/60/20wt)作为R22的直接充灌替代物。
     理论计算显示其热工性质与R22相近,COP与R22相当,略有下降,q_v值略
    高于R22,而且相比R410最大的优势是其冷凝压力比较低,甚至低于R22。最重要
    的是其环境性能良好,ODP为零,GWP为1470(按照质量配比计算),低于R22及其
    主要替代物R407C和R410A。
     新工质在按照国家标准GB5773-86建立的电量热器制冷剂循环测试系统上进
    行了性能测试,并与R22的实验结果进行了对比。分析表明,在整个测量温区内基
    本可以与R22匹配,其中COP高于R22,容积制冷量接近或略低于R22。而且新工
    质的最大优势是冷凝压力较低,排气温度也较低。可以在不对原系统作较大改动的
    情况下实现直接充灌。不利的一点就是温度滑移较大,因此在实际操作中必须小心
    细致,尽量避免成分泄漏或者补充充灌对系统的影响。如果能将原R22装置中的换
    热器改为逆流形式,从而充分用温度滑移,整个系统的效率将会进一步提高。
Widely using of R22 in the filed of refrigeration and the date of phased out earlier make the project of substitute emphasis on working fluids study. Considering the existing condition, there are many difficulties in using the pure substance as substitute. So we chose the mixture as the substitute routine.Start form the viewpoint of environment protect, using the criterion of alternative refrigerant selection and according to the principle of combination, many mixtures HFC and HC contained are studied in this paper. At first a calculation mode is established based on a theory circle, then the effect of each composition on the environmental properties, thermal performances and safety of mixtures as a whole are analyzed. According to certain principle, optimization on mixture ratio is conducted and refrigerant mixture R32/R134a/R227ea(20/60/20wt) is determined as the alternative to R22 used in existing equipment at last.Theory calculation results show that the thermal characters of new working fluid match to R22, COP is slightly less than R22, q_v is more than R22 a little. Moreover its priority to R410 is lower condensing pressure, even below R22. The most important is that it is environmentally friendly, ODP=0, GWP=1470(calculated by mass ratio), both below the value of main alternative R407C and R410A.The performance of new working fluid is also tested on the electric calorimeter apparatus for refrigeration performance measurement designed according to GB5773-86, compared to the experiment results of R22. It shows that it can match to R22 both in COP and capacity. The disadvantage is the considerable great temperature glide, so it should be careful deal with, avoiding refrigerant leakage influence on system. If the heat transfer can be changed in reverse flow way, the efficiency of system can be greatly raised.
引文
1.吴业正,制冷原理及设备,西安交大出版社,1997
    2.丁国良等,制冷空调新工质,上海交大出版社,2003
    3.龙恩深,冷热源工程,重庆大学出版社,2002,
    4.俞炳丰,制冷与空调应用新技术,化工工业出版社,2002,39-40:13-15
    5. Molina MJ, Rowland FS. Stratospheric sink for Chlorofluoromethane: Chlorine Atom Catalyzed Destruction of Ozone. Nature, 1974, 249: 810-812
    6.《蒙特利尔协定哥本哈根修正案》,1992
    7.《中国消耗臭氧层物质逐步淘汰的国家方案》,1992
    8. http://www.epa.gov/ozone/refrigerants/
    9. UNEP, OzonAction, 1992-2001, (4-39)
    10.徐敬东,R22替代物的分类和概述,四川制冷,1999(2)
    11. Dongsoo Jung, Yongjae Song, Bongjin Park. Performance des me(?) langes de frigorige(?) nes utilise(?) s pour remplacer le HCFC22, International Journal of Refrigeration, 23 (2000) 466-474
    12. Air-conditioning and Refrigeration Institute. R22 and R502 Alternative Refrigerants Evaluation Program. 1992-1997, Arlington, VA.
