五十年来秦巴山地气候变化趋势及空间分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭是横亘在我国中部的著名山脉,更是我国气候的重要分界线。本文利用1959-2009年50年来秦岭地区南坡20个站点,北坡13个站点总计33个标准气象站点的逐年月平均气温、降水资料、研究区县界图和1:5万秦岭地区DEM图,利用GIS技术分析研究了50多年来秦岭地区气候变化趋势及秦岭山地气温空间分布特征。其主要研究结果和进展如下:
     (1)50多年来秦岭地区气温及降水变化趋势
     50年来秦岭地区年均温呈显著上升趋势,其北坡变暖更为显著,年均温增加达1.2℃,南坡年均温增加达0.5℃。年均温的明显上升发生在1993年。四季气温除夏季呈微弱的减少趋势,两地区春、秋、冬三季平均气温均呈极显著的上升趋势(p<0.01),其中冬、春两季平均气温上升更为显著。秦岭北坡地区四季气温的变化速率与变化幅度均高于南坡,且两地区四季温差均逐渐减少。秦岭南北坡地区1-5月,9-12月气温均呈增加趋势,尤以2,4月和9月增温更为明显,其中北坡增温更为迅速。
     秦岭南坡地区年降水量呈不显著的减少趋势,北坡地区则呈微弱的增加趋势。秦岭南北坡地区春季和秋季降水量均呈减少趋势,两地区春季降水量均通过了显著性水平检验(p<0.05);夏、冬两季两地区降水量均呈增加趋势,其中北坡夏季降水量增加显著(p<0.01)。秦岭地区4月降水量呈显著的减少趋势。
     (2)秦岭山地50多年来年平均气温及1月均温的空间分布特征
     基于DEM制作了秦岭山地年均温栅格影像图。秦岭地区年平均气温空间分布总体上是南高北低,西部高山地区年均气温较为明显地低于其他地区,低值中心在太白山附近地区,最低值为0.35℃,气温较高的地区为关中平原地区以及陕南的部分地区,气温的最高值为16.25℃。
     秦岭1959-1969年的1月均温的范围是-11℃~4℃,1979-1989年1月气温范围为-10℃~4℃,最低温度较之前20年上升了1℃此期间秦岭北坡、南坡均出现增温趋势,0℃等温线发生明显上升。至21世纪初(1999-2009)年间,1月均温分布为(10℃~5℃),最低温度和最高温度均比60、70年代增加1℃。
     (3)50年来秦岭1月0℃等温线变化趋势
     1月0℃等温线走势与秦岭主脉走向大体一致,50多年来秦岭地区1月零摄氏度等温线有逐渐的北移趋势,利用GIS的空间分析功能按每十年时间顺序提取五条等温线海拔区间范围的均值为别为:1091米、1101米、1127米、1116米、1187米,可以看出等温线五十年间发生了上升,其对应的海拔高度上升约100米左右,尤以近十多年来上升幅度明显。
Qinling Mountains is a famous mountain lies in the central of China, and also is the important boundary of climate. The study using the data of annual mean monthly temperatures and precipitation between 1959 and 2009 acquired from 33 standard meteorological sites(20 in south and 13 in north) in the region of Qinling Mountains, and the county bounded map and DEM map of study area. Creating the spatial distribution map of Average annual temperature and January temperature in Qinling Mountains with the help of GIS spatial interpolation technique, and using climate trend rate and climate tendency coefficient method to contrastively analyst the trend of temperature and precipitation in levels year、season and month in past 50 years based on the existing climate data. The main study results and progress as follow:
     (1) the annual mean temperature in the southern and northern regions tended to significantly increased, and the northern regions warmed more significantly.1993 and 2007 are the turning points of the change of annual mean temperature. Except that summer mean temperature tended to faintly decrease, the average temperature of spring, autumn and winter in both regions showed a very significant increasing trend(p<0.01), which the winter and spring mean temperature increased more significantly. The rate and amplitude of seasonal mean temperature in northern regions were faster and greater than those in southern regions, and the seasonal mean temperature between two regions were gradually reduced. Monthly mean temperature from January to May and September to December in southern and northern regions showed an increasing trend, especially February, April and September warming more significantly, which in northern regions warmed more rapidly.
     The annual precipitation in southern regions of Qinling Mountains showed a decreasing trend that was not pronounced, while which in northern regions tended to faintly decrease. 2007 was a turning point of annual precipitation in northern regions. The spring and autumn precipitation in Qinling Mountains area showed a decreasing trend, and spring precipitation have passed the significant level test(p<0.05); while the summer and winter precipitation showed an increasing trend, which the summer precipitation in northern regions increased significantly(p<0.01). The monthly precipitation of March and April in southern regions of Qinling Mountains significantly reduced; while April precipitation was a significant upward trend and June precipitation has a significant decreasing trend in northern regions.
