微囊藻毒素对人羊膜细胞蛋白磷酸酶2A的影响及Endo-Porter作为微囊藻毒素转运体的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微囊藻毒素(microcystin, MC)是一种富营养化水体毒素,化学性质稳定,很难将其从水中除去,而且该毒素具有多种毒性效应,深入研究其毒性机制有着非常重要的意义。
     MC是一种单环七肽,其中5个氨基酸为固定成分,X,Y为两种可变氨基酸,由此可产生80多种同类物。其中存在较多、毒性较大的是MCLR, L、R分别代表亮氨酸、精氨酸。MCLR是蛋白磷酸酶2A (Protein phosphatase 2A,PP2A)的强效抑制剂,对PP2A的特异性抑制可能是造成其毒作用机制错综复杂的原因之一。然而到目前为止,关于MCLR与PP2A蛋白表达情况及活性的关联研究尚不多见。本实验室前期研究发现MCLR可引起人羊膜细胞FL中PP2A-A的表达升高。为进一步探索PP2A与MCLR毒性效应的相关性,本研究对MCLR暴露后PP2A的改变情况进行了深入探讨。
     此外,微囊藻毒素的毒性效应有明显的器官选择性,主要表现为肝毒性。这是由于肝脏中表达特殊的有机阴离子转运多肽系统OATPs,可将MCLR大量地转运入细胞。而且近来的研究发现微囊藻毒素对其它不表达或低表达OATPs的脏器也有影响。因此,本研究同时探讨了加入外源性多肽转运体Endo-Porter后MCLR对FL细胞的毒性效应,为今后在不/低表达OATPs细胞中研究MCLR的毒性机制奠定了基础。
     本研究主要内容包括:MCLR进入细胞后与PP2Ac的结合;MCLR作用后PP2A活性改变及亚基的变化;从微管翻译后修饰的变化研究MCLR染毒后对PP2A调控微管的影响;加入转运体后看MCLR产生的多种毒性效应的变化。采用MTT法检测细胞活力;用实时定量PCR检测mRNA表达的改变情况;用免疫印迹法检测目的蛋白表达的变化;用PI单染法分析细胞周期的改变情况;用Annexin V-PI双染法检测毒素诱导的细胞凋亡率;用免疫荧光技术检测细胞微管形态的变化及目的蛋白相互结合的情况。
     主要结果:
     1.短时间低浓度MCLR暴露引起PP2A活性上升,C亚基mRNA和蛋白表达上升,磷酸化水平下降,甲基化水平下降。
     2. MCLR暴露后微管蛋白表达及形态没有发生变化,但与酪氨酸化微管结合的PP2A-B55a减少。
     3. MCLR染毒虽然使PP2A多种调节亚基rnRNA发生变化,但并没有导致蛋白表达发生变化。
     4. MCLR被EP大量转运入细胞后产生一系列毒性效应,抑制PP2A活性、抑制细胞增殖、诱发细胞凋亡、引起ROS水平上升、Bax/Bcl-2比值升高。
     5. MCLR被EP转运入细胞后,激活ERK1/2/ JNK/ p38。实验进一步证明MCLR激活了MEK1/2-ERK1/2-Myc通路,且呈时间依赖性。
     6. MCLR被EP转运入细胞后可引起细胞周期阻滞,并同时检测到cdc25C磷酸化水平上升。
     主要结论:
     1. MCLR染毒诱发的细胞内毒物兴奋效应使得C亚基mRNA表达和蛋白表达水平上升,从而使PP2A酶活性上升。
     2. MCLR染毒使PP2A-B55α与酪氨酸化微管的结合能力下降从而影响了PP2A对微管酪氨酸化的调控。
     3.PP2A的nRNA表达比蛋白表达更容易被毒素影响发生变化。
     4.通过MCLR被EP大量转运入细胞后产生的一系列毒性效应证明EP可作为MCLR的转运体。
     5. MCLR被EP大量转运入细胞后激活MEK1/2-ERK1/2-Myc,证明ERK1/2通路在MCLR诱导FL细胞凋亡的过程中起着重要作用。
     6. MCLR被EP转运入细胞后引起的cdc25C磷酸化水平上升与周期阻滞有关。
Microcystins (MCs) are toxins produced by freshwater cyanobacteria that belong to the genera Micocystis, Anabaena, Nodularia, Oscillatoria, and Nostoc. MCs are too stable to degrade naturally and it is difficult to remove them from water. MCs are of increasing importance due to their toxicity and potent tumor promoting activity, so the exact mechanisms of MCs-induced toxicity need further investigation. MCs have been recognized as a family of monocyclic heptapeptide hepatotoxins. Two of the amino acids are variable. Till now, over 80 structural variants have been recognized. Microcystin-LR (MCLR) is the most frequently studied as well as the most toxic in the group of MCs, L and R meaning leucine (L) and arginine(R) respectively. PP2A is a major serine/threonine protein phosphatase in eukaryotic cells and is involved in many essential aspects of cell function, such as metabolism, proliferation, differentiation and apoptosis. PP2A holoenzymes are heterotrimers consisting of a core dimmer, AC, and a regulatory B-type subunit. MCLR has been recognized as the strong inhibitor of PP2A, which may be one reason of the implicated intoxication mechanism of MCLR. Studies in our laboratory have revealed that exposure to MCLR, MCRR and bloom extract could increase the protein levels of the A subunit of PP2A. Therefore, the present study was designed to illustrate the precise events happening in MCLR-induced toxicity in particular concerning with PP2A. Furthermore, the liver is the prime target organ affected by MCLR. A group of hepatocyte uptake transporters termed organic anion transporting polypeptides (OATPs) present mainly in liver are crucial for MCLR transferring into cells. In addition, it should be of great concern that accumulation of MCs in other organs without expression of OATPs has also been reported in recent studies. Therefore, to investigate the mechanism of MCLR toxicity in other cells without/low OATPs expression, we testified an alternative approach to study the toxicity of MCLR using the facilitated transporter Endo-Porter (EP)-a peptide reagent binding to cell membrane.
