Turbo MIMO宽带无线通信系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着蜂窝移动通信、因特网和多媒体业务的发展,世界范围内无线通信系统的容量需求迅速增长。然而,由于目前可利用的频谱已十分拥挤,以及移动和便携终端有限的发射功率,寻求更高效的信号传输技术已成为数字无线通信系统研究领域最活跃的研究课题之一。在追求高效性的同时,无线数字通信系统的高可靠性始终也是从事无线通信系统研究的学者和工程师最关注和最活跃的研究领域。
     近年来的研究成果已经证实:采用Turbo编码和最大似然译码方法构造的系统是目前系统性能逼近香农限的最佳方法;利用多输入多输出(Multiple Input MultipleOutput,MIMO)空间复用技术能够显著提高通信系统的频谱利用率。近年来,为了充分发挥两者的优势,开发具有大容量、高可靠性的Turbo MIMO宽带无线通信系统,国内外众多研究机构在该系统的研究中倾注了大量人力和物力,并在理论上取得了令人瞩目的成绩。然而,由于Turbo MIMO系统自身,以及无线信道的复杂性,Turbo MIMO系统的研究仍然存在着众多有待解决的问题。
     为了进一步加快开发可行的、大容量、高可靠性的Turbo MIMO通信系统的研究步伐,本文在及时跟踪相应研究领域国内外发展动向的基础上,针对Turbo MIMO通信系统的下列四个问题进行了深入的研究,并取得了一些新的研究成果。
     首先,针对目前基于混合型序贯蒙特卡洛(Sequential Monte Carlo,SMC)算法的Turbo MIMO接收系统无法适应无线信道随机变化的缺陷,本文引入了一种新的动态界定参数d,并在此基础上结合动态界定参数d的设定,分别提出了直接随机化和系统随机化动态混合型SMC Turbo MIMO接收机空时译码算法。其中,直接随机化动态混合型SMC方案通过在迭代过程中直接随机地修正界定参数d,以寻求在统计意义上提高系统的整体性能;而系统随机化动态混合型SMC方案则间接地利用MIMO信道的变化来修正界定参数d,以寻求提高算法跟踪信道变化的能力。仿真验证,两种随机化方案在不增加算法复杂度开销的情况下,都能够有效地提高原有混合型SMC方案的性能。
     其次,针对富散射信道环境下MIMO信道呈瑞利衰落的特性,以及Turbo系统在低码速时存在着严重的载波相位偏移问题,本文采用导频符号辅助调制(PilotSymbol Assisted Modulation,PSAM)技术来估计瑞利衰落信道,提出了一种在瑞利衰落信道和加性白高斯噪声(Additive White Gaussian Noise,AWGN)干扰的共同作用下,基于PSAM技术的联合Turbo译码和载波相偏恢复方法,并通过仿真验证了该方法能以较小的系统开销,对载波相位进行较好的恢复。
     其三,针对目前采用分级横向自适应滤波算法,由于其子滤波器工作在前向预测状态而非滤波状态,致使对信道均衡误差较大的缺陷,本文提出了一种能使所有子滤波器均工作在滤波状态的改进型分级横向自适应滤波算法。并在此基础上,分别设计了基于LMS和基于RLS的改进型分级横向自适应滤波的信道均衡器。研究结果表明,在相同条件下两种改进型信道均衡器不仅仍能保持快速均衡的特性,而且能比目前分级横向自适应滤波算法的均衡误差至少减少一个数量级。
     最后,为了寻求垂直贝尔实验室分层空时编码(Vertical Bell Labs LayeredSpace-Time,V-BLAST)MIMO系统在室外宏蜂窝非富散射环境中的应用,本文根据Ali Abdi等人提出的宏蜂窝非富散射信道模型,着重研究了入射波到达角(AOA,Angel of Arrival)非均匀分布时,对V-BLAST MIMO移动系统性能的影响。研究发现系统误码特性随移动台入射波AOA的角度扩散减小而下降,而基站入射波的波束宽度对系统性能影响较小。该研究成果为评估入射波AOA非均匀分布对移动台性能影响提供了理论依据,也为MIMO系统在室外宏蜂窝非富散射环境,以及空时相关信道条件下的研究,提供了一定的可供参考的方法。
With the development of cellular wireless communication, Internet and multimedia services, the demand for capacity of worldwide wireless communication systems is growing at a very rapid pace. Dou to the severe limitation of available radio spectrum and the transmitter power provided by mobile or other portable terminal, seeking the more effective signal transmission techniques has become one of the most active research subjects in digital wireless communication system. In the progress of seeking effective techniques, the link reliability of wireless system is always one of the most attentive and active problems for researchers and electronic engineers who are working in the wireless communication systems.
