双射流汽车尾气流场超细颗粒的成核和凝并过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PM_(2.5)(颗粒直径小于或等于2.5μm的可吸入颗粒物)是影响空气质量的重要污染物。已有研究表明,可吸入颗粒物浓度上升与呼吸系统疾病、心肺疾病的发病率、死亡率关系密切。汽车尾气排放的污染物是大气污染的主要来源,燃料中的硫在燃烧后形成SOx随着尾气被稀释和冷凝,会形成大量的PM_(2.5)。
     本文研究了汽车尾气排放时纳米颗粒的成核和凝并过程,分析了不同流场中颗粒物质的数密度和颗粒直径分布,论文由以下四部分组成。
     第一,采用热线风速仪对平行双射流流场进行测试,研究了雷诺数、双射流间距对流场特性的影响。研究结果表明,在射流喷口附近,沿射流方向,双射流是分离的;由于射流中间边界层的相互影响,双射流会逐渐混合,并最终形成单股射流;射流的平均速度、湍动能是对称的;双射流间的扰动随雷诺数的增加而增大,雷诺数越大,则雷诺应力和湍动能越大。双管间距越大,射流间的扰动就越小,但是射流宽度随着双管间距的增加而增加。减小双射流间距或者增加雷诺数,都能增加双射流混合距离。
     第二,用数值模拟方法对平行双射流场中颗粒的成核与凝聚过程进行了研究,给出了硫酸/水系统中经成核和凝聚过程形成的颗粒数密度和粒径的分布,说明成核过程会形成大量的纳米颗粒,在双管射流的中间和射流场周围,颗粒具有较高的浓度。在各种力的作用下,颗粒的凝聚过程使颗粒的数量减少,而直径变大。射流中硫的浓度对颗粒的浓度分布有影响,随着硫浓度的增加,流场中的颗粒数密度有明显增加,而成核形成的颗粒直径减小。环境湿度和雷诺数的增大,有利于成核过程,因而导致形成更多的颗粒。
     第三,通过大涡模拟方法计算双管冲击射流流场,获得流场流动特性;并计算了硫酸/水系统的成核和凝并过程,获得双管冲击射流流场中颗粒物质的数密度分布和浓度分布。计算结果表明,冲击射流分成自由射流区域、贴壁射流区域和上喷流区域,随着双射流间距的减小和射程的增加,双股射流间彼此的相互作用增加。颗粒尺度最大的区域发生在射流区域的周围。经过凝并过程后,颗粒数目大量减小,最大颗粒浓度在射流贴壁区域。双射流的间距影响射流中间颗粒数密度和尺度分布,双射流中间将形成更多的纳米颗粒,同时,颗粒物的尺度增加。射流冲击高度越大,靠近壁面处形成的颗粒数密度越小,总颗粒数也越小,所以增加射流射程对减小纳米颗粒的形成有益。在冲击高度较大的情况下,贴近壁面处形成的颗粒尺度较大。
     第四,研究了轿车不同行驶条件下流场的性质和颗粒物的分布。颗粒数密度最大区域在汽车尾部1米处;距离汽车尾部越远,颗粒物越少;成核形成的颗粒物最大尺度发生在流场边沿。纳米颗粒的数密度和尺度分布也受流场结构的影响,因而也受到汽车行驶速度和尾气排放速度的影响。汽车行驶速度较快时,尾气排放的H_2SO_4蒸气容易被稀释,有利于降低颗粒物质的形成。
PM_(2.5) is a major component of air pollution in urban areas. Study shows that nanoparticles are able to penetrate into lung where they may enter interstitial tissue, causing severe respiratory inflammation and acute pulmonary toxicity. Automobile emission is a major source of air pollution. The sulfur in diesel fuel is oxidized to SO_X, that leads to the sulfuric acid and sulfates inthe PM_(2.5).
     The purposes of this thesis are to study the flow structure and the formation of pollutantnanoparticles in a vehicular exhaust twin-jet plume with the nucleation and coagulation equations and to a better understand of the particle number concentration and size distribution. The thesis can be divided into fore parts.
