基于反射、散射波场分离的多次波消除方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规SRME(自由表面多次波消除)方法对于消除自由表面多次波效果虽然不错,但现阶段对它的应用主要是2D的,3D的完全应用很昂贵,而且理论尚处于研究发展中,去除多次波的效果也不是很理想。我们的研究对象是3D的,3D效应不可避免,多次波情况复杂,所以有必要研究一种新的、更有效的多次波消除方法来解决这些复杂多次波的消除问题。
     本文对常规的SRME方法进行了改进,采用将地震数据进行波场分离的方法。利用平面波记录中散射和反射的同相轴形态差异(分别为似双曲线和似线性),模拟平面波激发的记录,将体现3D效应最强的散射部分与反射部分分离开。分离采用了四种方法:线性Radon变换、中值滤波、平面波解构滤波器、K-L变换。当地震数据被分离成反射和散射部分后,多次波的预测消除处理就可以在这些不同的数据子集上进行,这样会得到多项预测多次波:反射-反射、反射-散射、散射-反射、散射-散射多次波。之后我们针对每一项预测多次波单独设计滤波器予以消除,这样得到的SRME方法更加灵活、有效。同时,我们对减去法也进行了改进,用Curvelet阈值法取代了常规的减去法。理论模型的实验结果表明,基于波场分离的新SRME方法相比常规的SRME方法,对于多次波的消除更加有效,而且用Curvelet阈值法取代常规的减去法,能够减轻振幅匹配时引起的波形畸变,使有效信号的同相轴连续性更好。
The multiple, as a kind of coherent noise, always disturbs the seismic acquisition, processing and interpretation work. Traditional seismic data processing uses the primary reflection to do migration and imageing. However, the existence of multiple will lead false geological phenomenon into the seismic profile, reduce the S/N ratio and resolution of the data, further more, affect the interpretation of the section. Among them, in particular, the surface-related multiple’s energy is the strongest and has the most influence. The requirements of seismic data increase more and more in oil industry, and that also leads the high demand of the multiple suppression technology. As a result, the conventional filter-type approaches are very difficult to meet the need.
     The surface-related multiple elimination (SRME) method is a process that removes the influence of the surface reflectivity from the data. It is feedback-iteration approach, belonged to the prediction-subtraction approaches, and based on the free surface model and layer surface model. An important property of the proposed multiple elimination process is that no knowledge of the subsurface is required. The SRME method is more effective than those simple conventional filter-type multiple suppression approaches, where the moveout properties of primaries and multiples are very similar, As well as for situations with a complex multiple-generating system.
     The SRME method is more successful than those simple approaches, and also can deal with some complex situations, but most of the applicatons are still 2D, as the full 3D implementation is still expensive and under development and none of the current 3D SRME processes yields perfectly predicted multiples. However, the earth is a 3D medium, such that 3D effects are difficult to avoid, so we need to explore a new multiple elimination approach to deal with this complex situation.
     Most of the 3D effects come from scattering structures, whereas the specular reflections normally have less of a 3D behavior. In this paper, in order to deal with the 3D effects without the full 3D implementation, we improved the conventional SRME method by the means of wavefields separation of seismic data. Using the event form difference between scattering and specular reflecting in plane wave section, we simulated the plane wave source record, and separated the seismic data in a specular reflecting and a scattering part which yielded most of the 3D effects. We used four methods to carry out separation: linear Radon transform, median filter, plane-wave distruction filter, K-L transform. By separating the seismic data in a specular reflecting and a scattering part, multiple prediction can be carried out with these different subsets of the input data, resulting in several categories of predicted multiples: reflecting-reflecting, reflecting-scattering, scattering-reflecting, scattering-scattering. Because each category of predicted multiples can be subtracted from the input data with different adaptation filters, a more flexible and effective SRME procedure is obtained. Meanwhile, we improved the subtraction approach, using the Curvelet threshold approach to replace the conventional subtraction approach. The results of numerical experiments showed that the new SRME method which was based on wavefields separation was more effective in multiple elimination than the conventional SRME method. Besides, Using the Curvelet threshold approach to replace the conventional subtraction approach can relieve the waveform distortion and keep the signal better, make the continuity of desired signal event well when we carry out amplitude matching.