     The research results in recent years have approved that the performance of the system with Turbo code and max likelihood decoding could approach to Shannon limit and the spectrum efficiency of wireless system could remarkably increase by using MIMO spatial multiplexing technology. To fully utilize these technology advantages and develop broadband wireless Turbo MIMO system with large capacity and high reliability, most research organizations throw all their energy into this work and have obtained some inspiring scientific achievements. There are, however, a lot of problems required for Turbo MIMO system, because of the difficulty of system itself and the complicacy of wireless channels.
     To expedite the course of developing feasible Turbo MIMO system with large capacity and high reliability, the four research projects, as follows, on Turbo MIMO system have been done based on recent research results in all over the world. There are some new results obtained from research.
     Firstly, for overcoming the disadvantage of original combined SMC (Sequential Monte Carlo) Turbo MIMO receiver that could not adapt random variety of wireless channels, two new combined SMC Turbo MIMO space-time decoding algorithms with dynamic boundary parameter d are proposed. They are called direct randomization dynamic combined SMC Turbo MIMO algorithm and system randomization SMC Turbo MIMO algorithm, respectively. In the direct randomization method, boundary parameter d is randomly modified, in order to improve the performance of system in sense of statistics. In the system randomization method, boundary parameter d is modified by utilizing indirectly the information from channels, to improve the ability that algorithm follows channel variety. The computer simulation results show that the space-time decoding performance could be enhanced by the two new algorithms without the burden of complexity related to the original combined scheme.
     Secondly, for the problem of the carrier phase recovery in Turbo MIMO system with low speed transmission over Rayleigh fading channels, a new carrier phase recovery scheme suited for Turbo systems in Rayleigh fading channels with AWGN is proposed. It is called joint carrier phase recovery and Turbo decoding based PSAM (Pilot Symbol Assisted Modulation) technology. This scheme involves the estimation with PSAM for Rayleigh fading channel and the joint phase recovery and turbo-decoder for AWGN. Simulation results show that the proposed method with small system expense can significantly improve the performance of carrier phase recovery for Turbo systems in Rayleigh fading channels with AWGN.
     Thirdly, for the disadvantage of original hierarchical transversal adaptive filtering algorithm with larger error in channel equalization because the filter operates at the state of prediction not at the state filtering, a modified hierarchical transversal adaptive filter is proposed, in witch each subfilter could operate at the state of filtering. Based on the new scheme, the modified hierarchical transversal adaptive filtering algorithms based LMS (Least Mean Square) and RLS (Recursive Least Square) are proposed, respectively. The results of simulation indicate that, under same conditions, the modified HLMS and HRLS algorithms can not only maintain the feature of speeding up convergence rate, but also obtain at least one order of magnitude improvement for the mean square error of channel equalization related to the original scheme.
     Lastly, to seek the application of V-BLAST (Vertical Bell Labs Layered Space-Time) MIMO system under macro-cell environments without rich-scattering, the performance of V-BLAST system with the nonuniform distribution of AOA (Angel of Arrival) of incident radio has been researched by the macro-cell MIMO channel model proposed by Ali Abdi. The research finds that BER for mobile station will increase with the angel diffusion decrease for AOA of incident radio, but the performance of base station is hardly affected by the beamwidth of incident radio. The results provide scientific basis for evaluating the performance of mobile station with the nonuniform distribution of AOA of incident radio, moreover, it could supply some references to the research of MIMO system under the macro-cell environments without rich-scattering and space-time correlative channels.
引文
[1] G. Savo, Advanced Wireless Communications 4G Technologies [M]. John Wiley & Sons Inc., NJ, USA, 2004
    
    [2] J. E. Telatar, Capacity of Multi-antenna Gaussian Channels [J]. Eur. Trans. Telecom., Vol.10, 1995, pp.585-595.