     In the first part, experiments have been carried out with a hot-wire anemometer to investigate the flow field of the twin-jets. The velocities have been measured to assist in understanding the change in the flow. The effects of Reynolds number and the spacing between two nozzles on the flow field along the flow and lateral directions were examined. The conclusions are drawn as follows: In the flow direction, the twin-jets are clearly separated near the nozzle exits. Away from this region, the two jets interact, and then the two jets mix and merge to appear as a single jet. The velocity and turbulent energy profiles are fairly symmetrical about the center line of two jets for various Reynolds numbers and the spacing between two nozzles. The velocities between two jets change along the lateral direction more quickly than that of previous studies. The interference between two jets increases as Reynolds number increasing. The stronger the interference is, the larger the Reynolds shear stress and turbulent energy are.. The interference between two jets increases as the spacing between two nozzles decreasing. Furthermore, the width of the twin-jets spreads linearly downstream and grows with B. The merging length of two jets can be increased either by reducing B or increasing Reynolds number.
     In the second part, large eddy simulation method has been used to calculate the parallel twin-jet flow coupled with nucleation and coagulation equations. The nanoparticle number concentration distribution and size distribution produced by the pure nucleation and coagulation are shown in the paper . The binary homogeneous nucleation will produce many nanoparticle and it takes place mainly in the interval of the twin jets region and the circumambience of the jets. Coagulation modifies the particle size distribution since it reduces the overall number of particles and increases the mean size of them resulting from forces. Sulfur content effects on the nanoparticle number concentration distribution. The nucleation process will generate higher number concentration and smaller size of nanoparticles as sulfur content increases. High relative humidity and jet Reynolds number will increase the nucleation rate, which results in more nanoparticles.
     In the third part, large eddy simulation method has been used to calculate the flow and obtain the detailed flow structures of the impinging twin-jet for various conditions. The nucleation of sulphuric acid/water system and subsequent coagulation processes are simulated.
     The jets are clearly separated around the exits of nozzle, but significantly altered at the interacting side with their inner cone layers collided with each other at the middle plane between the two jets. After impinging on the plane, they are separated from the plane and forced to turn upward. There exist free jet region, adherent plane jet region and stagnation region in the flow. The interference between two jets increases with the decreasing of the space between two jets and the distance from the exit of nozzle to plane.
     The region of maximal particles size appears around the region of free jet. The number concentration decreases significantly after coagulation. The maximal number concentration produced by both nucleation and coagulation occurs in the region near the plane. The significant difference for various spaces between two jets is the number concentration and size distributions in the interface region of two jets. For the case with larger space, more nonoparticles are produced by nucleation and coagulation. There is also a wider size distribution for the case with larger space.
     The longer the distance from the exit of nozzle to plane is, the lower the number concentration is, and the fewer particles distribute near the plane. Increasing the distance from nozzle to plane is benefit to reduce the formation of nanoparticles. Though the number concentration is low for the case with longer distance from nozzle to plane, the size of particle in the region near the plane is large.
     In the forth part, large eddy simulation method has been used to calculate the flow and obtain the detailed flow structures of the moving car for various conditions. The maximal number concentration produced by both nucleation and coagulation occurs in 1m region behind the car. The longer the distance from the exhaust exits, the fewer particles distribute. The size of particleproduced by pure nucleation is larger on the edge of the gas-to-nanoparticle conversion region
     The nanoparticles number concentration and size distribution will be effected by the flowstructure which induced by the changing of the ratio of the ambient wind velocity to the exhaust gas velocity. Because a larger amount of H_2SO_4 vapor is diluted by high-ambient wind speed than by a low-ambient wind speed, the higher ambient wind speed is benefit to reduce the formation of nanoparticles and increase the particle size.
引文
[1]张雪梅,刘庆军,李凤娣等.大气中细颗粒物PM2.5和PM10对人体健康的影响[J].中国医学理论与实践.2002,7:935-937.
    [2]Dockery D W,Pope C A.Acute Respiratory Effects of Particulate[J].Air Pollution,1994,15:107-132.
    [3]Pope C A,Thun M J,Namboodiri M M,et al.Particulate air pollution as a predictor of morality in a prospective study of US adults[J].Respiratory and Critical Care Medicine,1995,151:669-674.
    [4]Victor H B,Margarita C,Drane R G,et al.Mortality an d Ambient fine particles in southwest Mexico city I993-1995[J].Environmental Health Perspect.1998,106(12):849-854.
    [5]Hornberg C,Maciuleviciute L,Seemayer N H,et al.Induction of sister chromatid exchanges(SCE)in human tracheal epithelial cells by the fractions PM-10 and PM-2.5 of airborne particulates[J].Toxicolett,1998,96-97:215-220.