     The present study was focused on the binding of MCLR to PP2Ac, the effects of MCLR on PP2A activity and subunits, the regulation of PP2A on the post-translational modification of microtubule after MCLR treatment and the cytotoxicity of MCLR in the presence of Endo-porter in FL cells. MTT was used to evaluate cell viability; real-time PCR and western blot were used to detect the expression level of mRNA and protein respectively; cell cycle and apoptosis were measured by PI staining and Annexin V-PI staining; immunofluorescence was used to detect the co-locolization of aimed proteins and morphology of microtubule.
     The results were shown as below:
     1. MCLR treatment increased the activity of PP2A as well as the expression levels of mRNA and protein of PP2Ac, decreased the phosphorylation and methylation of PP2Ac.
     2. Exposure to MCLR had no effect on FL cells morphology and protein level of a tubulin. However, the binding of B55a and tryosinated tubulin was significantly reduced after MCLR treatment.
     3. MCLR exposure changed the levels of mRNA of PP2A regulatory subunits, however, exposure to MCLR had no significant effects on the protein levels.
     4. The accumulation of MCLR in FL cells in the presence of EP induced toxic effects including decrease of PP2A activity, inhibition of cell viability, increase of apoptotic rate, and increased generation of intracellular ROS and the elevation of Bax/Bcl-2 ratio.
     5. The present study revealed that MCLR could activate ERK1/2, JNK and p38. Furthermore, MCLR activated MEK1/2-ERK1/2-Myc pathway in a time-dependent manner.
     6. MCLR exposure in the presence of EP induced cell cycle arrest and up-regulation of phosphrylated cdc25C at Ser216.
     The conclusions were shown as below:
     1. It is supposed that the hormesis response induced by MCLR increased the expression levels of mRNA and protein of PP2Ac, resulting in the increased activity of PP2A.
     2. The changed levels of mRNA of PP2A regulatory subunits by MCLR treatment suggest that the expression level of mRNA is more sensitive to MCLR treatment than that of protein.
     3. Exposure to MCLR influences the regulatory role of PP2A-B55αon tryosinated tubulin.
     4. The toxic effects of MCLR in FL cells in the presence of EP suggest that the utility of EP might be of great help for elucidating the complicated toxicity of MCLR in vitro.
     5. The ERK1/2 pathway might play an important role in the apoptosis induced by MCLR in the presence of EP.
     6. The up-regulation of phosphrylated cdc25C at Ser216 could contribute to the cell cycle arrest induced by MCLR in the presence of EP.
引文
1. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine drugs.2010,8(5),1650-1680.
    2. Sekijima M, Tsutsumi T, Yoshida T, Harada T, Tashiro F, Chen G, Yu SZ, Ueno Y. Enhancement of glutathione S-transferase placental-form positive liver cell foci development by microcystin-LR in aflatoxin B1-initiated rats. Carcinogenesis. 1999,20(1),161-165.
    3. 傅文宇,陈加平,徐立红Caspase-3在微囊藻毒素诱导的细胞凋亡中的作用.中国环境科学.2004,24(1),6-8.
    4. Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol.2005,203(3),257-263.
    5. Adamovsky O, Kopp R, Hilscherova K, Babica P, Palikova M, Paskova V, Navratil S, Marsalek B, Blaha L. Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms. Environmental toxicology and chemistry/SETAC.2007,26(12), 2687-2693.
    6. Cazenave J, Wunderlin DA, de Los Angeles Bistoni M, Ame MV, Krause E, Pflugmacher S, Wiegand C. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study. Aquatic toxicology (Amsterdam, Netherlands).2005,75(2),178-190.
    7. Kagalou I, Papadimitriou T, Bacopoulos V, Leonardos I. Assessment of microcystins in lake water and the omnivorous fish (Carassius gibelio, Bloch) in Lake Pamvotis (Greece) containing dense cyanobacterial bloom. Environmental monitoring and assessment.2008,137(1-3),185-195.
    8. Kankaanpaa HT, Holliday J, Schroder H, Goddard TJ, von Fister R, Carmichael WW. Cyanobacteria and prawn farming in northern New South Wales, Australia--a case study on cyanobacteria diversity and hepatotoxin bioaccumulation. Toxicol Appl Pharmacol.2005,203(3),243-256.
    9. Lance E, Josso C, Dietrich D, Ernst B, Paty C, Senger F, Bormans M, Gerard C. Histopathology and microcystin distribution in Lymnaea stagnalis (Gastropoda) following toxic cyanobacterial or dissolved microcystin-LR exposure. Aquatic toxicology (Amsterdam, Netherlands).2010,98(3),211-220.
    10. Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. Journal of cancer research and clinical oncology. 1990,116(6),609-614.
    11. Ohta T, Nishiwaki R, Yatsunami J, Komori A, Suganuma M, Fujiki H. Hyperphosphorylation of cytokeratins 8 and 18 by microcystin-LR, a new liver tumor promoter, in primary cultured rat hepatocytes. Carcinogenesis.1992, 13(12),2443-2447.
    12. Ding WX, Shen HM, Ong CN. Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environmental health perspectives.2000,108(7),605-609.
    13. Clark SP, Davis MA, Ryan TP, Searfoss GH, Hooser SB. Hepatic gene expression changes in mice associated with prolonged sublethal microcystin exposure. Toxicologic pathology.2007,35(4),594-605.
    14. Moreno I, Pichardo S, Jos A, Gomez-Amores L, Mate A, Vazquez CM, Camean AM. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon.2005, 45(4),395-402.
