高效低成本染料敏化太阳能电池离子液体电解质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为21世纪最有希望的绿色溶剂之一,已经应用到了有机化学反应、物质的分离和纯化、电化学等各个领域,其具有不易挥发,稳定温度范围较大,化学稳定性较好,电化学稳窗口较宽,通过对阴阳离子的设计可调节其对无机物、有机物的溶解性等特点。这些性质表明离子液体适合作为染料敏化太阳能电池电解质使用,基于此,我们选择了一系列的二元离子液体,并配制了相应的离子液体电解质测试染料敏化太阳能电池的效率,主要内容包括:
     1.我们研究了六种用于染料敏化太阳能电池的二元离子液体电解质的光电转化效率,其中1-乙基-3-甲基咪唑四氟硼酸盐/碘化1-丁基-3-甲基咪唑类电解质具有最高的光电转化效率,达到了4.98%。改变其中碘单质的浓度,测量了五种不同碘单质浓度二元离子液体电解质的电化学阻抗谱(EIS)、紫外-可见吸收光谱和入射单色光子-电子转化效率(IPCE),发现随着碘单质浓度的增大,铂-电解质界面的传荷电阻(RCT)和瓦尔堡阻抗(Zw)逐渐减小,而电解质对紫外光的吸收逐渐增大,最后在AM1.5、光强100mW/cm2的条件下测试光电性能,发现当I2的浓度为0.25M时电池效率最高,达到5.20%。
     2.我们合成了一种新的离子液体形式的氧化还原电对1-乙基-3-甲基咪唑5-巯基-1-甲基四唑(EMIT),使用不同的对电极组装成染料敏化太阳能电池并测试效率,我们发现碳对电极对电对的催化活性较好,但是限制了离子液体的扩散,最后在AM1.5、光强100mW/cm2的条件下测试光电性能,当对电极为溅射铂电极时电池效率最高,达到2.16%。
As one of the best solvent in the 21 century, ionic liquid has been applied to the organic chemical reaction, the separation and purification of the substance, electrochemistry and so on. The ionic liquids (ILs) show unique properties such as negligible vapor pressure, high thermal and chemical stability, wide electrochemical window and so on. These properties indicate that ILs could be good electrolytes used for DSCs. Based on this issue, we chose a series of binary ionic liquids and subsequently prepared a series of the electrolytes with them in order to investigate the effects of the electrolytes on the performance of DSCs. The main content is outlined as follows:
     1. We chose six kinds of binary ionic liquid electrolytes for dye-sensitized solar cells (DSCs). Amongst them, the electrolyte based on 1-butyl-3-methylimidazolium iodide (BMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) reached the highest photoelectric conversion efficiency (PCE) of 4.98%. Measurements of Electrochemical impendence spectroscopy (EIS), UV-Vis spectroscopy, and photovoltaic performance of DSCs using the binary ionic liquid electrolyte based on BMII and EMIMBF4 were performed at varying concentration of iodine. The results showed that the charge-transfer resistance (Rct) and Warburg impedance (Zw) decreased as the iodine concentration increased. In contrast, the absorption intensity of the electrolytes increased. When the concentration of iodine was 0.25 M, the highest PCE of 5.20% was obtained for the DSC based on the binary BMII/EMIMBF4 ionic liquid electrolyte under light intensity of 100 mW cm-2
     2. We synthesized a new redox couple in the form of ionic liquids named 1-ethyl-3-methylimidazolium thiolate (EMIT) and prepared a new binary ionic liquid electrolyte with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4). Using different counter electrode, we found that the carbon electrode had a better catalytic activity for the redox couple than the Platinum electrode, although it was unfavorable for the diffusion of ionic liquid electrolytes. Finally, with the Platinum electrode, the highest PCE of 2.16% was obtained for the DSC based on the binary EMIT/EMIMBF4 ionic liquid electrolyte under light intensity of 100 m W cm-2.
引文
[1]王革华.新能源概论[M].北京:化学工业出版社,2006
    [2]雷永泉.新能源材料[M].天津:天津大学出版社,2002.
    [3]施敏.现代半导体器件物理[M].北京:科学出版社,2001
    [4]Becquerel A E. C. R. Acad. Sci. Paris,1839,9:561.