    [6]应杏秋,朱心强.超微颗粒毒性研究进展[J].国外医学卫生学分册,2005,1(32):6-10.
    [7]张文丽,综述,崔九思等.空气细颗粒物(PM2.5)生物效应指标研究进展.[J]卫生研究.2001,30(6)379-381.
    [8]马永亮;贺克斌;细微大气颗粒物PM2.5及其研究概况[J].世界环境,2000,4:32-34.
    [9]Seaton A,MacNee W.Donaldson K,et al.Particulate air pollution and acute health effects[J].Lancet.1995,345(8943):176-178.
    [10]Warheit D B,Hartsky M A.Species comparisons of proximal alveolar deposition patterns of inhaled particulates[J].Exposure Lung Research,1990,111(2):83-89.
    [11]Roger O.M.Use of mechanistic data in assessing human risks from exposure to particles[J].Environ Health Perspect,1997,105:1363-1372.
    [12]Kevin E.D.,Janet M.C.,Diana G..H.,et al.Cytokines and particle-induced inflammatory cell ecruitment[J].Environment Health Perspect,1997,105:1159-1164.
    [13]宋健,叶舜华.柴油机排出颗粒提取物对细胞间隙通讯的影响[J].卫生研究.1997,26(3):145-147.
    [14]原福胜,马亚萍,赵五红.不同粒径对人双核淋巴细胞微核率的影响[J].卫生病理学.1999,13(2):132-133.
    [15]原福胜,马亚萍,武忠诚.不同粒径大气颗粒物中金属元素含量及其对人双核淋巴细胞微核率的影响[J].卫生研究.1999.28(1):21-22.
    [16]傅立新,郝吉明,何东全,等,北京市机动车污染物排放特征[J].环境科学,2000,3:18-21.
    [17]赵成伟,张卫东,靳嵘等,柴油机排放控制技术的探讨[J].车用发动机,2000,125:32-35.
    [18]Vellosi R,Vannucchi C,Bianchi F,et al.Mutagenic activity and chemical analysis of airborne particulates collected in Pisa(Itly)[J].Bull Environment Contam Toxicol,1994,52:465-473.
    [19]US EPA Office of Air and Radiation.Office of air quality planning and standards fact sheet-EPA's recommended final ozone and particulate matters standards[s].1997.
    [20]Douglas R.Lawson.The DOE/NREL Environmental Science and Health Effects Program An Overview[R].SAE paper 1999-01-2249
    [21]刘双喜,高继东,景晓军,车用发动机颗粒物测量和评价方法的发展研究[J].小型内燃机与摩托车,2005,34(2):43-46.
    [22]Kittelson D.B.Engines and nanoparticles,a review[J].Journal of Aerosol Science,1998,5(29):575-588.
    [23]旻苏,机动车排放标准体系分析[J].世界标准化与质量管理,2006,6:29-32.
    [24]王生昌,李茂月,范良瑛,日本降低汽车尾气排放的动向与启事[J].公路与汽运,2006,6:11-13.
    [25]Abraham F.,Homogeneous Nucleation Theory[M].New York:Academic Press,1974.
    [26]Oxtoby D..Fundamentals of Inhomogeneous Fluids[M].NewYork:Henderson,Marcel Dakker,1992.
    [27]Pruppacher H.R.,Klett J.D..Microphysics of-Clouds and Precipitation[M].Holland:Reidal,Dordrecht,1997.
    [28]Flood H..Tropfchenbildung inubersattigten Athylalkohol-Wasserdamp-fgemischen [J].Physics.Chemical,1934.A(170):286-295.
    [29]Reiss H..Kinetics of binary nucleation[J].Journal Chemmical.Physics,1950,18:840-848.
    [30]Nguyen,H.V.,Okuyama,K.,Mimura,T.et al:Homogeneous and Heterogeneous Nucleation in a Laminar FlowAerosol Generator[J].Journal of Colloid and Interface Science,1986,119:491-504.
    [31] Willeke, K.,Baron, P. A..Aerosol Measurement: Principles Techniques and Applications[M].New York:Van Nostrand Reinhold. 1992.
    [32] Hinds, W..Aerosol Technology-Properties, Behavior, and Measurement of Airborne Particles[J]. John Wiley and Sons, 1982:424.
    [33] Doyle G. J.Self-Uncleation in the Sulfuric Acid-Water System[J].Journal of chemical physics, 1961,35(3):795-799.
