外延Pb(Zr_(0.52)Ti_(0.48))O_3单晶薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电薄膜由于其物理机制和潜在的在各种微电子器件如非挥发性动态随机存贮器和铁电场效应管上的应用,受到了很多的关注,为了减少位错并保持器件的优异性能,在铁电器件制备中使用和铁电薄膜晶格非常匹配的导电氧化物是人们所期待的,另一方面从透明电子线路的光学应用上来说,高质量的外延铁电异质结也是非常需要的。在铁电器件的应用中,具有吸引力的是非挥发性存贮器具有的不需外场就能保持信息的能力,非挥发性存储器件的一个重要特征就是破坏性的读取数据,这就要求在使用过程中器件必须能够承受多次的极化翻转,然而在不停极化翻转过程中翻转电荷的减少使得疲劳行为成为块材和铁电薄膜中存在的一个普遍问题,因此要想理解疲劳机制的起源,对铁电材料的基础研究显得特别重要,在铁电薄膜中已经有许多办法去克服疲劳行为,例如使用氧化物电极或者使用层状结构的铁电材料,然而在运用这些方法之前仍然存在着一些问题需要解决。和疲劳一样,记忆效应是另外一个导致铁电器件失效的因素,它常常表现为电滞回线沿着电场轴平移,这种平移会使得某个方向矫顽场增加和两种极化状态的无法区,各种机制特别是界面影响已经被认为是内建电场形成的因素,因此在全氧化物的外延异质结中上下电极界面都是需要被考虑的。
     在本论文中采用脉冲激光方法制备薄膜,使用了一种新型的n型透明导电氧化物作为电极,成功制备了外延透明铁电电容器;通过改变p/n型导电氧化物电极,制备了不同电极构型的铁电电容器,仔细研究了其疲劳行为,结果显示并非所有的氧化物电极都能有效的提高PZT电容器的抗疲劳性,这种n型电极引入的疲劳可能和电荷注入以及n型电极和PZT接触形成的界面电容或内建势有关;同时也讨论了薄膜质量和界面接触对介电常数测量的影响;最后我们使用了不同晶格常数的两种导电氧化物作为电极制备全氧化物铁电电容器,研究了其记忆效应,结果表明上下氧化物电极和铁电薄膜之间的界面应变状态都和工艺过程引入的记忆效应紧密相关,而且内建电场的形成可能来自于界面处氧丢失形成的界面应变。
     整篇论文分为五章。
     第一章介绍了铁电薄膜的历史研究现状。首先回顾了铁电薄膜中的一些相关问题,如铁电薄膜电子器件,钙钛矿和层状结构的铁电材料的晶体结构,掺杂对铁电性能的影响,铁电体的畴结构,畴的生长和翻转,可逆和不可逆极化等,最后总结了氧空位和电荷注入对极化退化的影响以及为解释疲劳行为而提出的各种模型,也给出了解释记忆效应的各种机制如界面屏蔽,内建电场和机械应力模型等等,提出了尚待解决的问题。
     第二章用新型的透明导电氧化物La_(0.07)Sr_(0.93)SnO_3(LSSO)薄膜制备外延Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)铁电电容器,由于LSSO和PZT之间几乎可以忽略的晶格失配,高分辨x射线衍射表明生长在.SrTiO_3(001)基片上的LSSO/PZT/LSSO异质结具有非常好的单晶性,而且此异质结的在400-2500nm波长范围内的光学透过率和纯SrTiO_3(001)基片的透过率相当,LSSO/PZT/LSSO电容器具有方形的P-E电滞回线,但是其矫顽场大,剩余极化小,然而和传统的全氧化物电容器相形成鲜明对比的是它的抗疲劳性比较差。
     第三章通过使用高电导率的p型La_(0.7)Sr_(0.3)MnO_3(LSMO)和n型的La_(0.07)Sr_(0.93)SnO_3(LSSO)作为电极,在(001)SrTiO_3基片上外延生长了四种不同电极构型的Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)全氧化物电容器,分别为LSMO/PZT/LSMO,LSSO/PZT/LSSO,LSSO/PZT/LSMO和LSMO/PZT/LSSO,表征它们的结构,极化翻转,疲劳和光学特性,结果显示除LSMO/PZT/LSMO电容器之外,所有使用n型电极的电容器都表现出了比较差的抗疲劳性,特别是在低频下,这个现象在使用n型导电的SrTi_(0.9)Sb_(0.1)O_3氧化物之后得到进一步证实,实验结果表明借助于PZT/LSSO界面存在着的耗尽层,极化翻转过程中的电荷积聚和注入可能是导致疲劳的原因。
     第四章使用La_(0.7)Sr_(0.3)MnO_3(LSMO)和Pt分别作为下电极和上电极,在(001)SrTiO_3基片生长高质量的不同的厚度的Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)铁电薄膜电容器,通过C-V曲线测量表明,PZT外延薄膜可以被看成一个p型宽带隙的半导体切和金属电极接触形成标准的肖特基接触,这一组分的PZT本征介电常数似乎和厚度无关,而且其值比较小,为307。同时我们也对具有不同p/n电极构型的PZT电容在不同疲劳阶段进行了介电测量,初步的结果表明疲劳行为和界面电容以及内建电场有紧密关联。
     第五章使用La_(0.7)Sr_(0.3)MnO_3(L)和SrRuO_3(S)作为电极,不同电极构型的四种L/PZT/L(from top to bottom)(a),S/PZT/S(b),S/PZT/L(c),and L/PZT/S(d)Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)电容器被成功的外延生长在(LaAlO_3)_(0.3)(SrAl_(0.5)Ta_(0.5)O_3)_(0.7)(001)基片上,对它们的工艺过程引入的记忆效应进行了研究,经过在还原氧气氛下的退火,在零场下电容器a和b分别出现了负的和正的记忆效应,电容器c的电滞回线类似于反铁电电滞回线,电容器d在这一过程中非常稳定,我们的实验证据表明不同的内建电场可能是由PZT上下电极界面不同的氧丢失引起的晶格应变导致的。
Ferroelectric thin films have attracted great attention for their physics and potential applications in various microelectronic devices such as nonvolatile ferroelectric random access memories and ferroelectric field-effect transistors.In order to reduce the dislocations and keep a high performance,conductive oxides with a lattice perfectly matched to the ferroelectric films are highly desirable in ferroelectric devices fabrication;on the other hand,for optical applications in invisible electronic circuits high quality epitaxial ferroelectric heterostructures are also demanded.Among the applications for ferroelectric thin films nonvolatile memories are attractive due to the ability to hold information without requiring an external field,one of the critical features of nonvolatile memory devices is typically destructive reading,requiring the ferroelectric to endure large number of electrical cycles during operation.However decrease of switching charge due to repeated polarization reversal,know as fatigue,is a common problem in bulk and thin film ferroelectrics.Fundamental studies of ferroelectric materials are essential in understanding the origin of the fatigue mechanisms.There have been a number of advances to overcome fatigue in ferroelectric films,such as the utilization of oxide electrode,or using layered type ferroelectrics that exhibit fatigue-free behavior.There still exist certain issues which need to be solved when employing these strategies. Like fatigue,imprint is another failure effect which demonstrates itself by shifting the hysteresis loop along the electric field axis,with a higher coercive electric field and undistinguishable polarization states imprint can cause a failure of the ferroelectric devices,various mechanisms especially electrode-ferroelectric interface effects have been attributed to the appearance of the internal electric field,thus in all oxide epitaxial heterostructures both top and bottom interface states should be considered.
