EPO对鼠肾缺血再灌注损伤后肾小管间质纤维化和Bcl-2/Bax表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨促红细胞生成素(EPO)对肾缺血再灌注损伤(ischemia reperfusion injury, IRI)后肾小管间质纤维化和凋亡蛋白(Bcl-2/Bax)表达的影响。方法通过单侧肾IRI构建患侧肾小管间质纤维化模型。实验小鼠随机分为四组:假手术组(n=20);缺血再灌注组(n=20);EPO低剂量组(造模,EPO100u/kg,1次/周,n=20);EPO高剂量组(造模,EPO10000u/kg,1次/周,n=20)。成模后4周处死各组小鼠,取其患侧肾脏,HE、Masson染色观察肾脏病理改变,并以免疫组化的方法检测肾组织中Bcl-2和Bax蛋白表达水平。结果①缺血再灌注组肾脏出现不同程度肾小管萎缩或扩张、间质纤维化、炎性细胞浸润,其小管间质纤维化积分明显高于假手术组(P<0.01);两EPO干预组肾小管和间质病变较缺血再灌注组减轻,小管间质纤维化积分减少(P<0.05),其EPO高剂量组积分下降尤明显(P<0.01)。②免疫组化显示:Bcl-2和Bax主要着染于肾小管和肾间质;缺血再灌注组和两EPO干预组肾脏Bcl-2和Bax表达均较假手术组明显上调(P<0.01),但两EPO干预组肾脏Bcl-2表达上调均高于缺血再灌注组(P<0.01),而Bax表达上调却低于缺血再灌注组(P<0.01,P<0.05);缺血再灌注组Bcl-2/Bax比值较假手术组低(P<0.01),而两EPO干预组Bcl-2/Bax比值却较缺血再灌注组高(P<0.01);两EPO干预组比较,仅EPO高剂量组肾脏Bcl-2表达上调强于EPO低剂量组(P<0.01)。③相关分析显示小管间质纤维化积分与Bax水平呈明显正相关(r=0.571,P<0.05),与Bcl-2、Bcl-2/Bax比值呈明显负相关(F=-0.790,P<0.01;r=-0.802,P<0.01)。结论1Bcl-2/Bax蛋白异常表达参与了肾缺血再灌注损伤后期肾小管间质纤维化进程;2.EPO能减轻小鼠肾缺血再灌注损伤后期肾小管间质纤维化程度,且可能有一定的剂量关系;3.EPO对肾缺血再灌注损伤后期肾小管间质纤维化的影响与调控Bcl-2/Bax的表达有一定相关性。
Abstract
     Objective:To investigate effects of erythropoietin on renal tubulointerstitial fibrosis and Bcl-2 (anti-apoptotic protein)/Bax(pro-apoptotic protein) expression after renal ischemia/reperfusion injury(IRI) in mice. Methods:80 male C57BL/6 mice with 8-12 weeks age were randomly divided into 4 groups:sham-operated control group(n=20), IRI group(n=20), treatment group with low-dose EPO (model rats treated with EPO 100u/kg, Once a week, n=20), treatment group with high-dose EPO(model rats treated with EPO 1000u/kg, once a week, n=20). Left renal artery of mice was clamped for 35min with micro-artery clamp to make model of renal IRI. The morphological changes were observed by HE and Masson stain. Meanwhile, the expression of Bcl-2 and Bax in renal tissue were assessed by immunohistochemical method. Results:①Pathological changes, which demonstrated tubular atrophy, expansion, interstitial fibrosis, inflammatory cell infiltration, and increased scores of tubulointerstitial fibrosis with varying degrees, were found in IRI group, but these pathological changes in treatment groups with low-and high-dose EPO were significantly improved as compared with the IRI group(P<0.05 or 0.01). Bcl-2 and Bax were mainly stained in renal tubular and interstitium with the standard immunohistochemistry. Compared with the sham-operated group, the levels of Bcl-2 and Bax expression were remarkably increased (P<0.01), the ratio of Bcl-2/Bax was remarkably decreased in IRI group (P<0.01). Compared with the IRI group, Bax expression was significantly reduced, Bcl-2 expression and the ratio of Bcl-2/Bax were incresead in treatment groups with low-and high-dose EPO(P<0.01). Increased espression of Bcl-2 in treatment group with high-dose EPO was higher than that in treatment group with low-dose EPO(P<0.01).③The degree of renal tubulointerstitial fibrosis was correlated with Bcl-2, Bax and Bcl-2/Bax ratio (r=-0.790, P<0.01; r=0.571, P<0.01; r=-0.802, P<0.01). Conclusions:1. Abnormal expression of Bcl-2/Bax is involved in development of renal tubulointerstitial fibrosis after ischemia/reperfusion-induced kidney injury.2. EPO can attenuate the renal tubulointerstitial fibrosis of renal IRI, and might has some relationship with EPO dose; 3. Effects of EPO on renal tubulointerstitial fibrosis after renal ischemia/reperfusion-induced kidney injury may be associated with the regulation of Bcl-2/Bax axis.