     (2) The spatial distribution features of annual mean temperature and January average temperature in Qinling area:
     The distribution of annual average temperature in Qinling Mountains area is greatly influenced by topography in past 50 years. The spatial distribution of annual mean temperature in Qinling Mountains area is generally present that southern higher than northern. annual mean temperature of the western mountain region is obviously lower than others parts, the center of low temperature lies in the vicinity of Taibai Mountain and the minimum value is 0.35℃; the temperature of Guanzhong plain and parts of Shannan regions is higher than other parts, and the maximum value is 16.25℃. we can show that the temperature of Guanzhong region is higher than Shannan region's by the distribution of temperature.
     The temperature of Qinling Mountains in January ranged from-11℃to 4℃between 1959 and 1969, the high temperature areas were most concentrated in Shannan regions, and Taibai Mountain area was the center of low temperature.0℃isotherm trend in January was broadly consistent with the run of Qinling Mountains's main vein. The range of temperature in January between 1969 and 1979 was roughly same as that in past 10 years, but there was a small increase in temperature in Guanzhong regions and the range was wide. The temperature in January ranges from-10℃to 4℃between 1979 and 1989, there were a increase trend in temperature in both the southern and northern slope of Qinling Mountains during this period, and the 0℃isotherm was clearly run north, the spatial distribution of temperature between 1989 and 1999 was same as that. The range of increase in temperature is obvious (10℃—5℃)between 1999 and 2009, especially in the valley region of northern slope, the temperature has significanted increased, and was higher than the temperature of the peak with same latitude.
     (3) Correspondence of 0℃isotherm and elevation in Qinling Mountains in January in past 50 years
     The 0℃isotherm in January was gradually run north in past 50 years,the average elevation of 5 isotherm in chronological respectively were 1091 meters、1101 meters、1127 meters、1116 meters and 1187 meters, we can show that isotherm was run north in past 50 years, and the corresponding elevation also had a increase trend.
引文
[1]秦大河,陈振林,罗勇,等.气候变化科学的最新认知[J].气候变化研究进展,2007,3(2):63-73.
    [2]丁一汇等.气候系统的演变及其预测[M].北京:气象出版社,2003:26-27.
    [3]李秀彬.90年代中国综合自然地理研究的回顾与前瞻.载:吴传钧等.世纪之交的中国地理学.北京:人民教育出版社,1999,12-25.
    [4]陈梦熊.北半球冬季大气环流遥相关型的长期变化及其与我国气候变化的关系[J].气象学报,1996,5(6):675-683.
    [5]李爱贞,刘厚凤,张桂琴.气候系统变化与人类活动[M].北京:气象出版社,2003:26-27.
    [6]钟兆站.秦岭-黄淮平原交界带气候边际效应初探[J].地理研究,1996,15(4):66-73.
    [7]闰军辉,延军平.全球气候变化下秦岭南北气候生产力时空对比研究[J].农业现代化研究,2009,30(5):587-590.
    [8]Mock C.J.Historical evdence of a cold.Dry summer during 1849 in the Northeastern Great basin and adjacent Rocky Mountains.Clim.Chang,1991,18 (1):37-66.
    [9]Mann M E.Bradley R S.Hughes M K.Northern hemisphere temperature during the past milliennuim:inferences,uncertainties,andlimitations.Geophys.Res,Lett.1999,26(6):759-762.
    [10]Growley T J,loewly T S.How warm was the Medieval Warm Period?.Ambio,2000, 29(1):51-54.
    [11]Running.S.W, Thornton P.E.Generating daily surfaces oftemperature and precipitation over complex topography[M]//GOODCHILD M F, SRYAERT L T, PARKS B O.GIS and EnvironmentalModel: Progress and Research Issues.Collins:GIS World Inc,1996.
    [12]Bel lasio, R., G.Maffei s, J.S.Scire, et a 1.Algorithms to account for topographic shading effects and surface temperature dependenceon terrain elevation in diagnostic meteor0109ical models.Bound.Layer Meteor.114,2005:595—614.
    [13]Mahrt, L.Variation of Surface Air Temperature in Complex Terrain[J]. Journal of Applied Meteorology & Climatology,45(11),2006:51 1442-1493.
    [14]Chung.U, Seo, H.H, Hwang, KH; Hwang, BS:Choi, J:Lee, JT; Yun, J1.Minimum temperature mapping over complex terrain by estimatin cold air accumulation potential.Agricultural and ForestMeteorology.2006,137(2),15-24.
    [15]林学椿,于淑秋.近40年我国气候趋势[J].气象,1990,16(10):6-21.