     In this thesis pulsed laser ablation method was used to deposit thin film. Epitaxial and transparent ferroelectric capacitor was successfully fabricated by employing a new transparent conductive oxide as electrode.Through changing the p/n type electrode ferroelectric capacitors with different electrode configurations were deposited,their fatigue behaviors were carefully investigated,it is shown that not all oxide electrodes can be used to improve fatigue resistance in PZT capacitors,the n type electrode induced fatigue may related to charge injection and the interface capacitor or built-in potential between PZT and n type electrode.The effect of the film quality and the effects of interface contact on permittivity characterization were also discussed.At last,conductive oxide electrodes with different lattice constant were used to fabricate all-oxide ferroelectric capacitors,their process-induce imprint failures were studied,the results indicts that both top and bottom interface strain states are closely correlated to the process-induce imprint,the internal electric field may induced by the oxygen-loss-related lattice strain.
     The whole thesis consists of five chapters.
     Chapter 1:The general review of the history and present research situation of the ferroelectric thin film is given.Some related properties,such as ferroelectric thin film devices,crystal structure of perovskite and layered ferroelectric material,doping effect,domain structure,domain growth and switching,reversible and irreversible polarization,are introduced.In the end,we sum up the effects oxygen vacancy and charge injection on the polarization degradation and different models that have been suggested to explain the fatigue behavior,various mechanisms(such as interface screening,built-in electric field and mechanical stress et al.)that given for interpretation of the imprint failure were also summarized.
     Chapter 2:New conductive and transparent La_(0.07)Sr_(0.93)SnO_3(LSSO)film was employed as electrodes for fabrication of epitaxial Pb(Zr_(0.52)Ti_(0.48))O_3(PZT) ferroelectric capacitors.Due to negligible lattice mismatch between LSSO and PZT, the LSSO/PZT/LSSO heterostructures grown on SrTiO_3(001)substrates show excellent single-crystalline quality as revealed by high-resolution x-ray diffraction, and are transparent with transmittance comparable to that of pure SrTiO_3(001) substrates at wavelength of 400-2500 nm.These capacitors show square polarization-electric field hysteresis loops,but smaller polarization,larger coercive field,and especially poor fatigue resistance,in sharp contrast with those observed for the conventional epitaxial all-oxide PZT capacitors.
     Chpter 3:By using highly conductive p-type La_(0.7)Sr_(0.3)MnO_3(LSMO)and n-type La_(0.07)Sr_(0.93)SnO_3(LSSO)as electrodes,all-oxide Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)capacitors, LSMO/PZT/LSMO,LSSO/PZT/LSSO,LSSO/PZT/LSMO,and LSMO/PZT/LSSO, have been grown epitaxially on(001)SrTiO_3 substrates,and their structure,switching, fatigue and optical properties were investigated.Strikingly,contrary to the LSMO/PZT/LSMO capacitors,those having the n-type electrodes show poor fatigue resistance especially at lower driving frequencies,which was further confirmed by using another n-type oxide electrode,SrTi_(0.9)Sb_(0.1)O_3.The results suggest that with a depletion layer at the PZT/LSSO interface,charge accumulation and injection during switching may be responsible for the fatigue.
     Chapter 4:Using La_(0.7)Sr_(0.3)MnO_3(LSMO)and Pt as bottom and top electrode respectively,high quality Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)ferroelectric thin films with different thickness were epitaxially grown on(001)SrTiO_3 substrates,analyzing the PZT epitaxial thin films as p-type,wide-gap semiconductors and standard Schotty contact with metal electrode through C-V measurement,the intrinsic dielectric constant of this PZT composition seems to be thickness independent and of low value of about 307.The dielectric performances at different fatigue stages of the PZT capacitors with p/n type electrode were also characterized and the primitive results indicate that fatigue behaviors are closely related to the interface capacitance and built-in electric field.
     Chapter 5:By using La_(0.7)Sr_(0.3)MnO_3(L)and SrRuO_3(S)as electrodes, Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)capacitors with different electrode-configurations,i.e., L/PZT/L(from top to L/PZT/L(from top to bottom)(a),S/PZT/S(b),S/PZT/L(c), and L/PZT/S(d)have been grown epitaxially on(LaAlO_3)_(0.3)(SrAl_(0.5)Ta_(0.5)O_3)_(0.7)(001) substrates,and their process-induced imprint behaviors were investigated.After being annealed at reduced oxygen pressures,the capacitors a(b)have a negative(positive) imprinted polarization(P)state at zero electric field(E),the capacitors c show antiferroelectric-like P-E hysteresis loops,while for d the loops are very stable.We show evidences that the different internal field could be caused by various oxygen-loss-induced lattice strains at the PZT top and bottom interfaces.
引文
[1] J. Valasek, Phys. Rev. 17,475 (1921).
    