    [34] Mirabel, P., Katz, J. L. Binary Homogeneous Nucleation as a Mechanism for the Formation of Aerosols[J]. Journal of Chemical Physics, 1974,60:1138-1144.
    [35] Baumgard, K. J.,Johnson, J. H.The Effect of Low Sulfur Fuel and aCeramic Particle Filter on Diesel Exhaust Particle Size Distributions[J].SAE Transfer,1992,101:691-699.
    [36] Jacker-Voirol, A., Mirabel, P., Reiss, H..Hydrates in Supersaturated Binary Sulfuric Acid-Water Vapor: a Reexamination[J].Journal of Chemical Physics,1987,87: 4849-4852.
    [37] Kulmala, M.,Viisanen, Y..Nucleation in Acid-Water Systems. Experimental and Theoretical Results[J]. Journal of Aerosol Science, 1988,19:825-828.
    [38] Abdul-Khalek, I. S., Kittleson, D. B., Graskow, B. R., et al.. Diesel Exhaust Particle Size: Measurement Issues and Trends[R].Society of Automobile Engineers, SAE 980525,1998.
    [39] Shi, J. P., Harrison, R. M..Investigation of Ultrafine Particle Formation during Diesel Exhaust Dilution[J].Environmental Science and Technology, 1999, 33: 3730-3736.
    [40] Shi, J. P., Harrison, R. M., Brear, F..Ultrafine Particle Formation During Diesel Exhaust Dilution.Second International ETH Workshop on NanoParticle Measurement[C], ETH Zurich, 1998.
    [41] Karcher, B..Aircraft-generated Aerosols and Visible Contrails[J]. Geophysical Research Letters, 1996, 23(15):1933-1936.
    [42] Frenzel, F.,Arnold, F..Sulfuric Acid Cluster Ion Formation by Jet Engines:Implications for Sulfuric Acid Formation and Nucleation.Report[R]. Dtsch.Forsch. Fur Luft- und Raumfahrt, Koln, Germany, 1994.
    [43] Meszaros A.,Meszaros E..Sulfate Formation on Elemental Carbon Particles[J].Aerosol Science and Technology,1989,10:337-342.
    [44] Kittelson, D. B..Engines and Nanoparticles: a Review[J] Journal of Aerosol Science, 1998, 29:575-588.
    
    [45] Ahlvik, P., Ntxiachristos, L., Keskinen, J.,et al. Real Time Measurements of Diesel Particle Size Distribution with an Electrical Low Pressure[R] Impactor.Society of Automobile Engineers, SAE 980410,1998.
    [46] Bugarski, A. D. Characterization of Particulate Matter and Hydrocarbon Emissions from In-Use Heavy-Duty Diesel Engines[D]. Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 1999.
    [47] Baumgard, K. J.,Johnson, J. H.The Effect of Fuel and Engine Design on Diesel Exhaust Particle Size Distributions[R]. Society of Automobile Engineers,SAE 960131 1996:37-50.
    [48]MathisU,Mohr M,Zenobi R..Effect of organic compounds on nanoparticle formation in diluted diesel exhaust.Atmosphere[J].Chemical.Physics.Discussion,2004,4,227-265.
    [49]Smoluchowski,M.V..Versuch einer Mathematischen Theories der Koagulationskinetik Kolloider Losungen[J].Physics.Chemical,1918,92:144.
    [50]Pruppacher H.R.,Klett J.D..Microphysics of Cloud and Precipitation[M].Kluwer:Academic Publisher,1978,714.
    [51]Friedlander,S.K.,Wang,C.S..The Self-Preserving Particle Size Distribution for Coagulation by Brownian Motion[J].Journal of Colloid Interface Science,1966,22:126-132.
    [52]Friedlander,S.K.Smoke,Dust,et al.Fundamentals of Aerosol Dynamics[M].Second Edition.NewYork:Oxford University Press,2000.
    [53]Hidy G M..Solutions to the kinetics of coagulation[J].Journal of Colloid Interface Science,1965,20:867-874.
    [54]Hidy G M.On the theory of the coagulation of non interacting particles in Brownian motion[J].Journal of Colloid Interface Science,1965,20:123-144.
    [55]Vemury S.,Kusters K.A.,Pratsinis S.E..Time-lag for attainment of self-preserving particle size distribution by coagulation[J].Journal of Colloid Interface Science,1994,165:53-59.