    15. Chen T, Wang Q, Cui J, Yang W, Shi Q, Hua Z, Ji J, Shen P. Induction of apoptosis in mouse liver by microcystin-LR:a combined transcriptomic, proteomic, and simulation strategy. Mol Cell Proteomics.2005,4(7),958-974.
    16. Ding WX, Shen HM, Ong CN. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology (Baltimore, Md.2000,32(3),547-555.
    17. McDermott CM, Nho CW, Howard W, Holton B. The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon.1998, 36(12),1981-1996.
    18. Huang P, Zheng Q, Xu LH. The apoptotic effect of oral administration of microcystin-RR on mice liver. Environ Toxicol.
    19. Li H, Xie P, Li G, Hao L, Xiong Q. In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins. Toxicon. 2009,53(1),169-175.
    20. Fu WY, Chen JP, Wang XM, Xu LH. Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon.2005,46(2),171-177.
    21. Qin W, Xu L, Zhang X, Wang Y, Meng X, Miao A, Yang L. Endoplasmic reticulum stress in murine liver and kidney exposed to microcystin-LR. Toxicon. 2010,56(8),1334-1341.
    22. Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M, Fabregat I. Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. Faseb J.2001,15(3),741-751.
    23. Raha S, Robinson BH. Mitochondria, oxygen free radicals, and apoptosis. American journal of medical genetics.2001,106(1),62-70.
    24. Zhu Y, Zhong X, Zheng S, Ge Z, Du Q, Zhang S. Transformation of immortalized colorectal crypt cells by microcystin involving constitutive activation of Akt and MAPK cascade. Carcinogenesis.2005,26(7),1207-1214.
    25. Komatsu M, Furukawa T, Ikeda R, Takumi S, Nong Q, Aoyama K, Akiyama S, Keppler D, Takeuchi T. Involvement of mitogen-activated protein kinase signaling pathways in microcystin-LR-induced apoptosis after its selective uptake mediated by OATP1B1 and OATP1B3. Toxicol Sci.2007,97(2), 407-416.
    26. Janssens V, Goris J. Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J.2001,353(Pt 3),417-439.
    27. Zhou J, Pham HT, Ruediger R, Walter G. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A:differences in expression, subunit interaction, and evolution. Biochem J.2003,369(Pt 2),387-398.
    28. Turowski P, Favre B, Campbell KS, Lamb NJ, Hemmings BA. Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65alpha. European journal of biochemistry/FEBS.1997,248(1),200-208.
    29. Kamibayashi C, Lickteig RL, Estes R, Walter G, Mumby MC. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. The Journal of biological chemistry.1992, 267(30),21864-21872.
    30. Chen J, Martin BL, Brautigan DL. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science (New York, NY.1992, 257(5074),1261-1264.
    31. Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD, Shi Y. Structure of the protein phosphatase 2A holoenzyme. Cell.2006,127(6), 1239-1251.
    32. Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, Lin Z, Li Z, Strack S, Stock JB, Shi Y. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell.2006,127(2),341-353.
    33. Tolstykh T, Lee J, Vafai S, Stock JB. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. The EMBO journal.2000,19(21),5682-5691.
    34. Sontag JM, Nunbhakdi-Craig V, Mitterhuber M, Ogris E, Sontag E. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. J Neurochem.2010,115(6), 1455-1465.
    35. Guzman RE, Solter PF, Runnegar MT. Inhibition of nuclear protein phosphatase activity in mouse hepatocytes by the cyanobacterial toxin microcystin-LR. Toxicon.2003,41(7),773-781.
    36. Fu W, Yu Y, Xu L. Identification of temporal differentially expressed protein responses to microcystin in human amniotic epithelial cells. Chem Res Toxicol. 2009,22(1),41-51.
    37. Xing ML, Wang XF, Xu LH. Alteration of proteins expression in apoptotic FL cells induced by MCLR. Environ Toxicol.2008,23(4),451-458.
    38. Huang P, Zheng YF, Xu LH. Oral administration of cyanobacterial bloom extract induced the altered expression of the PP2A, Bax and Bcl-2 in mice. Environ Toxicol.2008,23(6),688-693.
    39. Billam M, Mukhi S, Tang L, Gao W, Wang JS. Toxic response indicators of microcystin-LR in F344 rats following a single-dose treatment. Toxicon.2008, 51(6),1068-1080.
    40. Fu WY, Xu LH, Yu YN. Proteomic analysis of cellular response to microcystin in human amnion FL cells. Journal of proteome research.2005,4(6),2207-2215.
    41. Contin MA, Purro SA, Bisig CG, Barra HS, Arce CA. Inhibitors of protein phosphatase 1 and 2A decrease the level of tubulin carboxypeptidase activity associated with microtubules. European journal of biochemistry/FEBS.2003, 270(24),4921-4929.
    42. Hiraga A, Tamura S. Protein phosphatase 2A is associated in an inactive state with microtubules through 2A1-specific interaction with tubulin. The Biochemical journal.2000,346 Pt 2,433-439.
    43. Tar K, Csortos C, Czikora I, Olah G, Ma SF, Wadgaonkar R, Gergely P, Garcia JG, Verin AD. Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. Journal of cellular biochemistry.2006,98(4), 931-953.
    44. Yoon SY, Choi JE, Choi JM, Kim DH. Dynein cleavage and microtubule accumulation in okadaic acid-treated neurons. Neuroscience letters.2008, 437(2),111-115.
    45. Nunbhakdi-Craig V, Schuechner S, Sontag JM, Montgomery L, Pallas DC, Juno C, Mudrak I, Ogris E, Sontag E. Expression of protein phosphatase 2A mutants and silencing of the regulatory B alpha subunit induce a selective loss of acetylated and detyrosinated microtubules. Journal of neurochemistry.2007, 101(4),959-971.
    46. 王秀敏,邵敏华,卢大儒,徐立红,余应年.应用高通量实时荧光定量PCR方法筛选FL细胞对低剂量微囊藻毒素LR暴露的应答基因Biological chemistry.2007,31(6),909-911.