    [2] C. Araujo, J. F. Scott, and G. Taylor, Ferroelectric thin films: Synthesis and basic properties (Gordon and Breach, 1996).
    [3] M. Dawber, K. M. Rabe and J. F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77 (2005).
    
    [4] 0. Auciello, J. F. Scott, and R. Ramesh, Physics Today 51 (1998).
    [5] J. F. Scott and C. A. P. D. Araujo, Science. 246,1400 (1989).
    [6] J. K. Lee, Y. Park, I. Chung, S. J. Oh, D. J. Jung, Y. S. Song, B. J. Koo, S. Y. Lee, K. Kim and S. B. Desu, J. Appl. Phys. 86,6736 (1999).
    [7] Sawyer C B, Tower C H, Phys. Rev. 35,269 (1930).
    [8] Diamant H, et al. Rev. Sci. Instru. 28,30 (1957).
    [9] S. B. Desu, Phys. Stat. Sol.(A) 151,467 (1995).
    [10] G. R. Fox, F. Chu, and T. Davenport, J. Vac. Sci. Technol. B. 19,1967 (2001).
    
    [11] A. I. Kingon and S. K. Streiffer, Cum Opin. Sol. St. M. 4, 39 (1999).
    
    [12] S.Sinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, J. Vac. Sci. Techol. A. 10, 1554 (1992).
    
    [13] Mathews. S., R. Ramesh, T. Venkatesan, and J. Benedetto, Science, 276,238 (1997).
    [14] J. F. Scott, Ferroelectrics, 1, 82 (1998).
    
    [15] Kalkur. T. S., B. Jacob, and G. Argos, Inter. Ferroeletr. 5,177 (1994).
    [16] Yoon. S.-M., and H. Ishiwara, IEEE Trans. Electron Devices, 48,2002 (2001).
    [17] Peacock P. W., and J. Robertson, J. Appl. Phys. 92,4712 (2002).
    [18] Macleod T. C., and F. D. Ho, Integr. Ferroelectr. 34, 1461 (2001).
    [19] Ahn C. H., J.-M. Triscone, and J. Mannhart, Nature (London), 424, 1015 (2003).
    [20] S. L. Miller and P. J. Mcwhorter, J. Appl. Phys. 72, 5999 (1992)
    [21] M.-K. Choi, B.-G. Jeon, N. Jang, B.-J. Min, Y.-J. Song, S.-Y. Lee, H.-H. Kim, D.-J. Jung, H.-J. Joo, K. Kim, IEEE J. Solid-State Circuits. 37,1472 (2002).
    [22] T. Noguchi, T. Hase, Y. Miyasaka, Jpn. J. Appl. Phys. 35,4900 (1996).
    [23] S. K. Dey, P. Alluri, J.-J. Lee, R. Zuleeg, Integr. Ferroelectr. 8, 715 (1995).
    [24] D. J. Wouters, G. Willems, G. Groeseneken, H. E. Maes, K. Brooks, R. Klissurska, Proc. EMIF-1, Nijmegen (July 1995).
    [25] J. F. Scott, Integr. Ferroelctr. 9,1 (1995).
    [26] R. Waser, T. Baiatu, H. Hardtl, J. Am. Ceram. Soc. 73, 1645 (1990).
    [27] R. Waser, M. Klee, Inter. Ferroelectr. 2,288 (1992).
    [28] B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics, London and New York 1971.
    [29] A. J. Moulson and J. M Herbert, Electroceramics, Chapman and Hall Press, New York 1996..
    [30] M. Pereira, A. G. Peixoto, M. J. M. Gomes, J. Europ. Soc. 21,1353 (2001).
    [31] C. K. Barlingay, S. K. Dey, Thin Solid Films, 272, 112 (1996).
    [32] J. Chen, M. P. Harmer, and D. Smyth, ISAF 8 Processdings, 111 (1992).
    [33] H. Watanabe, T. Mihara, H. Yashimori, and C. A. P. De Araujo, ISIF 4 Proceedings, 346 (1992).
    [34] R. D. Klissurka, A. K. Tagantsev, K. G. Brooks, and N. Setter, J. Am. Ceram. Soc. 80, 336 (1997).
    [35] B. Yang, T. K. Song, S. Aggarwal, and R. Ramesh, Appl. Phys. Lett. 71,3578 (1997).
    [36] S.-H. Kim, D-J. Kim, J. G. Hong, S. K. Streiffer, and A. I. Kingon, J. Mater. Res. 14, 1371 (1999).
    [37] E. M. Griswold, M. Sayer, D. T. Amm, and I. D. Calder, Can. J. Phys. 69, 260 (1991).
    [38] T. Haccart, D. Remiens, and E. Cattan, Thin Solid Films. 423,235 (2003).
    [39] H. Watanabe, T. Mihara, H. Yashimori, and C. A. Paz De Araujo, ISIF 3 Proceedings, 139 (1992).
    [40] S. D. Bernstein, Y. Kister, J. M. Whal, S. E. Bernacki, and S. R. Collins, MRS Symp. Proc. 243,373(1992).
    [41] G. Toewee, J. M. Boulton, M. N. Orr, C. D. Baertlein, R. K. Wade, D. P. Birnie, and D. R. Uhlman, MRS Symp. Proc. 310,423 (1992).
    [42] H. N. Al-Shareef, K. R. Bellur, O. Auciello, and A.I. Kingon, Thin Solid Films. 252, 38 (1994).
    [43] A. Gruverman, H. Tokumoto, A. S. Prakash, S. Aggarwal, B. Yang, M. Wuttig, R. Ramesh, O. Auciello, T. Venkatensan, Appl. Phys. Lett. 71,3492 (1997).
    [44] Damjanovic D, Rep. Prog. Phys. 61, 1267 (1998).
    [45] R. Ramesh, Sands T, and Keramidas VG, Appl. Phys. Lett. 63, 731 (1993).
    [46] B. A. Turtle, T. J. Garino, J. A. Voigt, T. J. Headley, D. Dimos and M. O. Eatouch. Science and Technology of Electroceramic Thin Films, ed. O. Auciello and R. Waser, Dordrecht, Ger.: Kruwer Acad. Publ. 5, 117 (1995).
    