    [3] G. J. Foschini, Layered Space-time Architecture for Wireless Communication in a Fading Environment when Using Multielement Antennas [J]. Bell Labs Technical Journal, Vol.1, No2, Antenna, 1996, pp.41-59.
    [4] V. Tarkh, N. Seshadri and A. R. Calderbank, Space-time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction [J]. IEEE. Trans, on Inform. Theory, Vol. 44, No 2, 1998, pp.744-765.
    [5] P. W. Wolniensky, G. J. Foschini, G. D. Golden and R. A. Valenznela, V-BLAST: an Architecture for Realizating Very High Data Rates over the Rich-scattering Wireless Channel, Signals, Systems, and Electronics [C]. ISSE 98. 1998 URST International Symposium on, 1998, pp. 295-300.
    [6] C. E. Shannon. A Mathematical Theory of Communication [J]. Reprinted with Corrections form the Bell System Technical Journal, Vol.27, July, Oct, 1948, pp.379-423, 623-656.
    
    [7] S. Lin, andD.J. Costello (王育民,王新梅译),差错控制编码:基础与应用[M].人民邮电出版社,1986.
    [8] M. Blaum. A Class of Burst Error Correcting Array Codes [J]. IEEE Trans, on Inform. Theory, Vol.32, June, 1986, pp.336-339.
    [9] J.H. Vanlint, Algebraic Geometric Codes, Coding Theory and Design Theory [J]. IEEE Trans, on Inform. Theory, Vol.36, Jan, 1990, pp. 137-162.
    [10] R.G. Gallager, Low Densitv Parity Check Codes [J]. IRE Trans, on Inform. Theory, Vol.8, Jan, 1962.
    
    [11] G.D. Forney, Concatenated Codes [M]. Cambridge MA: MIT Press, 1966.
    
    [12] J. M. Wozencraft, B. Reiffen, Sequential decoding, Cambridge, MA: MIT Press, 1961.
    [13] L. R. Bahl, J. Cocke, E. Jelinek et al, Optimum Decoding of Linear Codes for Minimizing Symbol Error Rate [J]. IEEE Trans, on Inform, Theory, Vol.20, Mar, 1974, pp.284-287.
    [14] S. G. Wilson, Digital Modulation and Coding [M]. Englewood cliffs, NJ: Prentice Hall, 1996.
    [15] G. Ungerboeck, Channel Coding with Multilevel/Phase Signals [J]. IEEE Trans, on Inform. Theory, Vol.28, Jan., 1982, pp.55-67.
    [16] J. G. Proakis, Digital Communications [M]. 5thEd. New York: McGraw-Hill, 1999.
    [17] C. Berrou, A. Glavieux and P. Thitimajshima, Near Shannon Limit Error-correcting Coding and Decoding: Turbo-codes [C]. Proc. ICC'93, May 1993, pp.1064-1074.
    [18] Herzberg, Multilevel Turbo Coding with Short Interleavers [J]. IEEE. J. Sel. Areas Commun. Vol.6, 1998, pp.303-309.
    [19] D. Bin, W. Xiaodong and A. Doucet, A New Class of Soft MIMO Demodulation Algorithms [J]. IEEE Trans, on Signal Processing, Vol.51, No.11, Nov. 2003, pp.2752-2763.
    [20] G. Ridgeway and D. Madigan, A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets [C]. 2002 Kluwer Academic Publishers. Printed in the Netherlands. 15 Sept. 2002, pp.301-319.
    [21] Yong-Tao Su, Xian-Da Zhang, and Xiao-Long Zhu, A Low-complexity Sequential Monte Carlo Algorithm for Blind Detection in MIMO Systems [J]. IEEE Trans, on Signal Processing, Vol.54, No.7, 2006, pp. 2485-2496.
    [22] P. Liang, Pi L., Shaopeng F. and Weiling W., The Low Complexity Deterministic SMC Detection Algorithm for MIMO System [C]. Proceedings 2005 International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, vol.1, 2005, pp.68-71.
    [23] G. Dong and Xiaodong W., Blind Detection in MIMO Systems via Sequential Monte Carlo [J]. IEEE J. Sel. Areas Commun., Vol.21, No.3, 2003, pp.464-473.