    [5]Adams W G, Day R E. Proc. Roy.Soc. London A,1877,25:113
    [6]Chapin D M, Fullerand C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J. Appl. Phys.,1954,25:676-677
    [7]Brune S N, Bobbit D R. Role of electron-donating/withdrawing character, pH and Stoichiometry on the chemiluminescent reaction of tris(2,2'-bipyridine) ruthenium(Ⅲ) with amino acids [J]. Anal. Chem.1992,64:166-170.
    [8]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353 (6346):737-740
    [9]Memming R, Schroppel F. Electton transfer reaction of excited ruthenium (Ⅱ) complexes in monolayer assemblies at the SnO2-water interface[J]. Chem. Phys. Lett.,1979,62:207-210
    [10]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353 (6346):737-740
    [11]Nazeeruddin Md K, Kay A, Gratzel M, et al. Conversion of light to electricity by cis-X2Bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizer (X=C1-,Br-,I-,CN-, and SCN-) on nanocrystalline TiO2 electrodes[J]. J. Am. Chem. Soc.,1993,115:6382-6390
    [12]Hagfeldt A, Gratzel M. Light induced redox reactions in nanocrystalline systems [J]. Chem Rev. 1995,95 (1):49-68.
    [13]Hagfeldt A. Molecular Photovoltaics[J]. Acc. Chem. Res.,2000,33(5):269-277
    [14]Kalyanasundaram K, Gratzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic deviees[J]. Coord. Chem. Rev.,1995,177(1):347-414
    [15]Shah A, Torres P, Tscharner R, et al. Photovoltaic technology:the case for thin-film solar cells[J]. Science.1999,285:692-698
    [16]唐笑,钱觉时,黄佳木.染料敏化太阳能电池中的光电极制备技术[J].材料导报,2006,20:97-103.
    [17]裴娟.三苯胺类光敏染料用于染料敏化太阳能电池的研究[D].南开大学,2008
    [18]Siegel R W, Ramasamy S, Hahn H, et al. Synthesis, Characterization, and Properties of Nanophase TiO2[J]. J. Mater. Rres.,1988,3(6):1367-1372
    [19]Chen Q, Qian Y, Chen Z. PreParation of TiO2 Powders with diff ent morphologies by an oxidation-hydrothermal combination method[J]. Mater. Lett.,1995,22:77-80.
    [20]Vlachopoulos N, Liska P, Gratzel M, et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films[J]. J. Am. Chem. Soc,1988,110(4):1216-1220.
    [21]包南,马东,孙剑等.形貌可控的TiO2纳米晶的溶胶凝胶-水热法组合制备[J].功能材料,2006,37(8):1331-1334
    [22]杨红.功能材料的设计、组装及其光电性质研究[D].复旦大学,2008
    [23]Wang Z S, Huang C H, Huang Y Y, et al. A high efficient solar cell made from a dye modified ZnO covered TiO2 nanoporous electrode[J]. Chem. Mater,2001,13(2):678-682.
    [24]Ma T L, Akiyama K, Abe E. High-efficiency dye-sensitized solar cell based on nitrogen-doped nanocrystalline titania[J]. Nano Lett.,2005,5:2543-2547
    [25]David J. S, Phillip E. F, and David R. M. et al. A Red-Emitting Light Switch Based on a Heteroleptic Ruthenium(II) ComplexContaining a Tridentate dppz Analogue [J]. Inorg. Chem. 2010,49,6814-6816
    [26]Amrita G.Priyadip D, Martin R. G, et al. Photoactive RuII-Polypyridyl Complexes that Display Sequence Selectivity and High-Affinity Binding to Duplex DNA through Groove Binding [J]. Chem. Eur. J.2011,17:2089-2098
    [27]Keppler B K, et al. New ruthenium complexes for the treatment of cancer [J].J.Prog.Clin.Biochem.Med.,1989,10:41-69.
    [28]汪中明,计亮年.钌配合物的抗肿瘤活性研究进展[J].化学进展.2002,14(4):296-304.
    [29]Clarke M J. Ruthenium metallo pharmaceuticals [J]. J. Coord. Chem. Rev.,2003,236:207-231.
    [30]Lehn J M. Supermolecular chemistry-scopeandperspectives:molecules, supermolecular sandmoleculardevices. J. ChemIntEdEngl,1988,27:89-91.