    [47] G. Arlt, D. Hennings, and G. de-With, J. Appl. Phys. 58, 1619 (1985).
    [48] W. R. Cook, J. Am. Ceram. Soc. 39, 17 (1956).
    [49] R. C. de Vries and J. E. Bruke, J. Am. Ceram. Soc. 40, 200 (1957).
    [50] G. Arlt, J. Mater. Sci. 25, 2655 (1990).
    [51] Kilho Lee and Sunggi Baik, Annu. Rev. Mater. Res. 36, 81 (2006).
    [52] C. M. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R.Bai, D. Guo, H.You and K. L. Merkle, J. Appl. Phys. 78,2607 (1995).
    [53] Kilho Lee, Keewon Kim, Soon-Ju Kwon, and Sunggi Baik, Appl. Phys. Lett. 85, 4711 (2004).
    [54] K. S. Lee and S. Baik, J. Appl. Phys. 85,1995 (1999).
    [55] C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and J. Amano, J. Appl. Phys. 81,2349 (1997).
    [56] C. M. Foster, W. Pompe, A. C. Daykin, and J. S. Speck, J. Appl. Phys. 79, 1405 (1996).
    [57] K. S. Lee, J. H. Choi, J. Y. Lee, and S. Baik, J. Appl. Phys. 90,4095 (2001).
    [58] Y. K. Kim, K. Lee, and S. Baik, J. Appl. Phys. 95,236 (2004).
    [59] A. L. Roytburd, S. P. Alpay, V. Nagarajan, C. S. Ganpule, S. Aggarwal, E. D. Williams, L. A. Bendersky, and R. Ramesh, Phys. Rev. Lett. 85,190 (2000).
    [60] N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80,1988 (1998).
    [61] K. Nashimoto, D. K. Fork, and G. B. Anderson, Appl. Phys. Lett. 66, 822 (1995).
    [62] K. Nagashima, M. Aratani, and H. Funakubo, J. Appl. Phys. 89,4517 (2001).
    [63] A. Roelofs, N. A. Pertsev, R. Waser, F. Schlaphof, L. M. Eng, C. S. Ganpule, V. Nagarajan, and R. Ramesh, Appl. Phys. Lett. 80,1 (2002).
    [64] C. S. Ganpule, V. Nagarajan, H. Li, A. S. Ogale, D. E. Steinhauer, S. Aggarwall, E. Williams, and R. Ramesh, Appl. Phys. Lett. 77,292 (2000).
    [65] C. S. Ganpule, V. Nagarajan, B. K. Hill, A. L. Roytburd, E. D. Williams, R. Ramesh, S. P. Alpay, A. Roelofs, R. Waser, and L. M. Eng, J. Appl. Phys. 91, 1477 (2002).
    [66] D. Damjanovic, and M. Demartin, J. Phys. Condens. Matter. 9, 4943 (1997).
    [67] D. Damjanovic, Phys. Rev. B. 55, R649 (1997).
    
    [68] T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, Phys. Rev. Lett. 82, 4106 (1999).
    [69] O. Boser, and D. N. Beshers, Mater. Res. Soc. Symp. Proc. 82,441 (1987).
    [70] O. Lohse, D. Bolten, M. Grossmann, R. Waser, W. Hartner and G. Schindler, Ferroelectric Thin Film VI, Symp. Mater. Res. Soc. 493, 267 (1998).
    [71] D. Bolten, O. Lohse, M. Grossmann, and R. Waser, Ferroelectr. 221, 251 (1999).
    [72] Merz, W. J., Phys. Rev. 95, 690 (1954).
    [73] Orihara H., S. Hashimoto, and Y. Ishibashi, J. Phys. Soc. Jpn. 63,1031 (1994).
    [74] J. F. Scott, Integr. Ferroelectrics. 12, 71 (1996).
    [75] Du X., and I. W. Chen, J. Appl. Phys. 83, 7789 (1998).
    [76] Tagantsev A. K., I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, Phys. Rev. B. 66, 214109(2002).
    [77] Tsurumi T., S.-M. Num, Y.-B. Kil, and S. Wada, Ferroelectrics. 259,43 (2001).
    [78] Jung D. J., M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, Integr. Ferroelectr. 48, 59 (2002).
    