引文
[1]Furuichi K, Gao JL, Murphy PM. Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am J Pathol, 2006,169:372-87.
    [2]Nangaku M. Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure. J Am Soc Nephrol,2006,17:17-25.
    [3]Thomas GL, Yang B, Wagner BE, et al. Cellular apoptosis and proliferation in experimental renal fibrosis. Nephrol Dial Transplant,1998,13:2216-26.
    [4]Truong LD, Petrusevska G, Yang G, et al. Cell apoptosis and proliferation in experimental chronic obstructive uropathy. Kidney Int,1996,50:200-7.
    [5]Efstratiadis G, Divani M, Katsioulis E, et al. Renal fibrosis. Hippokratia, 2009,13:224-9.
    [6]Seth R, Yang C, Kaushal V, et al. p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem,2005,280:31230-9.
    [7]周莹,丁峰,Ying Z,等.促红细胞生成素临床应用的进展.上海医药,2009,30:297-300.
    [8]刘晓明,徐建国.促红细胞生成素预处理对缺血-再灌注心脏保护作用的研究进展.临床麻醉学杂志,2009,25:913-915.
    [9]万英,李著华,罗朝淑,等.促红细胞生成素对实验性肾缺血再灌注的影响.黑龙江医学,2006:565-566.
    [10]Ko GJ, Boo CS, Jo SK, et al. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant,2008,23:842-52.
    [11]Novak KB, Le HD, Christison-Lagay ER, et al. Effects of metalloproteinase inhibition in a murine model of renal ischemia-reperfusion injury. Pediatr Res, 2010,67:257-62.
    [12]黎磊石,刘志红.中国肾脏病学.下册:北京:人民军医出版社,2008.1917-1923.
    [13]易清平.促红细胞生成素对小鼠急性肾缺血再灌注损伤后肾组织慢性纤维化的影响.2009.
    [14]Eddy AA. Serine proteases, inhibitors and receptors in renal fibrosis. Thromb Haemost,2009,101:656-64.
    [15]Eddy AA, Fogo AB. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol,2006,17:2999-3012.
    [16]杨雅丽.肾小管上皮细胞凋亡在肾间质纤维化中作用的研究进展.国际中医中 药杂志,2009,31.
    [17]Zhang G, Oldroyd SD, Huang LH, et al. Role of apoptosis and Bcl-2/Bax in the development of tubulointerstitial fibrosis during experimental obstructive nephropathy. Exp Nephrol,2001,9:71-80.
    [18]Choi YJ, Baranowska-Daca E, Nguyen V, et al. Mechanism of chronic obstructive uropathy:increased expression of apoptosis-promoting molecules. Kidney Int, 2000,58:1481-91.
    [19]Gobe G, Zhang XJ, Willgoss DA, et al. Relationship between expression of Bcl-2 genes and growth factors in ischemic acute renal failure in the rat. J Am Soc Nephrol,2000,11:454-67.
    [20]Wang Z, Havasi A, Gall J, et al. GSK3beta promotes apoptosis after renal ischemic injury. J Am Soc Nephrol,2010,21:284-94.
    [21]辛冰牧,杨红振,胡卓伟.肾纤维化发病机制及治疗学研究进展.国际药学研究杂志,2008,35:349-354.
    [22]Gaedeke J, Noble NA, Border WA. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney Int, 2005,68:2042-9.
    [23]高燕[1],袁爱军[1],陈航[1],等.红花黄色素对实验性肾间质纤维化大鼠肾小管上皮细胞凋亡的影响.中国实用医药,2009,4:9-10.
    [24]Kim JH, Yang JI, Jung MH, et al. Heme oxygenase-1 protects rat kidney from ureteral obstruction via an antiapoptotic pathway. J Am Soc Nephrol, 2006,17:1373-81.
    [25]Ye W, Gong X, Xie J, et al. ACh E deficiency or inhibition decreases apoptosis and p53 expression and protects renal function after ischemia/reperfusion. Apoptosis, 2010,15:474-87.
    [26]Zhou Q, Hu S. [Effect of Cordyceps Cinensis extractant on apoptosis and expression of Toll-like receptor 4 mRNA in the ischemia-reperfusion injured NRK-52E cells.]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2010,35:77-84.
    [27]Liu WJ, Tang HT, Jia YT, et al. Notoginsenoside R1 Attenuates Renal Ischemia-Reperfusion Injury in Rats. Shock,2009.
    [28]雷定和,尹友生.促红细胞生成素潜在细胞保护作用的研究进展.右江医学,2009,37:340-342.