    [16]陈隆勋,周秀骥,李维亮,等.中国近80年来气候变化特征及其形成机制[J].气象学,2004,62(5):634-645.
    [17]严中伟,杨赤.近几十年中国极端气候变化格局[J].气候与环境研究2002,2(3):267-272.
    [18]程路.秦岭山地辐射和气温空间分布研究[D].南京信息工程大学,2003.
    [19]莫申国,张百平.基于DEM的秦岭温度场模拟[J].山地学报,2007,25(4):406-411.
    [20]蔡福,于贵瑞,祝青林,等.气象要素空间化方法精度的比较研究——以平均气温为例.资源科学,2005,27(5):173-179.
    [21]张洪亮,倪绍祥,邓自旺,等.基于DEM的山区气温空间模拟方法[J].山地学报,2002,23(3):360-364.
    [22]杨听,汤国安,王春,等.基于DEM的山区气温地形修正模型——以陕西省耀县为例[J].地理科学,2007,27(4):525-530.
    [23]方建刚,候建忠.秦岭地区秋季降水的气候特征分析[J].气象科学,2008,28(4):415-420.
    [24]刘胤汉.关于陕西自然地带的划分[M].西安:陕西师范大学出版社,1980.
    [25]李兆元,傅抱璞,虞静明.秦岭太白山夏季的小气候特点[J].地理学报,1982,37(1):88-97.
    [26]齐瑛,傅抱璞,李兆元.秦岭山脉对冷空气屏障的理论研究[J].气象学报,1995,53(2):186-193.
    [27]郑度.中国生态地理区划系统研究[M].北京:商务印书馆,2008.
    [28]刘禹等.以树轮宽度重建秦岭中段分水岭地区1一7月平均气温[J].2009,(5):260-265.
    [29]延军平.秦岭南北环境响应程度比较[M].北京:科学出版社,2006:112.
    [30]延军平,郑宇.秦岭南北地区环境变化响应比较研究[J].地理研究,2001,20(5):576-582.
    [31]翁笃鸣,罗哲贤.山区地形气候北京[M].北京:气象出版社,1990.
    [32]赵登忠,张万昌,刘三超.基于DEM的地理要素PRISM空间内插研究[J].地理科学,24(2):205-212.
    [33]翁笃鸣、孙治安,我国山地气温直减率的初步研究[J].地理研究,3(2),(1984):24-34.
    [34]张超,杨秉赓.计量地理学基础[M].北京:高等教育出版,1989:86-100.
    [35]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007:37-39.
    [36]李国平,贺文彬.四川50年来气候变化分析及未来趋势预测[J].成都气象学院学报,1994。 3(2):72-78.
    [37]王文圣.水文小波分析[M].北京:化学工业出版社,2005.
    [38]汤国安ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006,363.
    [39]Ripley B D. Spatial Statistics[M]. New York:John Wiley &Sons,1981.252.
    [40]Haining R. Spatial Data Analysis in the Social and Environmental Sciences[M]. Cambridge:Cambridge University Press,1990.409.
    [41]施雅凤,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
    [42]刘德祥,董安祥,陆登荣.中国西北地区近43年气候变化及其对农业生产的影响[J].干旱地区农业研究,2005,23(2):195-201.
    [43]裴浩.近40年内蒙古气候平均气温变化趋势[J].应用气象学报,2009,20(4):443-450.
    [44]朴世龙,方精云.1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2003,58(1):123-124.
    [45]吴维勇,王小椿.基于Haar小波分解的快速曲线重构[J].工程图学学报,2002,(1):91-96.
    [46]方精云.我国气温直减率分布规律研究[J].科学通报,1992,(9):817-820.
    [47]林之光,山地气候文集[M].北京:气象出版社,1984,69-76.
    [48]游修龄.浙江省粮食生产上新台阶对策[M].上海:上海科学技术出版,1990:71-72.
    [49]Liu D.L., B.J.Scott, Estimation of solar radiation in Australia from rainfall and temperature observations.Agricultural and Forest,Meteorology 2001,106:41-59.
    [50]WhitlockC.H., T.P.Charlock, W.F.Staylor et al, First global WCRP shortwave surface radiation budget dataset, Bull.Amer.Metero.Soc.,1995,76:905-922.
    [51]张旭阳等.西安城市热岛效应对夏季高温的影响[J].干旱区资源与环境.2010,24(1):95-101.
    [52]卢新卫,陈鹏.西安城市化进程与环境生态问题研究[J].干旱区资源与环境,2006,20(1):7-12.
    [53]王建等.现代自然地理学[M].北京:高等教育出版社,2002,441.
    [54]于飞等.复杂山地环境下气候要素空间插值比较研究[J].贵州气象,2008,3(32):3-6.
    [55]王绍武等.现代气候学研究进展[M].北京:气象出版社,2001,458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700