    47. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry.1976,72,248-254.
    48. Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem.1990,265(32),19401-19404.
    49. Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, Cho DH, Lim JS, Kim KI, Yang Y. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer research.2009,69(9), 4018-4026.
    50. Fath T, Eidenmuller J, Brandt R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci.2002, 22(22),9733-9741.
    51. Kreitzer G, Liao G, Gundersen GG. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Molecular biology of the cell.1999,10(4), 1105-1118.
    52. Georgopoulou U, Tsitoura P, Kalamvoki M, Mavromara P. The protein phosphatase 2A represents a novel cellular target for hepatitis C virus NS5A protein. Biochimie.2006,88(6),651-662.
    53. Sato J, Shimizu H, Kasama T, Yabuta N, Nojima H. GAK, a regulator of clathrin-mediated membrane trafficking, localizes not only in the cytoplasm but also in the nucleus. Genes Cells.2009,14(5),627-641.
    54. Yu SZ. Primary prevention of hepatocellular carcinoma. Journal of gastroenterology and hepatology.1995,10(6),674-682.
    55. 周伦,鱼达,余海,陈坤,沈高飞,沈永洲,阮引玲,丁杏芬.饮用水源中的 微囊藻毒素与大肠癌发病的关系.中华预防医学杂志.2000,34(4),37-39.
    56. Liu G, Shang Y, Yu Y. Induced endoplasmic reticulum (ER) stress and binding of over-expressed ER specific chaperone GRP78/BiP with dimerized epidermal growth factor receptor in mammalian cells exposed to low concentration of N-methyl-N'-nitro-N-nitrosoguanidine. Mutation research.2006,596(1-2), 12-21.
    57. Shen J, Wu M, Yu Y. Proteomic profiling for cellular responses to different concentrations of N-methyl-N'-nitro-N-nitrosoguanidine. Journal of proteome research.2006,5(2),385-395.
    58. Zhu X, Xing M, Lou J, Wang X, Fu W, Xu L. Apoptotic related biochemical changes in human amnion cells induced by tributyltin. Toxicology.2007,230(1), 45-52.
    59. Wu M, Shen J, Zhan J, Yu Y. dUTP Pyrophosphatase, its appearance in extracellular compartment may serve as a potential biomarker for N-methyl-N'-nitro-N-nitrosoguanidine exposure in mammalian cells. Proteomics. 2006,6(10),3001-3007.
    60. Wong LL, Chang CF, Koay ES, Zhang D. Tyrosine phosphorylation of PP2A is regulated by HER-2 signalling and correlates with breast cancer progression. International journal of oncology.2009,34(5),1291-1301.
    61. Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E, White CL,3rd. Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. Journal of neuropathology and experimental neurology.2004,63(10),1080-1091.
    62. Liu R, Zhou XW, Tanila H, Bjorkdahl C, Wang JZ, Guan ZZ, Cao Y, Gustafsson JA, Winblad B, Pei JJ. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. Journal of cellular and molecular medicine. 2008,12(1),241-257.
    63. Baharians Z, Schonthal AH. Autoregulation of protein phosphatase type 2A expression. J Biol Chem.1998,273(30),19019-19024.
    64. Kakinoki Y, Kitamura K, Matsuzawa S, Mizuno Y, Miyazaki T, Kikuchi K. Gene expressions and activities of protein phosphatases PP1 and PP2A in rat liver regeneration after partial hepatectomy. Biochemical and biophysical research communications.1992,185(1),291-297.
    65. Katsiari CG, Kyttaris VC, Juang YT, Tsokos GC. Protein phosphatase 2A is a negative regulator of IL-2 production in patients with systemic lupus erythematosus. The Journal of clinical investigation.2005,115(11),3193-3204.
    66. Krankel N, Adams V, Gielen S, Linke A, Erbs S, Schuler G, Hambrecht R. Differential gene expression in skeletal muscle after induction of heart failure: impact of cytokines on protein phosphatase 2A expression. Molecular genetics and metabolism.2003,80(1-2),262-271.
    67. Chen J, Parsons S, Brautigan DL. Tyrosine phosphorylation of protein phosphatase 2A in response to growth stimulation and v-src transformation of fibroblasts. The Journal of biological chemistry.1994,269(11),7957-7962.
    68. Chao Y, Xing Y, Chen Y, Xu Y, Lin Z, Li Z, Jeffrey PD, Stock JB, Shi Y. Structure and mechanism of the phosphotyrosyl phosphatase activator. Molecular cell.2006,23(4),535-546.
    69. Leulliot N, Vicentini G, Jordens J, Quevillon-Cheruel S, Schiltz M, Barford D, van Tilbeurgh H, Goris J. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Molecular cell.2006,23(3), 413-424.
    70. Leulliot N, Quevillon-Cheruel S, Sorel I, de La Sierra-Gallay IL, Collinet B, Graille M, Blondeau K, Bettache N, Poupon A, Janin J et al. Structure of protein phosphatase methyltransferase 1 (PPM1), a leucine carboxyl methyltransferase involved in the regulation of protein phosphatase 2A activity. The Journal of biological chemistry.2004,279(9),8351-8358.
    71. Ogris E, Du X, Nelson KC, Mak EK, Yu XX, Lane WS, Pallas DC. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. The Journal of biological chemistry.1999,274(20),14382-14391.
    72. Eichhorn PJ, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochimica et biophysica acta.2009,1795(1),1-15.
    73. Zolnierowicz S, Van Hoof C, Andjelkovic N, Cron P, Stevens I, Merlevede W, Goris J, Hemmings BA. The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits. Biochem J.1996,317 (Pt 1),187-194.
    74. Li HY, Ng EK, Lee SM, Kotaka M, Tsui SK, Lee CY, Fung KP, Waye MM. Protein-protein interaction of FHL3 with FHL2 and visualization of their interaction by green fluorescent proteins (GFP) two-fusion fluorescence resonance energy transfer (FRET). Journal of cellular biochemistry.2001,80(3), 293-303.