    [79] A. Safari, R. K. Panda, and V. F. Jans, Key Eng. Mater. 35,122 (1996).
    [80] A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, J. Appl. Phys. 90,1387 (2001)
    [81] W. J. Merz, and J. R. Anderson, Bell Lab. Record 33,335 (1995)
    [82] J. R. Anderson, G. W. Brady, W. J. Merz, and J. P. Remeika, J. Appl. Phys. 26,1387 (1995)
    [83] H. L. Stadler, J. Appl. Phys. 29,743 (1958).
    [84] R. Williams, J. Phys. Chem. Solids. 26,399 (1965).
    [85] W. C. Stewart, and L. S. Cosentino, Ferroelectrics. 1,149 (1970).
    [86] D. B. Fraser, and J. R. Maldonado, J. Appl. Phys. 41,2172 (1970).
    [87] D. J. Johnson, D. T. Amm, E. Griswold, K. Sreccnivas, G. Yi, and M. Sayer, Mater. Res. Soc. Symp.Proc. 200,289 (1990).
    [88] E. L. Colla, A. K. Tagantsev, D. V. Taylor, and A. L. Kholkin, J. Korean Phys. Soc. 32, S1353 (1998).
    [89] W. L. Warren, D. Dimos, B. A. Turtle, R. D. Nasby, and G. E. Pike, Appl. Phys. Lett. 65,1018 (1994).
    [90] D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Turtle, and R. W. Schwartz, J. Appl. Phys. 76, 4305 (1994).
    
    [91] W. L. Warren, B. A.Tuttle, and D. Dimos, Appl. Phys. Lett. 67,1423 (1995).
    [92] P. K. Larsen, G J. M. Dormans, D. J. Taylor and P. J. van Veldhoven, J. Appl. Phys. 76, 2405 (1994).
    [93] H. Han, J. Zhong, S. Kotru, P. Padmini, X. Y. Song and P. K. Pandey, Appl. Phys. Lett. 88, 092902 (2006).
    
    [94] J. F. M. Cillessen, M. W. J. Prins and R. M. Wolf, J. Appl. Phys. 81 2777 (1997).
    [95] T. Mihara, H. Watanabe and C. A. P. Araujo, Jpn. J. Appl. Phys. 33,3996 (1994).
    [96] E. M. Alkoy, K. Uchlyama, T. Shiosaki and S. Alkoy. J. Appl. Phys. 99,106106 (2006).
    [97] G. L. Rhun, G. Poullain and R. Bouregba, J. Appl. Phys. 96, 3876 (2006).
    [98] X. J. Lou, M. Zhang, S. A. T. Redfern and J. F. Scott, Phys. Rev. Lett. 97, 177601 (2006).
    [99] Brennan C, Ferroelectrics. 150,199 (1993).
    [100] Park C. H. and D. J. Chadi, Phys. Rev. B. 57, R13961 (1998).
    [101] G. Arlt and H. Neumann, Ferroelectrics. 87,109 (1988).
    [102] M. Dawber and J. F. Scott, Appl. Phys. Lett. 76,1060 (2000).
    [103] Y. Wang, K. F. Wang, C. Zhu and J.-M. Liu, J. Appl. Phys. 99, 044109 (2006).
    [104] G. L. Yuan, J.-M. Liu, Y. P. Wang, D. Wu, S. T. Zhang, Q. Y. Shao and Z. G. Liu, Appl. Phys. Lett. 84, 3352 (2004).
    
    [105] Y. Wang, Q. Y. Shao and J.-M. Liu, Appl. Phys. Lett. 88,122902 (2006).
    [106] Y. Wang, K. F. Wang, C. Zhu, T. Wei, J. S. Zhu and J.-M. Liu, J. Appl. Phys. 101, 046104 (2007).
    
    [107] J. F. Scott and M. Dawber, Appl. Phys. Lett. 76, 3801 (2000).
    [108] D. C. Lupascu and U. Rabe, Phys. Rev. Lett. 89,187601 (2002).
    [109] D. P. Vijay and S. B. Desu, J. Electrchem. Soc. 140,2640 (1993).
    [110] H. N. Al-Shareef, K. R. Bellur, A. I. Kingon and O. Auciello, Apppl. Phys. Lett. 66, 239 (1995).
    [111] T. Nakamura, Y. Nakano, A. Kanisawa and H. Takasu, Jpn. J. Appl. Phys. Part 1, 33, 5207 (1994).
    
    [112] T. Nakamura, Y. Nakano, A. Kanisawa and H. Takasu, Appl. Phys. Lett., 64,1522 (1994).
    [113] C. B. Eom, R. B. Van Dover, J. M. Phillips, D. J. Werder, C. H. Chen, R. J. Cava, R. M. Fleming and D. K. Fork, Appl. Phys. Lett. 63,2570 (1993).
    [114] R. Ramesh, W. K. Chan, B. Wilkens, T. Sands, J. M. Tarascon, V. K. Keramidas, D. K. Fork, J. Lee and A. Safari, Appl. Phys. Lett. 61,1537 (1992).
    
    [115] D. J. Lichtenwalner, R. Dat, O. Auciello and A. I. Kingon, Ferroelectrics. 152,97 (1994).
    [116] R. Ramesh, H. Girchlist, T. Sands, V. G. Keramidas, R. Haakenaasen, and D. K. Fork, Appl. Phys. Lett. 63, 3592 (1993).
    
    [117] R. Dat, D. J. Lichtenwalner, O. Aucielllo and A. 1. Kingon, Appl. Phys. Lett. 64, 2873 (1994).
    
    [118] Wenbin Wu, K. H. Wong, C. L. Choy and Y. H. Zhang, Appl. Phys. Lett. 77, 3441 (2000).
    [119] C. A. Paz De Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. F. Scott, Nature, 374,627(1995).
    
    [120] R. Dat, J. K. Lee, O. Auciello and A. 1. Kingon, Appl. Phys. Lett. 67, 572 (1995).
    [121] M. Brazier, S. Mansour and M. McElfresh, Appl. Phys. Lett. 74, 4032 (1999).
    [122] I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukada, Appl. Phys. Lett. 74, 3552 (1999).
    