    [56]赵海波,郑楚光,徐明厚.离散系统通用动力学方程求解算法的研究进展[J].力学进展.2006,36(1):125-141.
    [57]Lee K.W.,Lee Y.J.,Han D.S..The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime[J]. Journal of Colloid Interface Science, 1997,188: 486-492.
    [58] Lee K.W..Change of particle size distribution during Brownian coagulation[J].Journal of Colloid Interface Science, 1983,92(2):315-325.
    [59] Park S.H., Lee K.W., Otto E., et al.The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: Part I ---analytical solution using the harmonic mean coagulation kernel[J]. Journal of Colloid Interface Science, 1999,30(1):3-16.
    [60] Park S.H., Lee K.W.,Otto E., et al. The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: Part II ----analytical solution using Dahneke's coagulation kernel[J]. Journal of Colloid Interface Science, 1999,30(1): 17-34.
    [61] Park S H, Xiang R,Lee K W.Brownian coagulation of fractal agglomerates:analytical solution using the log-normal size distribution assumption[J]. Journal of Colloid Interface Science, 2000,231:129-135.
    [62] Park S.H., Lee K.W..Asymptotic particle size distributions attained during coagulation processes[J]. Journal of Colloid Interface Science, 2001,233:117-123.
    [63] Park S.H., Lee K.W.. Change in particle size distribution of fractal agglomerates during Brownian coagulation in the free-molecule regime[J]. Journal of Colloid Interface Science, 2002,246:85-91.
    [64] Kim D.S.,Park S.H., Song Y.M.,et al.Brownian coagulation of polydisperse aerosols in the transition regime[J]. Journal of Colloid Interface Science, 2003,34:859-868.
    [65] Houslow M.J.,Ryall R.L.,Marshall V. R..A discretized population banance for growth and aggregation[J]. AICHE Journal ,1988,34(11):1821-1832.
    [66] Lister J.D., Smit D.J.,Hounslow M.J..Adjustable discretized population balance for growth and aggregation[J]. AICHE Journal,1995,41(3):591-603.
    [67] Xiong Y, Pratsinis S.E..Formation of agglometrate particles by coagulation and sintering: Part 1:A two-dimensional solution for the population balance equation[J].Journal Aerosol Science, 1993,24:283-300.
    [68] Xiong Y.,Akhtar M.K.,Pratsinis S.E.. Formation of agglometrate particles by coagulation and sintering: Part 2:The evolution of the morphology of aerosol-made titania,silica and silica-doped titania powders[J]. Journal Aerosol Science,1993,24:301-313.
    [69] Jeong J.I.,Choi M..A sectional method for the analysis of growth of poly disperse non-spherical particles undergoing coagulation and coalescence[J]. Journal Aerosol Science,2001,32:565-582.
    [70] Yu S.,Kennedy I.M.An approximate method to calculate the collision rate of a discrete-sectional model[J]. Aerosol Science and Technic,1997,27(2):266-273.
    [71] Landgrebe J.D., Pratsinis S.E..A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime[J]. Journal of Colloid Interface Science,1990,139:63-86.
    [72] Fichtorn K.A.,Weinberg W.H..Theoretical foundations of dynamical Monte Carlo simulations[J] Journal Chemical Physics,1991,95(2):1090-1096.
    [73] Liffman K..A direction simulation Monte-Carlo method method for cluster coagulation[J]. Journal of computational physics,1992,100:116-127.
    [74] Garcia A.L..A Monte-Carlo simulation of coagulation[J].Physica, 1987,143A:535-546.
    [75] Kruis F.E.,Maisels A.,Fissan H.. Direct simulation Monte-Carlo method for particle coagulation and aggregation[J].AICHE Journal,2000,46(9):1735-1742.
    [76] Smith M., Matsoukas T..Constant-number Monte Carlo simulation of population balances[J].Chemical Engineering Science,1998,53(9):1777-1786.
    [77] Lee K., Matsoukas T..Simulation coagulation and breakup using constant-N Monte Carlo[J]. Powder Tcchnology,2000,110:82-89.
    [78] Zannetti, P. Air Pollution Modeling - Theories, Computational Methods and Available Software[M], New York:Van Nostrand Reinhold,1990.
    [79] Gautam, M., Xu, Z., Ayala, A.et al.Diesel Exhaust Plume Studies: Wind Tunnel Experiments and Modeling[C]. Fourth ETH Nanoparticle Measurement Workshop, Zurich,2000.