    [31]Diederich F J. Molecular recognition in aqueous solution:Supermolecular complex ationandcat alysis [J]. J.ChemEduc,1990,67(10):813-816.
    [32]吴世康,超分子光化学导论:基础与应用[M].科学出版社.
    [33]Vogel S R, Muller K, Plutowski U. Phy. Status Solid B,2007,244 (11):4026-4029
    [34]Gong X Y, Liu J, et al. Surfactant-assisted processing of carbon nanotube/polymer composites [J]. J. Chemistry of Materials,2000,4:1049-1052.
    [35]Chen R J, Zhang Y G, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. J. Am. Chem. Soc.,2001,16:3838-3839.
    [36]Zhang J,Lee J K, et al. PHOTOLUMINESCENCE AND ELECTRONIC INTER-ACTION OF ANTHRACENE DERIVATIVES ADSORBED ON SIDEWALLS OF SINGLE-WALLEDCARBON NANOTUBES. NanoLetters,2003,3(3):403-407.
    [37]Murakmi H. Nomura T, et al. NONCOVALENT PORPHYRIN-FUNCTION-ALIZED SINGLE-WALLED CARBON NANOTUBES IN SOLUTION AND THE FORMATION OFPORPHYRIN-NANOTUBE NANOCOMPOSITES.J. Chemical Physies Letter,200, 378(5/6):481-485.
    [38]Curran S A, Ajayan P M, et al. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes:a novel muterial for molecular optoelectronics. Advanced Materials,1998,10(14):1091-109.
    [39]Liu C H, Li J J, Zhang H L, et al. Structure dependent interaction between organic dyes and carbon nanotubes. Physicochem. Eng. Aspects (2008) 9-12:313-314.
    [40]Christopher J C, Marc J. O'Donnell, et al. Complexation between Rhodamine 101 and Single-Walled Carbon Nanotubes Indicative of Solvent-Nanotube Interaction Strength. J. Phys. Chem. C2008,112,15144-15150.
    [41]徐中辉,汪峰.单壁碳纳米管吸附酞菁类有机物的研究.物理实验.2008,16:16-19
    [42]Seungwon J, Misun C, et al. Dissociation of Single-Strand DNA:Single-Walled Carbon Nanotube Hybridsby Watson-Crick Base-Pairing. J. Am. Chem. Soc.2010,132,10964-10966.
    [43]Zhang Xiaoke, Meng Lingjie, Preparation and Cellular Uptake of pH-Dependent Fluorescent Single-Wall Carbon Nanotubes. Chem. Eur. J.2010,16,556-561.
    [44]Dewu Long, Hongzhen Lin, Ivan G S. Carbon nanotubes as photoprotectors of organic dyes: reversiblephotoreaction instead of permanent photo-oxidation. Phys. Chem. Chem. Phys.,2011, 13,5771-5777.
    [45]Cintas P, Inclusion Phenom J. Cucurbituril:Supramolecular perspectives for an old ligand [J]. Mol. Recognit. Chem.,1994,17:205-220.
    [46]Park K M, Kim S Y, Heo J, et al. Designed Self-Assembly of Molecular Necklaces [J]. J. Am. Chem. Soc.,2002,124:2140-2147.
    [47]Kim J, Jung I S, Kim S Y, et al. New Cucurbituril Homologues:Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n=5,7, and 8) [J]. J. Am. Chem. Soc.,2000,122:540-541.
    [48]Day A I, Arnold A P, Blanch R J, et al. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues [J]. J. Org. Chem.,2001,66:8094-8100.
    [49]Lee J W, Samal S, Selvapalam N, et al. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry [J]. Acc. Chem. Res.,2003,36:621-630.
    [50]Lagona J, Mukhopadhyay P, Chakrabarti S et al. The Cucurbit[n]uril Family [J]. Angew. Chem. Int. Ed.,2005,44:4844-4870.
    [51]Kim K, Selvapalam N, Ko Y H, et al. Functionalized cucurbiturils and their applications [J]. Chem. Soc. Rev.,2007,36:267-279.
    [52]Kim S Y, Jung I S, Lee E, et al. Macrocycles within Macrocycles:Cyclen, Cyclam, and Their Transition Metal Complexes Encapsulated in Cucurbit[8]uril [J]. Angew. Chem., Int. Ed.,2001, 40:2119-2121.