    [123] I. Stolichnov, A. Tagantsev, E. L. Colla and N. Setter, Appl. Phys. Lett. 73, 1361 (1998).
    [124] X. F. Du and I.-W. Chen, Appl. Phys. Lett. 72, 1923 (1998).
    [125] X. F. Du and I.-W. Chen, J. Appl. Phys. 83, 7789 (1998).
    [126] I. Stolichnov, A. Tagantsev, E. L. Colla, S. Gentil, S. Hiboux, J. Baborowski, P. Muralt and N. Setter, J. Appl. Phys. 88, 2154 (2000).
    [127] I. Yoo and S. Desu, Phys. Status Solidi A 133,565 (1992).
    
    [128] A. K. Tagantsev and I. Stolichnov, Appl. Phys. Lett. 74, 1326 (1999).
    
    [129] G. E. Pike, W. L. Warren, D. Dimos, B. A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas and J. T. E. Jr, Appl. Phys. Lett. 66,484 (1995)
    
    [130] B. H. Park, T. W. Noh, J. Lee, C. Y. Kim and W. Jo, Appl. Phys. Lett. 70, 1101 (1997).
    [131] J. Lee and R. Ramesh, Appl. Phys. Lett. 68,484 (1996).
    [132] M. Grossmann, S. Hoffmann, S. Gusowski, R. Waser, S. K. Streiffer, C. Basceri, C. B. Parker, S. E. Lash, A. I. Kinggon, Inter. Ferroelctr. 22, 83 (1998).
    [133] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller and R. Waser, J. Appl. Phys. 92,2680 (2002).
    [134] M. Grossmann, 0. Lohse, D. Bolten, U. Boettger, T. Schneller and R. Waser, J. Appl. Phys.92,2688 (2002).
    
    [135] W. Kanzig, Phys. Rev. A 98,549 (1955).
    [136] S. Triebwasser, Phys. Rev. A 98,549 (1955).
    [137] M. Drougard and R. Landauer, J. Appl. Phys. 30,1663 (1959).
    [138] R. Miller and A. Savage, Jpn. J. Appl. Phys. 31,662 (1960).
    [139] T. Fiessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter and D. J. Keeble, Appl. Phys. Lett. 77, 127(2000).
    [140] W, L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R. Ramesh and J. T. E. Jr, Appl. Phys. Lett. 67, 866 (1995).
    [141] D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle and R. W. Schwartz, J. Appl. Phys. 76, 4305 (1994)
    
    [142] K. Abe, N. Yanase, T. Yasumobo and T. Kawakubo, J. Appl. Phys. 91, 323 (2002).
    [143] K. Abe, N. Yanase, T. Yasumobo and T. Kawakubo, Jpn. J. Appl. Phys. 41,6065 (2002).
    [144] G. Le Rhun, R. Bouregba and G. Poullain, J. Appl. Phys. 96, 5712 (2004).
    [145] J. Lee, C. H. Choi, B. H. Park, T. W. Noh and J. K. Lee, Appl. Phys. Lett. 72,3380 (1998).
    [146] B. H. Park, S. J. Hyun, C. R. Moon, B. D. Choe, J. Lee, C. Y. kirn, W. Jo and T. W. Noh, J. Appl. Phys. 84,4428 (1998).
    
    [147] F. Xu, F. Chu and S. Trolier-McKinstry, J. Appl. Phys. 86, 588 (1999).
    [148] D. Berlincourt, J. Acoust. Soc Am. 70,1586(1981).
    [149] A. Gruvman, B. J. Roudriguez, A. I. Kingon, R. J. Nemanich, A. K. Tagantsev, J. S. Cross and M. Tsukada, Appl .Phys. Lett. 83,728 (2003).
    [150] C. K. Wong and F. G. Shin, Appl. Phys. Lett. 86,042901 (2005).
    [151] Y. Zhou, H. K. Chan, C. H. Lam and F. G. Shin, J. Appl. Phys. 98, 024111 (2005).
    [152] Z. Ye, M. H. Tang, Y. C. Zhou, X. J. Zheng, C. P. Cheng, Z. S. Hu and H. P. Hu, Appl. Phys. Lett. 90,042902 (2007).
    [1] O.Auciello, J.F. Scott, and R. Ramesh, Phys. Today 51, 22 (1998); D.D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, 0. Aucielio, P. H. Fuoss, and C. Thompson, Science 304,1650(2004).
    
    [2] C. H. Ann, J.-M. Triscone, and J. Mannhart, Nature 424, 1015 (2003).
    [3] A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, J. Appl. Phys. 90,1387 (2001).
    [4] G. Le Rhun, G. PouIIain, and R. Bouregba, J. Appl. Phys. 96,3876 (2004).
    [5] M.-W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, and U. Gosele, Nature Mater. 3,87 (2004).
    [6] H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes, Nature 433, 395 (2005).
    [7] D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, and A. M. Rappe, Phys. Rev. Lett. 96,127601 (2006).
    [8] H. P. Sun, W. Tian, X. Q. Pan, J. H. Haeni, and D. G. Schlom, Appl. Phys. Lett. 84, 3298 (2004).
    [9] S. P. Alpay, I. B. Misirlioglu, V. Nagarajan, and R. Ramesh, Appl. Phys. Lett. 85, 2044 (2004).
    [10] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, Appl. Phys. Lett. 77,3230 (2000).
    [11] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).
    [12] M. W. J. Prins, K.-O. Grosse-Holz, G. Muller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, Appl. Phys. Lett. 68,3650 (1996).
    [13] V. Nagarajan, I. G. Jenkins, S. P. Alpay, H. Li, S. Aggarwal, L. Salamanca-Riba, A. L. Roytburt, and R. Ramesh, J. Appl. Phys. 86,595 (1999).
    
    [14] W. Wu, K. H. Wong, C. L. Choy, and Y. H. Zhang, Appl. Phys. Lett. 77, 3441 (2000).
    