    75. Flegg CP, Sharma M, Medina-Palazon C, Jamieson C, Galea M, Brocardo MG, Mills K, Henderson BR. Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56alpha:role of B56alpha in nuclear export of the catalytic subunit. The Journal of biological chemistry.2010,285(24), 18144-18154.
    76. Lee TY, Lai TY, Lin SC, Wu CW, Ni IF, Yang YS, Hung LY, Law BK, Chiang CW. The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. The Journal of biological chemistry.2010,285(28),21567-21580.
    77. Wong CH, Fung YW, Ng EK, Lee SM, Waye MM, Tsui SK. LIM domain protein FHL1B interacts with PP2A catalytic beta subunit-a novel cell cycle regulatory pathway. FEBS letters.2010,584(22),4511-4516.
    78. Calabrese EJ, Baldwin LA. The marginalization of hormesis. Toxicologic pathology.1999,27(2),187-194.
    79. Calabrese EJ, Baldwin LA. Applications of hormesis in toxicology, risk assessment and chemotherapeutics. Trends in pharmacological sciences.2002, 23(7),331-337.
    80. Gehringer MM. Microcystin-LR and okadaic acid-induced cellular effects:a dualistic response. FEBS letters.2004,557(1-3),1-8.
    81. Piperno G, LeDizet M, Chang XJ. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. The Journal of cell biology.1987, 104(2),289-302.
    82. Ding WX, Shen HM, Shen Y, Zhu HG, Ong CN. Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes. Environmental health perspectives.1998,106(7),409-413.
    83. Ding WX, Shen HM, Ong CN. Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes. Biochemical and biophysical research communications.2002,291(2),321-331.
    84. Sastre J, Pallardo FV, Vina J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB life.2000,49(5),427-435.
    85. Wang QS, Zheng YM, Dong L, Ho YS, Guo Z, Wang YX. Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free radical biology & medicine.2007,42(5), 642-653.
    86. Li Q, Suen TC, Sun H, Arita A, Costa M. Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway. Toxicol Appl Pharmacol.2009,235(2),191-198.
    87. Singh M, Sharma H, Singh N. Hydrogen peroxide induces apoptosis in HeLa cells through mitochondrial pathway. Mitochondrion.2007,7(6),367-373.
    88. Goel A, Prasad AK, Parmar VS, Ghosh B, Saini N. 7,8-Dihydroxy-4-methylcoumarin induces apoptosis of human lung adenocarcinoma cells by ROS-independent mitochondrial pathway through partial inhibition of ERK/MAPK signaling. FEBS letters.2007,581(13), 2447-2454.
    89. Kumagai A, Dunphy WG. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes & development. 1999,13(9),1067-1072.
    90. Chong MW, Gu KD, Lam PK, Yang M, Fong WF. Study on the cytotoxicity of microcystin-LR on cultured cells. Chemosphere.2000,41(1-2),143-147.
    91. Botha N, Gehringer MM, Downing TG, van de Venter M, Shephard EG. The role of microcystin-LR in the induction of apoptosis and oxidative stress in CaCo2 cells. Toxicon.2004,43(1),85-92.
    92. Lankoff A, Banasik A, Obe G, Deperas M, Kuzminski K, Tarczynska M, Jurczak T, Wojcik A. Effect of microcystin-LR and cyanobacterial extract from Polish reservoir of drinking water on cell cycle progression, mitotic spindle, and apoptosis in CHO-K1 cells. Toxicology and applied pharmacology.2003,189(3), 204-213.
    93. Zegura B, Lah TT, Filipic M. Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Mutation research.2006,611(1-2),25-33.
    94. Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA. Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1-and OATP1B3-expressing HeLa cells. Molecular cancer therapeutics. 2007,6(2),587-598.
    95. Summerton JE. Endo-Porter:a novel reagent for safe, effective delivery of substances into cells. Annals of the New York Academy of Sciences.2005,1058, 62-75.
    96. Jasionek G, Zhdanov A, Davenport J, Blaha L, Papkovsky DB. Mitochondrial toxicity of microcystin-LR on cultured cells:application to the analysis of contaminated water samples. Environ Sci Technol.2010,44(7),2535-2541.
    97. Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. The lancet oncology.2005,6(5),322-327.
    98. Nebreda AR, Porras A. p38 MAP kinases:beyond the stress response. Trends in biochemical sciences.2000,25(6),257-260.
    99. Rieber M, Rieber MS. Signalling responses linked to betulinic acid-induced apoptosis are antagonized by MEK inhibitor U0126 in adherent or 3D spheroid melanoma irrespective of p53 status. International journal of cancer.2006, 118(5),1135-1143.
    100. Lee SK, Jang HJ, Lee HJ, Lee J, Jeon BH, Jun CD, Lee SK, Kim EC. p38 and ERK MAP kinase mediates iron chelator-induced apoptosis and -suppressed differentiation of immortalized and malignant human oral keratinocytes. Life sciences.2006,79(15),1419-1427.
    101. Choi BK, Choi CH, Oh HL, Kim YK. Role of ERK activation in cisplatin-induced apoptosis in A172 human glioma cells. Neurotoxicology.2004, 25(6),915-924.
    102. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B. Genomic targets of the human c-Myc protein. Genes& development. 2003,17(9),1115-1129.
    103. Pelengaris S, Khan M. The many faces of c-MYC. Archives of biochemistry and biophysics.2003,416(2),129-136.
    104. Bermudez Y, Yang H, Cheng JQ, Kruk PA. Pyk2/ERK 1/2 mediate Spl-and c-Myc-dependent induction of telomerase activity by epidermal growth factor. Growth factors (Chur, Switzerland).2008,26(1),1-11.