    [29]Spandou E, Tsouchnikas I, Karkavelas G, et al. Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model. Nephrol Dial Transplant,2006,21:330-6.
    [30]Funakoshi-Tago M, Pelletier S, Moritake H, et al. Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol Cell Biol, 2008,28:1792-801.
    [31]Chang YK, Choi DE, Na KR, et al. Erythropoietin attenuates renal injury in an experimental model of rat unilateral ureteral obstruction via anti-inflammatory and anti-apoptotic effects. J Urol,2009,181:1434-43.
    [32]Spandou E, Tsouchnikas I, Karkavelas G, et al. Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model. Nephrol Dial Transplant,2006,21:330-6.
    [33]Safaeian L, Jafarian A, Rabbani M, et al. The role of strain variation in BAX and BCL-2 expression in murine bleomycin-induced pulmonary fibrosis. Pak J Biol Sci, 2008,11:2606-12.
    [1]Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell,1998,94:481-90.
    [2]Burns TF, El-Deiry WS. The p53 pathway and apoptosis. J Cell Physiol, 1999,181:231-9.
    [3]Thomson BJ. Viruses and apoptosis. Int J Exp Pathol,2001,82:65-76.
    [4]Hotchkiss RS, Strasser A, McDunn JE, et al. Cell death. N Engl J Med, 2009,361:1570-83.
    [5]Wolter KG HYT, Smith CL. Movement of Bax from the cytosol to mitochondria during apoptosis.1997,139:1281-1292.
    [6]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26:239-57.
    [7]Shigematsu T, Wolf RE, Granger DN. T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia-reperfusion. Microcirculation, 2002,9:99-109.
    [8]Peter ME, Heufelder AE, Hengartner MO. Advances in apoptosis research. Proc Natl Acad Sci USA,1997,94:12736-7.
    [9]Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992,119:493-501.
    [10]Lombard C, McKallip RJ, Hylemon PB, et al. Fas Ligand-dependent and-independent mechanisms of toxicity induced by T cell lymphomas in lymphoid organs and in the liver. Clin Immunol,2003,109:144-53.
    [11]Ariki N, Morimoto Y, Yagi T, et al. Activated T cells and soluble molecules in the portal venous blood of patients with cholestatic and hepatitis C virus-positive liver cirrhosis. Possible promotion of Fas/FasL-mediated apoptosis in the bile-duct cells and hepatocyte injury. J Int Med Res,2003,31:170-80.
    [12]Chipuk JE, Moldoveanu T, Llambi F, et al. The BCL-2 family reunion. Mol Cell, 2010,37:299-310.
    [13]Oltval ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell, 1993,74:609-619.
    [14]Muchmore SW, Sattler M, Liang H, et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature,1996,381:335-41.
    [15]Chang BS, Minn AJ, Muchmore SW, et al. Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J,1997,16:968-77.
    [16]Reed JC. Bcl-2 family proteins. Oncogene,1998,17:3225-36.
    [17]Chen R, Valencia I, Zhong F, et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol,2004,166:193-203.
    [18]Chintharlapalli SR, Jasti M, Malladi S, et al. BMRP is a Bcl-2 binding protein that induces apoptosis. J Cell Biochem,2005,94:611-26.
    [19]Kang CB, Tai J, Chia J, et al. The flexible loop of Bcl-2 is required for molecular interaction with immunosuppressant FK-506 binding protein 38 (FKBP38). FEBS Lett,2005,579:1469-76.
    [20]Dremina ES, Sharov VS, Kumar K, et al. Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J,2004,383:361-70.
    [21]Pasinelli P, Belford ME, Lennon N, et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate.with Bcl-2 in spinal cord mitochondria. Neuron,2004,43:19-30.
    [22]Lin B, Kolluri SK, Lin F, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell,2004,116:527-40.
    [23]Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell,1979,17:43-52.
    [24]Yonish-Rouach E, Grunwald D, Wilder S, et al. p53-mediated cell death: relationship to cell cycle control. Mol Cell Biol,1993,13:1415-23.
    [25]S.PerwezHussain P, PeijunHe A, ShawnLupold I, et al. p53-Induced Up-Regulation of MnSOD and GPx but not Catalase Increases Oxidative Stressand Apoptosis. CANCER RESEARCH,2004,64:2350-2356.
    [26]Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoptosis. Nature, 1997,389:300-5.
    [27]Arnt CR, Chiorean MV, Heldebrant MP, et al. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem,2002,277:44236-43.
    [28]Ng CP, Bonavida B. X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation:sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther, 2002,1:1051-8.
    [29]Martinez-Ruiz G, Maldonado V, Ceballos-Cancino G, et al. Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res,2008,27:48.
    [30]Sun XM, Bratton SB, Butterworth M, et al. Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem, 2002,277:11345-51.
    [31]Furuichi K, Gao JL, Murphy PM. Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am J Pathol, 2006,169:372-87.