    [15] C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, Appl. Phys. Lett. 63,2570 (1993).
    [16] J. Rouquette, J. Haines, V. Borrand, M. Pintard, Ph. Papet, B. Bonnet, and F. A. Gorelli, Solid State Sci. 5,451 (2003).
    
    [17] K. S. Ron, K. H. Ryu, and C. H. Yo, J. Solid. State. Chem. 142,288 (1999).
    [18] C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley, Φ. Fischer, and J.-M. Triscone, Science 276,1100 (1997).
    [19] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science 306,1005 (2004).
    [20] X. F. Du and I.-W. Chen, J. Appl. Phys. 83,7789 (1998).
    [1] O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today 51(7), 22 (1998).
    
    [2] C. H. Ahn, J.-M. Triscone, and J. Mannhart, Nature (London) 424,1015 (2003).
    
    [3] A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, J. Appl. Phys. 90,1387 (2001).
    
    [4] M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77,1083 (2005).
    
    [5] G. Le Rhun, G. Poullain, and R. Bouregba, J. Appl. Phys. 96, 3876 (2004).
    
    [6] X. J. Lou, M. Zhang, S. A. T. Redfern, and J. F. Scott, Phys. Rew. Lett. 97,177601 (2006).
    
    [7] R. Ramesh, H. Gilchrist, T. Sands, V. G. Keramidas, R. Haakenaasen, and D. K. Fork, Appl. Phys. Lett. 63,3592 (1993).
    [8] C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, Appl. Phys. Lett. 63,2570 (1993).
    [9] M.-S. Chen, T.-B. Wu, and J.-M. Wu, Appl. Phys. Lett. 68,1430 (1996).
    [10] W. Wu, K. H. Wong, C. L. Choy, and Y. H. Zhang, Appl. Phys. Lett. 77, 3441 (2000); W. Wu, Y. Wang, G. K. H. Pang, K. H. Wong, and C. L. Choy, ibid. 85, 1583 (2004).
    
    [11] H. N. Al-Shareef, O. Auciello, and A. I. Kingon, J. Appl. Phys. 77,2146 (1995).
    [12] J. F. M. Cillessen, M. W. J. Prins, and R. M. Wolf, J. Appl. Phys. 81, 2777 (1997).
    [13] J. J. Lee, C. L. Thio, and S. B. Desu, J. Appl. Phys. 78, 5073 (1995).
    
    [14] L. Pintilie, I. Vrejoiu, D. Hesse, and M. Alexe, Appl. Phys. Lett. 88,102908 (2006).
    
    [15] H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes, Nature (London) 433,395 (2005).
    [16] Y. Watanabe, Phys. Rev. B, 59, 11257 (1999).
    [17] X. F. Du and I.-W. Chen, J. Appl. Phys. 83,7789 (1998).
    [18] H. H. Wang, F. Chen, S. Y. Dai, T. Zhao, H. B. Lu, D. F. Cui, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, Appl. Phys. Lett. 78,1676 (2001).
    
    [19] Y. Xiao, V. B. Shenoy, and K. Bhattacharya, Phys. Rev. Lett. 95, 247603 (2005).
    [20] M. P. de Jong, V. A. Dediu, C. Taliani, and W. R. Salaneck, J. Appl. Phys. 94, 7292 (2003).
    [21] Y. Wang, Q. F. Shao, and J.-M. Liu, Appl. Phys. Lett. 88, 122902 (2006); Y. Wang, K. F. Wang, C. Zhu, T. Wei, J. S. Zhu, and J.-M. Liu, J. Appl. Phys. 101, 04614 (2007)
    [22] M. W. J. Prins, K.-O. Grosse-Holz, G. Muller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, Appl. Phys. Lett. 68, 3650 (1996).
    [1] K. Uchino, Ferroelectric Devices, Marcel Dekker, New York, 2000.
    
    [2] J. F. Scott, in Advanced Microelectronics Series, edited by K. Itoh and T. Sakurai, Springer-Verlag, Berlin, 2000.
    
    [3] L. Pintilis, I. Vrejoiu, D. Hesse, G. Lerhun and M. Alexe, Phys. Rev. B, 75,224113 (2007).
    [4] G. Burns and B. A. Scott, Solid State Commun, 13,417 (1973).
    [5] G. Burns and E. Burstein, Ferroelectrics, 7,297 (1974).
    [6] N. A. Pertsev, G. Arlt and A. G. Zembilgotov, Phys. Rev. Lett. 76,1364 (1996).
    [7] N. A. Pertsev and A. Yu. Emelyanov, Phys. Rev. B, 65174115 (2002).
    [8] F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z. L. Xie and K. J. Hemker, J. Appl. Phys. 89, 1336(2001).
    
    [9] A . K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, J. Appl. Phys. 90, 1387 (2001).
    [10] A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London, 1983.
    
    [11] J. M. Wesselinowa, S. Trimper and K. Zabrocki, J. Phys.:Condens Matter 17, 4687 (2005).
    [12] K. R. Udayakumar, P. J. Schuele, J. Chen, S. Krupanidhi and L. E. Cross, J. Appl. Phys. 77, 3981 (1995).
    [13] S. H. Kim, H. J. Woo, J. Ha, C. S. Hwang, H. R. Kim and A. I. Kingon, Appl. Phys. Lett. 78, 2885(2001).
    [14] J. F. Scott, D. Galt, J. C. Price, J. A. Beall, R. H. Ono, C. A. Pazde Araujo and L. D. MaMillan, Intergr. Ferroelectr. 6,189 (1995).
    