    105. Arnold HK, Sears RC. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and cellular biology.2006,26(7),2832-2844.
    106. Tan J, Lee PL, Li Z, Jiang X, Lim YC, Hooi SC, Yu Q. B55beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer cell.2010,18(5),459-471.
    107. O'Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A, Dang CV. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Molecular and cellular biology.2006,26(6), 2373-2386.
    108. Stark GR, Taylor WR. Control of the G2/M transition. Molecular biotechnology. 2006,32(3),227-248.
    109. Perdiguero E, Nebreda AR. Regulation of Cdc25C activity during the meiotic G2/M transition. Cell cycle (Georgetown, Tex.2004,3(6),733-737.
    110. Zegura B, Sedmak B, Filipic M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon.2003,41(1),41-48.
    111. Lankoff A, Bialczyk J, Dziga D, Carmichael WW, Lisowska H, Wojcik A. Inhibition of nucleotide excision repair (NER) by microcystin-LR in CHO-K1 cells. Toxicon.2006,48(8),957-965.
    112. Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, Zhang L, Yoneda Y, Fujii Y, Skoultchi AI et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell.2003,114(6),673-688.
    1 Kong M, Ditsworth D, Lindsten T and Thompson CB. Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell 2009; 36(1):51-60.
    2 Gurland G and Gundersen GG. Protein phosphatase inhibitors induce the selective breakdown of stable microtubules in fibroblasts and epithelial cells. Proc Natl Acad Sci USA 1993; 90(19):8827-31.
    3 Merrick SE, Trojanowski JQ and Lee VM. Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons. J Neurosci 1997; 17(15):5726-37.
    4 Tar K, Birukova AA, Csortos C, Bako E, Garcia JG and Verin AD. Phosphatase 2A is involved in endothelial cell microtubule remodeling and barrier regulation. J Cell Biochem 2004; 92(3):534-46.
    5 Tar K, Csortos C, Czikora I, Olah G, Ma SF, Wadgaonkar R, et al. Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. J Cell Biochem 2006; 98(4):931-53.
    6 Sasse R and Gull K. Tubulin post-translational modifications and the construction of microtubular organelles in Trypanosoma brucei. J Cell Sci 1988; 90 (Pt 4): 577-89.
    7 Piperno G, LeDizet M and Chang XJ. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 1987; 104(2):289-302.
    8 Fath T, Eidenmuller J and Brandt R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci 2002; 22(22):9733-741.
    9 Kreitzer G, Liao G and Gundersen GG. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell 1999; 10(4):1105-18.
    10 Contin MA, Purro SA, Bisig CG, Barra HS and Arce CA. Inhibitors of protein phosphatase 1 and 2A decrease the level of tubulin carboxypeptidase activity associated with microtubules. Eur J Biochem 2003; 270(24):4921-9.
    11 Hiraga A and Tamura S. Protein phosphatase 2A is associated in an inactive state with microtubules through 2A1-specific interaction with tubulin. Biochem J 2000; 346 (Pt 2):433-9.
    12 Yoon SY, Choi JE, Choi JM and Kim DH. Dynein cleavage and microtubule accumulation in okadaic acid-treated neurons. Neurosci Lett 2008; 437(2):111-5.
    13 Nunbhakdi-Craig V, Schuechner S, Sontag JM, Montgomery L, Pallas DC, Juno C, et al. Expression of protein phosphatase 2A mutants and silencing of the regulatory B alpha subunit induce a selective loss of acetylated and detyrosinated microtubules. J Neurochem 2007; 101(4):959-71.
    14 Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, et al. A standardized kinesin nomenclature. J Cell Biol 2004; 167(1):19-22.
    15 Takemoto A, Maeshima K, Ikehara T, Yamaguchi K, Murayama A, Imamura S, et al. The chromosomal association of condensin II is regulated by a noncatalytic function of PP2A. Nat Struct Mol Biol 2009; 16(12):1302-8.
    16 Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS and Watanabe Y. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 2007; 21(4):420-35.
    17 Huang H, Feng J, Famulski J, Rattner JB, Liu ST, Kao GD, et al. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 2007; 177(3):413-24.
    18 Tanno Y, Kitajima TS, Honda T, Ando Y, Ishiguro K and Watanabe Y. Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes Dev 2010; 24(19):2169-79.
    19 Karki S and Holzbaur EL. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1999; 11(1):45-53.
    20 Yang P, Fox L, Colbran RJ and Sale WS. Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. J Cell Sci 2000; 113 (Pt 1):91-102.
    21 Smith EF. Regulation of flagellar dynein by the axonemal central apparatus. Cell Motil Cytoskeleton 2002; 52(1):33-42.
    22 Jamal BT, Nita-Lazar M, Gao Z, Amin B, Walker J and Kukuruzinska MA. N-glycosylation status of E-cadherin controls cytoskeletal dynamics through the organization of distinct beta-catenin-and gamma-catenin-containing AJs. Cell Health Cytoskelet 2009; 2009(1):67-80.
    23 Gong CX, Wegiel J, Lidsky T, Zuck L, Avila J, Wisniewski HM, et al. Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and-2B in rat brain. Brain Res 2000; 853(2):299-309.
    24 Salvador LM, Flynn MP, Avila J, Reierstad S, Maizels ET, Alam H, et al. Neuronal microtubule-associated protein 2D is a dual a-kinase anchoring protein expressed in rat ovarian granulosa cells. J Biol Chem 2004; 279(26):27621-32.
    25 Flynn MP, Maizels ET, Karlsson AB, McAvoy T, Ahn JH, Nairn AC, et al. Luteinizing hormone receptor activation in ovarian granulosa cells promotes protein kinase A-dependent dephosphorylation of microtubule-associated protein 2D. Mol Endocrinol 2008; 22(7):1695-710.
    26 Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 2002; 14(1):18-24.