    [32]岳屹囡,蒋红雨,董孟华,等.促肝细胞生长素对肾缺血再灌注损伤大鼠肾脏Bcl-2及Bax表达的作用.中华妇幼临床医学杂志(电子版),2007,3:216-219.
    [33]王汉民.川芎嗪对缺血/再灌注损伤大鼠肾脏细胞凋亡及Bcl-2和Bax表达的影响.第四军医大学学报,2006,27.
    [34]李开龙,赵玲,何娅妮,等.缺血再灌注损伤后肾小管上皮细胞的衰老演变及其意义.中华肾脏病杂志,2005,21:60-65.
    [35]Ko GJ, Boo CS, Jo SK, et al. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant,2008,23:842-52.
    [36]Choi YJ, Baranowska-Daca E, Nguyen V, et al. Mechanism of chronic obstructive uropathy:increased expression of apoptosis-promoting molecules. Kidney Int, 2000,58:1481-91.
    [37]Kher A. Aprotinin improves kidney function and decreases tubular cell apoptosis and proapoptotic signaling after renal ischemia-reperfusion. The Journal of Thoracic and Cardiovascular Surgery,2005,130:662.
    [38]Gobe G, Zhang XJ, Willgoss DA, et al. Relationship between expression of Bcl-2 genes and growth factors in ischemic acute renal failure in the rat. J Am Soc Nephrol,2000,11:454-67.
    [39]Kitada H, Sugitani A, Yamamoto H, et al. Attenuation of renal ischemia-reperfusion injury by FR167653 in dogs. Surgery,2002,131:654-62.
    [40]Tinaztepe K, Ozen S, Gucer S, et al. Apoptosis in renal disease:a brief review of the literature and report of preliminary findings in childhood lupus nephritis. Turk J Pediatr,2001,43:133-8.
    [41]Walport MJ, Davies KA. Complement and immune complexes. Res Immunol, 1996,147:103-9.
    [42]Seth R, Yang C, Kaushal V, et al. p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J Biol Chem,2005,280:31230-9.
    [43]黎磊石,刘志红.中国肾脏病学:人民军医出版社,2008.
    [44]Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science,1990,248:378-81.
    [45]Kumral A, Ozer E, Yilmaz 0, et al. Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Biol Neonate,2003,83:224-8.
    [46]Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA,2003,100:4802-6.
    [47]Yang CW, Li C, Jung JY, et al. Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J,2003,17:1754-5.
    [48]Weishaupt JH, Rohde G, Polking E, et al. Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci,2004,45:1514-22.
    [49]Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Aktl and mitochondrial modulation of cysteine proteases. Circulation,2002,106:2973-9.
    [50]Acs G, Chen M, Xu X, et al. Autocrine erythropoietin signaling inhibits hypoxia-induced apoptosis in human breast carcinoma cells. Cancer Lett, 2004,214:243-51.
    [51]Wen TC, Sadamoto Y, Tanaka J, et al. Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J Neurosci Res,2002,67:795-803.
    [52]张燕,牛膺筠,赵岩松,等.促红细胞生成素对糖尿病大鼠视网膜bcl-2、bax和WTp53表达的影响.眼科研究,2008,26:680-684.
    [53]王岩松,姚猛,刘斌,等.脊髓损伤后促红细胞生成素对bcl-2的影响.中华显微外科杂志,2006,29:106-109,插页3.
    [54]秦川,肖颖彬,陈林,等.促红细胞生成素预处理在心肌缺氧复氧损伤中对凋亡相关基因表达影响的研究.心肺血管病杂志,2008,27:109-112.
    [55]万英,李著华,罗朝淑,等.促红细胞生成素对实验性肾缺血再灌注的影响.黑龙江医学,2006:565-566.
    [56]Elmore S. Apoptosis:a review of programmed cell death. Toxicol Pathol, 2007,35:495-516.
    [57]Adam-Vizi V CC. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci,2006,27:639-645.
    [58]Barja G. Mitochondrial oxygen radical generation and leak:sites of production in states 4 and 3, organ specifcity, and relation to aging and longevity. J Bioenerg Biomembr,1999,31:347-366.
    [59]Martinez-Ruiz G MV, Ceballos-Cancino G GJP, Melendez-Zajgla J. Role of Smac/DIABLO in cancer progression.2008;27:48. J Exp Clin Cancer Res, 2008,27:48.
    [60]Bouchier-Hayes L LL, Newmeyer DD. Mitochondria:pharmacological manipulation of cell death. J Clin Invest,2005,115:2640-2647.
    [61]Tan TT DK, Nelson DA BB, Nieves-Neira W BP, et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell, 2005,7:227-238.
    [62]Oltersdorf T ESW, Shoemaker AR ARC, Augeri DJ BBA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumors. Nature, 2005,435:677-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700