    
    [80] Kim, D., Gautam, M., Gera, D..On the Prediction of Concentration Variations in a Dispersing Heavy-Duty Truck Exhaust Plume Using K- ε Turbulent Closure[J]. Atmospheric Environment,2001,35(31):5267-5275.
    [81] Eskridge R.E.,Rao S.T.,Turbulent diffusion behind vehicles: experimentally determined turbulence mixing parameters[J]. Atmospheric Environment,1986,20,851-860.
    [82] Clifford M.J.,Clarke R., Riffat S.B..Local aspects of vehicular pollution[J]. Atmospheric Environment,1997,31(2):271-276.
    [83] Kanda I.,Uehara K.,Yamao Y.,et al.A wind-tunnel study on exhaust gas dispersion from rosd vehicles-Part I :Velocity and concentration fields behind single vehicles[J].Journal Wind Engineering.2006,94:639-649.
    [84] Kanda I.,Uehara K.,Yamao Y.,et al.A wind-tunnel study on exhaust gas dispersion from rosd vehicles-Part II :Effect of vehicle queues[J]. Journal Wind Engineering, 2006,94:650-658.
    [85] Dong G.,Chan T.L., Large eddy simulation of flow structures and pollutant dispersion in the near-wake region of a light-duty diesel vehicle [J]. Atmospheric Environment, 2006,40(6): 1104-1116.
    [86] Jiang P. Z., Lignell D.O.,Kelly K.E.,.et al..Simulation of the evolution of particle size distributions in a vehicle exhaust plume with unconfined dilution by ambient air[J],Journal.Air Waste Manage Association.,2005,55:437-445.
    [87] R(o|¨)nkk(o|¨) T.,Virtanen A.,Vaaraslahti K. and Keskinen J.,et al, Effect of dilution conditions and driving parameters on nucleation mode particles in diesel exhaust:Laboratory and on-road study[J]. Atmospheric Environment,, 2006,40:2893-2901.
    [88] Kim D H, Gauram M, Great D. Modeling nucleation and coagulation modes in the formation of particulate matter inside a turbulent exhaust plume of a diesel engine [J]. Journal of Colloid Interface Science, 2002,249:96-103.
    [89] Mohr,M.,Jaeger L.W.,Boulouchos K.The influence of engine parameters on particulate emissions[J].MTZ worldwide.2001,62:686-692.
    [90] Maricq, M.M., Chase R.E., Xu N. et al.The Effects of the Catalytic Converter and Fuel Sulfur Level on Motor Vehicle Particulate Matter Emissions:Light Duty Diesel Vehicles[J].Environment.Science.Technology.,2002 36(2):283-289.
    [91]张兆顺,湍流[M],北京:国防工业出版社,2002.
    [92]张兆顺,崔桂香,许春晓,湍流理论与模拟[M],北京:清华大学出版社,2005.
    [93]崔桂香,许春晓,张兆顺,湍流大涡数值模拟进展[J],空气动力学报,2004,22(2):121-127.
    [94]Smagorinsky J.General circulation experiments with the primitive equations[J].Month Weather Review,1963,91:91-164.
    [95]Deardorff J.W..A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J].Journal Fluid Mechanics,1970,41:453-480.
    [96]Bardina,J.;Ferziger,J.H.;Reynolds,W.C..Improved subgrid-scale models for large-eddy simulation[C].Fluid and Plasma Dynamics Conference 13th,Snowmass,Colo,1980.
    [97]Robert A.C.,Ferziger J.H.,Reynolds W.C..Evaluation of subgrid-scale models using an accurately simulated turbulent flow[J],Journal of Fluid Mechanics Digital Archive,1979,91:1-16.
    [98]Leslie D.C.,Quarini G..L..The application of turbulence theory to the formulation of subgrid modelling procedures[J].Journal of Fluid Mechanics Digital Archive,1979,91:65-91.
    [99]苏铭德,黄素逸,计算流体力学基础[M],北京:清华大学出版社,1997.
    [100]Chow F K,Street R L..Modeling unresolved motions in les of field-scale flows [C].Meteorological Society 15th Symposium on Boundary Layers and Turburlence.American,2002,432-435.
    [101]Fan Q.L.,Wang X.L.,et al.Large eddy simulation of a horizontal particle-laden turbulent planar jet[J].Computational Mechanics,2001,(27):128-137.