    27 Tournebize R, Andersen SS, Verde F, Doree M, Karsenti E and Hyman AA. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. Embo J 1997; 16(18):5537-49.
    28 Schlaitz AL, Srayko M, Dammermann A, Quintin S, Wielsch N, MacLeod I, et al. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 2007; 128(1):115-27.
    29 Schweiger S, Foerster J, Lehmann T, Suckow V, Muller YA, Walter G, et al. The Opitz syndrome gene product, MIDI, associates with microtubules. Proc Natl Acad Sci USA 1999; 96(6):2794-9.
    30 Liu J, Prickett TD, Elliott E, Meroni G and Brautigan DL. Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4. Proc Natl Acad Sci USA 2001; 98(12):6650-5.
    31 Aranda-Orgilles B, Aigner J, Kunath M, Lurz R, Schneider R and Schweiger S. Active transport of the ubiquitin ligase MIDI along the microtubules is regulated by protein phosphatase 2A. PLoS One 2008; 3(10):e3507.
    32 Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, et al. MIDI, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 2001; 29(3):287-94.
    33 Garcia ML and Cleveland DW. Going new places using an old MAP:tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 2001; 13(1):41-8.
    34 Sontag E, Nunbhakdi-Craig V, Lee G, Brandt R, Kamibayashi C, Kuret J, et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 1999; 274(36):25490-8.
    35 Liu F, Grundke-Iqbal I, Iqbal K and Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005; 22(8):1942-50.
    36 Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I and Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem 2000; 275(8):5535-44.
    37 Zhao WQ, Feng C and Alkon DL. Impairment of phosphatase 2A contributes to the prolonged MAP kinase phosphorylation in Alzheimer's disease fibroblasts. Neurobiol Dis 2003; 14(3):458-69.
    38 Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ and Lee VM. PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp Neurol 2001; 168(2):402-12.
    39 Kostin S, Hein S, Arnon E, Scholz D and Schaper J. The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev 2000; 5(3):271-80.
    40 Cooper Gt. Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol 2006; 291(3):H1003-14.
    41 Chinnakkannu P, Samanna V, Cheng G, Ablonczy Z, Baicu CF, Bethard JR, et al. Site-specific microtubule-associated protein 4 dephosphorylation causes microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 2010; 285(28):21837-48.
    42 Cheng G, Takahashi M, Shunmugavel A, Wallenborn JG, DePaoli-Roach AA, Gergs U, et al. Basis for MAP4 dephosphorylation-related microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 2010; 285(49):38125-40.
    43 Sun L, Gao J, Dong X, Liu M, Li D, Shi X, et al. EB1 promotes Aurora-B kinase activity through blocking its inactivation by protein phosphatase 2A. Proc Natl Acad Sci USA 2008; 105(20):7153-8.
    [1]Janssens V, Goris J:Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling[J]. Biochem J, 2001,353(Sup3):417-439.
    [2]Ruediger R, Pham HT, Walter G:Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene[J]. Oncogene,2001,20(1):10-15.
    [3]Kim SW, Jung HK, Kim MY:Induction of p27(kipl) by 2,4,3',5'-tetramethoxystilbene is regulated by protein phosphatase 2A-dependent Akt dephosphorylation in PC-3 prostate cancer cells[J]. Archives of pharmacal research, 2008,31(9):1187-1194.
    [4]Tamaki M, Goi T, Hirono Y et al:PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers[J]. Oncology reports,2004, 11(3):655-659.
    [5]Woo MM, Salamanca CM, Symowicz J et al:SV40 early genes induce neoplastic properties in serous borderline ovarian tumor cells[J]. Gynecologic oncology,2008, 111(1):125-131.
    [6]李天祝,向本琼:蛋白磷酸酶PP2A的结构及其肿瘤抑制因子功能[J].生物化学与生物物理进展,2009,36(2):133-142.
    [7]Strack S, Chang D, Zaucha JA et al:Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A[J]. FEBS letters,1999, 460(3):462-466.
    [8]Baek S, Seeling JM:Identification of a novel conserved mixed-isoform B56 regulatory subunit and spatiotemporal regulation of protein phosphatase 2A during Xenopus laevis development[J]. BMC developmental biology,2007,7(1):139.
    [9]Sanghamitra M, Talukder I, Singarapu N et al:WD-40 repeat protein SG2NA has multiple splice variants with tissue restricted and growth responsive properties[J]. Gene,2008,420(1):48-56.
    [10]Muggerud AA, Ronneberg JA, Warnberg F et al:Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer[J]. Breast Cancer Res,2010,12(1):3.
    [11]Vazquez A, Kulkarni D, Grochola LF et al:A genetic variant in a PP2A regulatory subunit encoded by the PPP2R2B gene associates with altered breast cancer risk and recurrence[J]. International journal of cancer,2011,128(10):2335-2343.
    [12]Ito A, Koma Y, Watabe K et al:A truncated isoform of the protein phosphatase 2A B56gamma regulatory subunit may promote genetic instability and cause tumor progression[J]. The American journal of pathology,2003,162(1):81-91.
    [13]Chen W, Possemato R, Campbell KT et al:Identification of specific PP2A complexes involved in human cell transformation[J]. Cancer cell,2004, 5(2):127-136.
    [14]Ito A, Kataoka TR, Watanabe M et al:A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation[J]. The EMBO journal, 2000,19(4):562-571.
    [15]Grochola LF, Vazquez A, Bond EE et al:Recent natural selection identifies a genetic variant in a regulatory subunit of protein phosphatase 2A that associates with altered cancer risk and survival[J]. Clin Cancer Res,2009,15(19):6301-6308.
    [16]Foster RE, Abdulrahman M, Morris MR et al:Characterization of a 3;6 translocation associated with renal cell carcinoma[J]. Genes, chromosomes & cancer, 2007,46(4):311-317.