    13. Greco A. Experimental plant for testing R22 substitutes. In: Ree H V.19th Int. Congress of Ref. Paris: 1995, Ⅳ b: 825-832
    14. http://www.ari.org
    15.朱明善,制冷空调行业的CFC和HCFC制冷剂替代物,北京,中国制冷学会,1996
    16. Kim M H, Bullard C W. Dynamic characteristics of a R410A split air-conditioning system. Int J. Refrig., 2001, 24: 652-659
    17. Klein S A, Reindl D T, et al. Refrigeration system performance using liquid-suction heat exchangers. Int J. Refrig., 2000, 23: 588-596
    18. Gabrielii C and Vamling L. Changes in optimal distribution of heat exchanger area between the evaporator and suction gas hat exchanger when replacing R22 with R407C. Int J. Refrig., 1998, 21(6): 44-451
    19. Cavallini A, Censi G, et al. Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants(R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int J. Refrig., 2001, 24: 73-81
    20. Goto M, Inoue N, Ishiwatari N. condensation and evaporation heat-transfer of R410A inside internally grooved horizontal tubes. Int J. Refrig.. 2001, 24: 628-638
    21. Chang Y S, Kim M S, et al. Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. Int J. Refrig.. 2000, 23: 232-242
    22.王怀信等,小型空调系统中碳氢化合物替代R22的研究.太阳能学报2002(2):11-16
    23. Eric Granryd, Hydrocarbons as refrigerants, International Journal of Refrigeration, 24(2002) 15-24
    24.王怀信等,在空调系统中替代R22研究.天津大学学报.2001(4):430-434
    25.史琳等,HCFC-22替代制冷剂THR03的研究,工程热物理学报,1999,20(5):538-541
    26.史琳等,HCFC-22替代制冷剂THR03的试验研究,暖通空调,2000,30(2):1-4
    27. Beyerlein A L, DesMartrau D D, et al.. Proper册ties of novel fluorinated compounds and their mixtures as alternative refrigerants. Fluid Phase Equilibria, 1998, 150-151: 287-296
    28. Kui I, DesMarteau D D, et al.. Vapor-liquid equilibria of novel chemicals and their mixtures as R22 alternatives. Fluid Phase Equilibria. 2000, 173: 263-276
    29. Kul Ismail, DesMarteau D D, Beyerlein A L. Vapor-liquid equilibria for CF3OCF2H/fluorinated ethane and CF3SF5/fluorinated ethane mixtures as potential R22 alternatives. Fluid Phase Equilibria. 2001, 185: 241-253
    30. Donald B. Bivens and Barbara H. Minor, Fluoroethers and other next generation fluids, Int J. Ref. 1998, 21(7) 567-576
    31. Sekiya A, Misaki S , The potential of hydroflouoroethers to replace CFCs, HCFCs and PFCs. Journal of Fluorine Chemistry, 2000, 101: 215-221
    32.何茂刚,刘志刚等,新型环保制冷剂氟化醚类物质的热力学分析,工程热物理学报,2001,22(2):145—147
    33.史琳,朱明善等,制冷空调新技术进展,上海交大出版社,2003
    34. Calm JM, Didion D A. Trade-offs in refrigerant selections: past present, and future. Int J. Refrig., 1998, 21(4): 308-321
    35.马一太等,紧迫的氟利昂大气污染问题及解决措施。制冷,1992(2):27-32
    36.马一太等,多元混合工质筛选及配比原则的研究,工程热物理学报,1997,18(1):17-20
    37.申广玉,露点法和中点法确定R407C压缩机性能测试工况点之比较,制冷与空调,2002,2(1):55-57
    38.莫炳坚等,混合工质与节能,低温与特气,1994(4):27-30
    39.高洪亮,制冷剂的类型与制冷装置的节能,冷藏技术,2000(3)13-15
    40.罗二仓等,一种获得30K~60K温区的混合工质内复叠节流制冷循环及其实验验证,工程热力学与能源利用学术会议论文集,工程热物理学会编,镇江:Ⅲ(1999):121-126
    41.阎琳、王旭,R22替代制冷剂的性能评估,南京理工大学学报,1999,23(3):231-233
    42.杨昭等,热泵空调系统可燃混合物的安全运行环境预测,太阳能学报,1999,20(2):156-161;
    43.徐敬东,家用制冷器具使用可燃性制冷剂的危险性分析和安全标准,1999,1(1):25-30;
    44.杨昭,李丽新等,替代混合物燃爆特性的理论及实验研究,燃烧科学与技术,2002,8(2):150-154
    45.田贯三等,可燃制冷剂爆炸极限及抑制的理论与实验研究,山东建筑学院学报,2001,16(2),58-63
    46.田贯三等,含有阻燃组元的可燃制冷剂爆炸极限的研究,爆炸与冲击,2003,23(3),225-229
    47.杨昭,田贯三等,含R227ea制冷剂燃爆特性的研究,工程热物理学报,第22卷第四期:
    48.顾惠军等,菲共沸混合工质泄漏拓展模型的理论分析,制冷学报,1998(1),6-10
    49.赵晓宇等,混合制冷剂泄漏试验研究与模拟分析,工程热物理学报,1998(3):283-286
    50.宣永梅,新型替代制冷剂的理论及实验研究,浙江大学博士学位论文,2004年5月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700