    [24] H. Raju, G. Dong, and Xiaodong W., Monte Carlo FEXT Cancellers for DSL Channels [J]. IEEE Trans, on Circuits and Systems-I: Regular Papers, Vol.52, No.9, 2005, pp. 1894-1908.
    [25] D. Bin and Xiaodong W., Sampling-based Soft Equalization for Frequency Selective MIMO Channels [J]. IEEE Trans, on Commun., Vol.53, No.2, 2005, pp. 278-288.
    [26] A. Pradeep, P. Narayan, and Xiaodong W., An Enhanced Deterministic Sequential Monte Carlo Method for Near-optimal MIMO Demodulation with QAM Constellations [J]. IEEE Trans, on Signal Processing, Vol.55, No.6, 2007, pp.2395-2406.
    [27] A. Pradeep and Xiaodong W., Multilevel Sequential Monte Carlo Algorithms for MIMO Demodulation [J]. IEEE Trans, on Wireless Commun., Vol.6, No.2, 2007, pp.750-758.
    [28] Z. Yangyang, J. Chunlin, Wasim Q. M., et al, Joint Antenna and User Selection Algorithm for Uplink of Multiuser MIMO Systems Using Sequential Monte Carlo Optimization [C]. Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing, Wisconsin, USA, 2007, pp.493-496.
    [29] T. K. Woo, Fast Hierarchical Least Mean Square Algorithm [J]. IEEE Signal Processing Lett., Vol.8, 2001, pp. 289-291.
    [30] C. G. Boukis and D. P. Mandic, A Global Gradient Descent Algorithm for Hierarchical FIR Adaptive Filters [C]. 14th International Conference on Digital Signal Processing, Vol.2,2002,pp.1285-1288.
    [31]M.D.Macleod,Performance of The Hierarchical LMS Algorithm[J].IEEE Signal Processing Lett.,Vol.9,No.12,2002,pp.436-437.
    [32]P.Stoica,M.Agrawal and P.Ahgren,On The Hierarchical Least-squares Algorithm[J].IEEE Commun.Lett.,Vol.6,No.4,2002,pp.153-155.
    [33]V.H.Nascimento,Analysis of The Hierarchical LMS Algorithm[J].IEEE Signal Processing Lett.,Vol.10,No.3,2003,pp.78-81.
    [34]A.Abdi and M.Kaveh,A Space-time Correlation Model for Multielement Antenna Systems in Mobile Fading Channels[J].IEEE J.Sel.Areas Commun.,Vol.20,No.3,2002,pp.550-560.
    [35]A.Abdi,Janet A.Barger and M.Kaveh,A Parametric Model for The Distribution of The Angle of Aarrival and The Associated Correlation Function and Power Spectrum at The Mobile Station[J].IEEE Trans on Commun.,Vol.51,No.3,2002,pp.425-434.
    [36]S.Benedetto,D.Divsalar,G.Montorsi et al.,Serial Concatenation Interleaved Codes:Performance Analysis,Design and Interative Decoding[M].TDA Progress Report 42-126.Aug.1996,pp.1-26.
    [37]Wang X.and Poor H.V.,Iterative(Turbo) Soft Interference Cancellation and CDMA[J].IEEE Trans.Commun.,Vol.47,Jul.1999,pp.1046-1061.
    [38]王小东,普尔,无线通信系统:信号检测与处理技术[M].电子工业出版社,北京,2004
    [39]J.Liu,R.Chen,Sequential Monte Carlo Methods for Dynamic Systems[J].Journal of the American Statistical Asspcoatopm,93,1989,pp.1032-1044.
    [40]张贤达、保铮,通信信号处理[M].国防工业出版社,北京,2002
    [41]L.M.Davis,Scaled and Decoupled Cholesky and QR Decompositions with Application to Spherical MIMO SDetection[C].Wireless Communications and Networking,2003.WCNC 2003.2003 IEEE,Vol.1,16-20,Mar.2003,pp.326-331.
    [42]维特比 A.J.,小村J.K.著,蒋慧清译,数字通信和编码原理[M].人民邮电出版社,1990,pp.185-306.
    [43]L.R.Bahl,J.Cocker,F.Jelinek and Raviv,Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate[J].IEEE,Trans,on IT,Vol.20,March,1974,pp.284-287.