    [53]Pattabiraman M, Natarajan A, Kaanumalle L S et al. Templating Photo dim erizati on of trans-Cinnamic Acids with Cucurbit[8]uril and γ-Cyclodextrin [J]. Org. Lett.,2005,7:529-532.
    [54]Jeon W S, Kim H J, Lee C, et al. Control of the stoichiometry in host-guest complexation by redox chemistry of guests:Inclusion of methylviologen in cucurbit[8]uril [J]. Chem. Commun., 2002,17:1828-1829.
    [55]Ziganshina A, Ko Y H, Jeon W S et al. Stableπ-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril [J]. Chem.Commun,2004,7:806-807.
    [56]Ong W, Gomez-Kaifer M, Kaifer A E. Cucurbit[7]uril:A Very Effective Host for Viologens and Their Cation Radicals [J]. Org. Lett.,2002,4:1791-1794.
    [57]Day A 1, Blanch R J, Arnold A P, et al. A Cucurbituril-Based Gyroscane:A New Supramolecular Form [J]. Angew. Chem., Int. Ed.,2002,41:275-277.
    [58]杨丽.柔性染料敏化太阳电池高效率化研究[D].大连理工大学,2010
    [59]Moon K, Grindstaff J, Sobransingh D et al. Cucurbit[8]uril-Mediated Redox-Controlled Self-Assembly of Viologen-Containing Dendrimers [J]. Angew. Chem. Int. Ed.,2004,43: 5496-5499.
    [60]Jon S Y, Ko Y H, Park S H, et al. A facile, stereoselective [2+2] photoreaction mediated by cucurbit[8]uril [J]. Chem. Commun.,2001,19:1938-1939.
    [61]Xu Yongqian, Pang Yi, et al. Host-guest assembly of squaraine dye in cucurbit[8]uril:its implication in fluorescent probe for mercury ions. [J]. Chem. Commun.,2010.23:4073-4075
    [62]Edwin C C, Egbert F, Catherine E et al. Electrochemical probing of ground state electronic interactions in polynuclear complexes of a new heteroditopic ligand. Dalton.Trans.2004, 1918-1927.
    [63]Ciana L D, Hamachi I, Meyer T J. Synthesis of Side-Chain Derivatives of 2, 2'-Bipyridine.J.Org.Chem.1989,54:1731-1735.
    [64]Lay P A, Sargeson A M, Taube H. Cis-Bis(2,2'-Bipyridine-N,N') Complexes of Ruthenium(Ⅲ)/(Ⅱ) and Osmium(Ⅲ)/(Ⅱ).Inorg. Synth.1986,24,291-299.
    [65]Bacigalupo M A, Meroni G, Mirasoli M, et al. J. Agric. Food Chem.2005,53:216.
    [66]Suntres Z E, Role of antioxidants in paraquat toxicity. Toxicol-ogy 2002,180,65.
    [67]Halliwell B, Gutteridge M C. Free Radicals in Biology and Medicine,3rd ed.; Oxford University Press:New York,1999.
    [68]U.S. National Library of Medicine. Hazardous Substances Databank; U.S. National Library of Medicine:Bethesda,MD,1995.
    [69]Rao, P. S. C.; Davidson. J. M. Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. In EnVironmental Impact of Nonpoint Source Pollution; Overcash, M. R., Davidson, J. M.,Eds.; Ann Arbor Science:Newton, MA,1980.
    [70]Kuo T L,Lin D L, Liu R H, Spectra interference between diquat and paraquat by second derivative spectrophotometry.Forensic Sci.Int.2001,121,134.
    [71]Fuke C, Arao T, Morinaga Y, et al. Analysis of paraquat, diquat and two diquat metabolites in biological materials by high-performance liquid chromatography.Leg. Med. (Tokyo) 2002,4, 156.
    [72]Grey L. Nguyen B, Yang P, Liquid chromatography-electrospray ionization isotope dilution mass spectrometry analysis of paraquat and diquat using conventional and multilayer solid-phase extraction cartridges. J. Chromatogr. A 2002,958,25.
    [73]Mastichiadis C; Kakabakos S E, Christofidis I, et al. Simultaneous determi nation of pesticides using a four-band disposable optical capillary immunosensor [J]. Anal. Chem.2002,74, 6064-6067.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700