    [17]Dunwell TL, Hesson LB, Pavlova T et al:Epigenetic analysis of childhood acute lymphoblastic leukemia[J]. Epigenetics,2009,4(3):185-193.
    [18]Kuo YC, Huang KY, Yang CH et al:Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt[J]. The Journal of biological chemistry,2008,283(4):1882-1892.
    [19]Padmanabhan S, Mukhopadhyay A, Narasimhan SD et al:A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation[J]. Cell,2009,136(5):939-951.
    [20]Abraham D, Podar K, Pacher M et al:Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation[J]. The Journal of biological chemistry,2000, 275(29):22300-22304.
    [21]Adams DG, Coffee RL, Zhang H et al:Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes[J]. J Biol Chem,2005,280(52):42644-42654.
    [22]Eichhorn PJ, Creyghton MP, Wilhelmsen K et al:A RNA interference screen identifies the protein phosphatase 2A subunit PR55gamma as a stress-sensitive inhibitor of c-SRC[J]. PLoS genetics,2007,3(12):e218.
    [23]Chao TS, Abe M, Hershenson MB et al:Src tyrosine kinase mediates stimulation of Raf-1 and mitogen-activated protein kinase by the tumor promoter thapsigargin[J]. Cancer research,1997,57(15):3168-3173.
    [24]Stokoe D, McCormick F:Activation of c-Raf-1 by Ras and Src through different mechanisms:activation in vivo and in vitro[J]. The EMBO journal,1997, 16(9):2384-2396.
    [25]Kozma SC, Thomas G:Regulation of cell size in growth, development and human disease:PI3K, PKB and S6K[J]. Bioessays,2002,24(1):65-71.
    [26]Mamane Y, Petroulakis E, LeBacquer O et al:mTOR, translation initiation and cancer[J]. Oncogene,2006,25(48):6416-6422.
    [27]Tan J, Lee PL, Li Z et al:B55beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer[J]. Cancer cell,2010,18(5):459-471.
    [28]Hahn K, Miranda M, Francis VA et al:PP2A regulatory subunit PP2A-B' counteracts S6K phosphorylation[J]. Cell metabolism,2010,11(5):438-444.
    [29]Arnold HK, Sears RC:Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation[J]. Molecular and cellular biology,2006,26(7):2832-2844.
    [30]Letourneux C, Rocher G, Porteu F:B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK[J]. The EMBO journal,2006,25(4):727-738.
    [31]Okamoto K, Li H, Jensen MR et al:Cyclin G recruits PP2A to dephosphorylate Mdm2[J]. Molecular cell,2002,9(4):761-771.
    [32]Haupt Y, Maya R, Kazaz A et al:Mdm2 promotes the rapid degradation of p53[J]. Nature,1997,387(6630):296-299.
    [33]Li HH, Cai X, Shouse GP et al:A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55[J]. The EMBO journal,2007,26(2):402-411.
    [34]Shouse GP, Nobumori Y, Liu X:A B56gamma mutation in lung cancer disrupts the p53-dependent tumor-suppressor function of protein phosphatase 2A[J]. Oncogene, 2010,29(27):3933-3941.
    [35]Jin Z, Wallace L, Harper SQ et al:PP2A:B56{epsilon}, a substrate of caspase-3, regulates p53-dependent and p53-independent apoptosis during development[J]. The Journal of biological chemistry,2010,285(45):34493-34502.
    [36]Garriga J, Jayaraman AL, Limon A et al:A dynamic equilibrium between CDKs and PP2A modulates phosphorylation of pRB, p107 and p130[J]. Cell cycle (Georgetown, Tex,2004,3(10):1320-1330.
    [37]Jayadeva G, Kurimchak A, Garriga J et al:B55alpha PP2A holoenzymes modulate the phosphorylation status of the retinoblastoma-related protein p107 and its activation[J]. The Journal of biological chemistry,2010,285(39):29863-29873.
    [38]Magenta A, Fasanaro P, Romani S et al:Protein phosphatase 2A subunit PR70 interacts with pRb and mediates its dephosphorylation[J]. Molecular and cellular biology,2008,28(2):873-882.
    [39]Zhang W, Yang J, Liu Y et al:PR55 alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation[J]. The Journal of biological chemistry,2009,284(34):22649-22656.
    [40]Li X, Yost HJ, Virshup DM et al:Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus[J]. The EMBO journal,2001, 20(15):4122-4131.
    [41]Miyabayashi T, Teo JL, Yamamoto M et al:Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency[J]. Proceedings of the National Academy of Sciences of the United States of America,2007, 104(13):5668-5673.
    [42]Seeling JM, Miller JR, Gil R et al:Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A[J]. Science (New York, NY,1999, 283(5410):2089-2091.
    [43]Yang J, Phiel C:Functions of B56-containing PP2As in major developmental and cancer signaling pathways[J]. Life Sci,2010,87(23-26):659-666.
    [44]Yamamoto H, Hinoi T, Michiue T et al: Inhibition of the Wnt signaling pathway by the PR61 subunit of protein phosphatase 2A[J]. The Journal of biological chemistry, 2001,276(29):26875-26882.
    [45]Creyghton MP, Roel G, Eichhorn PJ et al:PR72, a novel regulator of Wnt signaling required for Naked cuticle function[J]. Genes & development,2005,19(3):376-386.
    [46]Creyghton MP, Roel G, Eichhorn PJ et al:PR130 is a modulator of the Wnt-signaling cascade that counters repression of the antagonist Naked cuticle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(14):5397-5402.
    [47]Widau RC, Jin Y, Dixon SA et al:Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis[J]. The Journal of biological chemistry,2010,285(18):13827-13838.
    [48]Parone PA, James D, Martinou JC:Mitochondria:regulating the inevitable[J]. Biochimie,2002,84(2/3):105-111.
    [49]Ruvolo PP, Clark W, Mumby M et al:A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function[J]. The Journal of biological chemistry,2002, 277(25):22847-22852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700