    [44]S.S.Pietrobon,Efficient Implementation of Continuous MAP Decoders and a Synchronization Technique for Turbo Decoders[C].Int.Symp.on Inform.Theory and its Applications,September 1996,pp.586-589.
    [45]刘东华,Turbo码原理与应用技术[M].电子工业出版社,2004.
    [46]刘东华,Turbo码关键技术及Turbo码的应用研究[M].长沙:国防科技大学,2002
    [47]L.Zhang and A.G.Burr.A New Method of Carrier Phase Recovery for BPSK System Using Turbo Codes over AWGN Channels[C].IEEE PIMRC San Diego,CA:2001.Vol.1,pp.179-183.
    [48]L.Zhang and A.G.Burr,Iterative Carrier Phase Rrecovery Suited to Turbo-coded Systems[J]. IEEE Trans Wireless Commun,Vol.11,No.3,2004,pp.2267-2276.
    [49]L.Zhang and A.G.Burr,A Novel Carrier Phase Recovery Method for Turbo-coded QPSK System[C].European Wirelss(EW2002),Vol.1,2002,pp.179-183.
    [50]W.C.Jakes,Microwave mobile communications[M].Wiley,1974.
    [51]P.Frenger,Turbo Decoding on Rayleigh Fading Channels with Noisy Channel Estimates[C].Proc.IEEE VTC'99,Huston,TX.1999.pp.884-888.
    [52]T.K.Woo,Hierarchical RLS Algorithm for Adaptive Transversal FIR Filters[J].IET electronics letters,Vol.36,No.24,Nov.2000,pp.2049-2050.
    [53]T.K.Woo,HRLS:A More Efficient RLS Aalgorithm for Aadaptive FIR Ffiltering[J].IEEE Commun.Lett.,Vol.5,No.3,Mar.2001,pp.81-84.
    [54]张留请 张闽申 徐菊英,数字移动通信,人民邮电出版社,第一版,1995
    [55]Paulo S.R.Diniz,自适应滤波算法与实现[M].(第二版),北京,电子工业出版社,2004.
    [56]Gordon L.S.(聂敏等译),移动通信原理[M].北京,电子工业出版社,2004.
    [57]R.H.Kwong,and E.W.Johnston,A Variable Step Size LMS Algorithm[J].IEEE Trans on Signal Processing,Vol.40,Jul.1992,pp.1633-1642.
    [58]Y.K.Won and R.H.Park,Variable LMS Algorithm Using The Time Constant Concept[J].IEEE Trans on Consumer Electronics,Vol.40,Aug.1994,pp.655-661.
    [59]T.Aboulnasr,A Robust Variable Step-size LMS-type Algorithm:Analysis and Simulations[J].IEEE Trans on Signal Processing,Vol.45,Mar.1997,pp.631-640.
    [60]Kong A.L.and S.G.Woon,Improving Convergence of The NLMS Algorithm Using Constrained Subband Updates[J].IEEE Trans on Signal Processing,Vol.11,Sep.2004,pp.736-739.
    [61]R.M.Dennis and G.K.Steven,On a Class of Computationally Efficient,Rapidly Converging,Generalized NLMS Algorithms[J].IEEE Signal Processing Letters,Vol.3,Aug.1996,pp.245-247.
    [62]S.Haykin,Adaptive Filter Theory[M].Prentice Hall,Englewood Cliffs,NJ,4th edition,2002
    [63]D.S.Shiu,G.Foschini,M.Gans and J.Kahn,Fading Correlation and Effect on The Capacity of Multielement Antenna Systems[J].IEEE Trans Cornmun.,Vol.48,No.3,2000,pp.502-512.
    [64]王中鹏,王宇,等.BLAST算法在MIMO相关信道下的性能分析[J].无线电工程,Vol.34,No.8,2004,pp.10-11.
    [65]P.W.Wolniansky,G.J.Foschini,etc.,V-BLAST:an Architecture for Realizing Very High Data Rates over the Rich-scattering Wireless Channel[C].Proc.ISSSE-98,Pisa,Italy,1998,pp.295-300.
    [66]M.C.Valenti and B.D.Woerner,Performance of Turbo Codes in Interleaved Flat Fading Channels with Estimated Channel State Information[C].Proc.VTC'98,Ottawa.Canada,May 1998,pp.66-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700