    [15] S. lakovlev, C. H. Solterbeck and M. Es-Souni, Appl. Phys. Lett. 81, 1854 (2001).
    [16] R. Bouregba, G. Le Rhun, G. Poullain and G. Leclerc, J. Appl. Phys. 99, 034102 (2006).
    [17] X. J. Meng, J. L. Sun, J. Yu, L. X. Bo, C. P. Jiang, Q. Sun, S. L. Guo and J. H. Chu, Appl. Phys. Lett. 78,2548 (2001).
    [18] L. Despont, C. Koitzsch, F. Clerc, M. G. Gamier, P. Aebi, C. Lichtensteiger, J.-M. Triscone, F. J. Garcia de Abajo, E. Bousquet and Ph. Ghosez, Phys. Rev. B, 73, 094110 (2006).
    [19] L. Lee, C. H. Choi, B. H. Park, T. W. Noh and J. K. Lee, Appl. Phys. Lett. 72, 3380 (1998).
    [20] L. Pintilie and M. Alexe, J. Appl. Phys. 98,124103 (2005).
    [21] L. Pintilie, M. Lisca and M. Alexe, J. Optoelectron. Adv. Mat. 8, 7 (2006)
    [22] I. Boerasu, L. Pintilie, M. Pereira, M. I. Vasilevskiy and J. M. Gomes, J. Appl. Phys. 93, 4776 (2003).
    
    [23] J. J. Lee, C. L. Thio and S. B. Desu, J. Appl. Phys., 78, 5073 (1995).
    [24] E. L. Colla, A. L. Kholkin, D. Taylor, A. K. Tagantsev, K. G. Brooks and N. Setter, Microelectronic Engineering, 29, 145 (1995).
    [25] U. Ellerkmann, P. Schorn, D. Bolten, U. Boettger, R. Waser, R. Bruchhaus and K. Yamakawa, Integr Ferroeletr. 52,63 (2003).
    [26] C. Guerrero, J. Roldan, C. Ferrater, M. V. Garcia-Cuenca, F, Sanchez and M. Varela, Solid-State Electronics, 45,1433 (2001).
    
    [27] A. Lisauskas, S. I. Khartsev and A. M. Grishin, Intergr Ferroelectr. 38, 3 (2001).
    [28] J. F. M. Cillessen, M. W. J. Prins and R. M. Wolf, J. Appl. Phys. 81, 2777 (1997).
    [29] P. K. Larsen, G. J. M. Dormans, D. J. Taylor and P. J. van Veldhoven, J. Appl. Phys. 76,2405 (1994).
    [30] Cz. Pawlaczyk, A. K. Tagantsev, K. Brooks, I. M. Reaney, R. Khssurska and N. Setter, Integr. Ferroelectr. 8,293 (1995).
    [31] L. Pintilie, M. Lisca and M. Alexe, Appl. Phys. Lett. 86, 192902 (2005).
    1. J. F. Scott, and C. A. Arauzo, Science 246, 1400 (1989).
    
    2 D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Turtle, and R. W. SchWartz, J. Appl. Phys. 76, 4305(1994).
    
    3 E. G. Lee, D. J. wouters, G. Willems, and H. E. Maes, Appl. Phys. Lett. 69,1223 (1996).
    
    4 H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Turtle, J. Appl. Phys. 80,4573 (1996).
    
    5 B. H. Park, T. W. Noh, J. Lee, C.Y. Kim and W. Jo, Appl. Phys. Lett. 70,1101 (1997).
    
    6 G. L. Rhun, R. Bouregba, and G. Poullain, J. Appl. Phys. 96,5712 (2004).
    
    7 G. E. Pike, W. L. Warren, D.Dimos, B. A. Turtle, R. Ramesh, J. Lee, V. G. Keramidas, and J. T. Evans, Jr., Appl. Phys. Lett. 66,484 (1995).
    
    8 J. Lee, R. Ramesh, V. G. keramidas, W. L. Warren, G. E. Pike, and J. T. Evans, Jr. Appl. Phys. Lett. 66,1337(1995).
    
    9 T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter, and D. J. Keeble, Appl. Phys. Lett. 77,127(2001).
    
    10 J. Lee, C. H. Choi, B. H. Park, T. W. Noh, and J. K. Lee, Appl. Phys. Lett. 72, 3380 (1998).
    
    11 S. Sadashivan, S. Aggarwal, T. K. Song, R. Ramesh, J. T. Evans. Jr., B. A. Tuttle, W. L. Warren, and D. Dimos, J. Appl. Phys. 83,2165 (1998).
    
    12 M. Grossman, 0. Lohse, D. Bolten, U. Boettger, T. Schneller, and R. Waser, J. Appl. Phys. 92, 2680 (2002).
    
    13 C. K. Wong and F. G. Shin, Appl. Phys. Lett. 86,042901 (2005)
    
    14 K. Abe, N. Yanase, and T. Kawakubo, J. Appl. Phys. 91, 323 (2002).
    
    15 Wenbin Wu, Y. Wang, G. K. H. Pang, K. H. Wong, and C. L. Choy, Appl. Phys. Lett. 85,1583 (2004).
    
    16 A. Gruverman, B. J. Rodriguez, A. 1. Kingon, R. J. Nemanich, A. K. Tagantsev, J. S. Cross, and M. Tsukada, Appl. Phys. Lett. 83, 728 (2003)
    
    17 Z. Ye, M. H. Tang, Y. C. Zhou, X. J. Zheng, C. P. Cheng, Z. S. Hu, and H. P. Hu, Appl. Phys. Lett. 90, 042902 (2007).
    
    18 H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, and D. H. Lowndes, Nature (London) 433, 395 (2005).
    
    19 K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Eiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science, 306,1005 (2004).
    
    20 K. S. Lee, J. H. Choi, J. Y. Lee, and S. Baik, J. Appl. Phys. 90,4095 (2001).
    
    21 Wenbin Wu, K. H. Wong, G. K. Pang, and C. L. Choy, Appl. Phys. Lett. 86, 072904 (2005).
    22 J. Lee, and R. Ramesh, Appl. Phys. Lett. 68,484 (1996).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700