    [102]Jiang Y.,Chen Q.Y..Study of natural ventilation in buildings by large eddy simulation[J].Journal of Wind Engineering and Industrial Aerodynamics.2001,(89):1155-1178.
    [103]Lesieur M.,Metais O..New trends in large eddy simulation of turbulent fluid flow[J].Annual Review of Fluid Mechanics,1996,28(3):45-82.
    [104]王汉青,王志勇,寇广孝,大涡模拟理论进展及其在工程中的应用[J],流体机械,2004,32(7),23-27.
    [105]Roedel,W..Measurement of Sulfuric Acid Saturation Vapor Pressure:Implications for Aerosol Formation by Heteromolecular Nucleation[J].Journal of Aerosol Science,1979,10:375-386.
    [106]Ayers G.P.,Gillett R.W.,Gras J.L..On the Vapor Pressure of Sulfuric Acid[J].Geophysical Research Letters,1980,7:433-436.
    [107]Corrsin S.,Mahindee S.U..Further experiments on the flow and heat transfer in a heated turbulent air jet[R].naca-report-998;1950:859-875.
    [108]Bollinger L.M.,Williams D.T..Effect of Reynolds number in turbulent-flow range on flame speeds of bunsen burner flames[R].naca-report-932,1949:231-238.
    [109]Laurence J.C..Intensity,scale,and spectra of turbulence in mixing region of free subsonic jet[R],naca-report-1292;1956:891-915.
    [110]MILLER D.R.,COMINGS E.W..Force-momentum fields in a dual-jet flow[J].Journal of Fluid Mechanics,1960,7(2):237-256.
    [111]TANAKA E..The interference of two-dimensional parallel jets-Experiments on the combined flow of dual jet[J].Bulletin of JSME,1974,17(109):920-927.
    [112]TANAKA E..The interference of two-dimensional parallel jets-the region near the nozzles in triple jets[J].Bulletin of JSME,1975,18(124):1134-1141.
    [113]Hong Z.C.,Chuang S.H..Kinetic theory approach to twin plane jets-Turbulent mixing analysis[J].AIAA.2000,26(3):303-310.
    [114]董志勇,射流力学[M].北京:科学出版社,2005.
    [115]林建忠,流场拟序结构及控制[M].杭州:浙江大学出版社,2001.
    [116]陈克城,流体力学实验技术[M].北京:机械工业出版社,1983.
    [117]Saripalli K.R.,Laser Doppler velocimeter measurements in 3D impinging twin-jet fountain flows[J].Turbulent shear flows,Springer-Verlag,1987.5:147-159.
    [118]Carcasci C..An experimental investigation on air impinging jets using visualization methods[J].International Journal.of Thermal Sciences,1999.38(9):808-818.
    [119]Behrouzi P.,McGuirk J,J.,Laser Doppler velocimetry measurements of twin-jet impingement flow for validation of computational models[J].Optics and Lasers Engineering.,1998,30:265-277.
    [120]Tani I.,Komatsu Y..Impingement of a round jet on a flat surface[C].Proc.11th Int.Congress on Apply.Mechanics.,Munich,1964,672-676.
    [121]Bradbury L.J.S..The impact of an axisymmetric jet onto a normal ground[J].Aeroautical Quarterly.1972:141-147.
    [122]Beltaos S.,Rajaratnam N..Plane turbulent impinging jets[J].Journal Hydraulic Research.1973,11(1):25-59.
    [123]Gutmark E.,Wolfshtein M.,Wygnanski I..The plane turbulent impinging jet[J].Journal of Fluid Mechanics,1978,737-756.
    [124]Barata J.M..Impingement of single and twin turbulent jets through a crossflow[J].AIAAJ.1991,29(4):595-602.
    [125]Dong L.L.,Leung C.W.,Cheung C.S..Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets[J].Heat and Mass Transfer,2004.47:489-500.
    [126]Bearman,P.W..Near wake flows behind two-and three-dimensional bluff bodies[J].Journal Wind Engineering,1997,69:33-54.
    [127]陈景秋,樊雪,胡韩飞.小轿车绕流流场的三维数值模拟[J].重庆大学学报,2004,27(10):134-137.
    [128]谷正气,姜乐华,吴军等.汽车绕流的数值分析及计算机模拟[J].空气动力学学报,2000,18(2):188-193.
    [129]傅立敏,沈俊,王靖宇.汽车流场及尾部涡系数值模拟[J].吉林工业大学自然科学学报,2000,30(2):6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700