     The conventional SRME method treats the scattering wavefield as a kind of reflection, and directly processes without wavefields separation. If the matching method selected is proper, the effect is also very good. Using the contrast result between the new SRME method and the conventional one, we can see that the new SRME method is more effective in the multiple elimination. That is because the four terms of multiples got by wavefields separation is more sophisticated than the whole multiples got without carrying out separation. In other words, the result of new method dovetail better with the original record. Some details which the whole multiples can’t show can be illustrated in the profile of new method and then be handled. Besides, we applied a small trick in this paper when we used the linear Radon transform to simulate the plane-wave section. Although the result we got is not total plane-wave simulation,just an approximate plane-wave record by make-up time shifting, with the benefit of this change, we can use the similar methods and parameters to carry out process on all the common p profiles, simplify the process and speed up the process rate. Using the Curvelet threshold method to replace the conventional subtraction method and combine with the new SRME method based on wavefields separation has a distinct advantage. It can minish the impact of waveform distortion, make the signal event more continuous. Because the conventional subtraction method just uses the sample as operational objective, subtract directly, this is bound to make the result not smooth enough. In contrast, the Curvelet threshold method goes in the Curvelet domain and uses the Curvelet coefficient as operational objective. Each Curvelet coefficient represent a Curvelet with a specular angle, scale and coordinate. Given the Curvelet’s sparsity, we know a few Curvelet can describe the event sufficiently in a seismic profile, illustrating that the Curvelet matches the seismic event very well. Thus, in each Curvelet it equals to undergo some kind of averaging and smoothing process, as a result, the process result is more smooth and continuous. The conventional SRME method can get a good result just using a few rounds of iteration while the new SRME method needs fewer rounds and even no iteration.
     In this paper, according to the present state and perspectives of the surface-related multiple elimination technology, we conducted intensive research of new methods. Based on the early achievements, we analyzed the related issues systematically, laid heavy stress on the research of wavefields separation and proposed four methods of wavefields separation between reflecting and scattering, including linear Radon transform, median filter, plane-wave distruction filter and K-L transform. After the comparison of effect, we chose the best effective approach to combine with the SRME method. Finally, we constructed a new subtraction method, which combined the single trace Winer filter with the Curvelet threshold process, and conducted effect comparison with the conventional subtraction method. We mainly finished the following work,
     (1) By the consult and collection of data, this paper analyzed and researched the conventional surface-related multiple elimination (SRME) method and the related content:
     ①Forward model scheme of seismic data.
     ②Formula derivation of multiple generation and elimination.
     ③Formula derivation of surface-related multiple elimination’s iterative approach.
     ④Another derivation using a reference medium.
     ⑤Summarizing the conventional SRME method’s scheme, matters need attention and the processing flow.
     (2) We analyzed and researched the wavefields separation between the reflecting and the scattering and the related content:
     ①The reason why the reflecting wavefield and the scattering wavefield can be separated.
     ②How to transform the ordinary shot records into the special records where the wavefields can be separated.
     ③How to carry out wavefields separation in the special records.
     (3) We tried to seek the separation methods according to the wavefields separation theory:
     ①The introduction of Radon transform.
     ②The introduction of median filter.
     ③The introduction of plane-wave distruction filter.
     ④The introduction of K-L transform.
     (4) Combined the wavefields separation with the conventional SRME method and then deduced the new method of multiple prediction.
     (5) Introduced the Curvelet transform and the Curvelet threshold method, and deduced the new subtraction process using the combination of the single trace Winer matching filter and the Curvelet threshold process.
     (6) Based on the previous theories, carried out simulated experiments in order to verify the validity and effectivity of this method:
     ①Created a proper velocity model, simulated the seismic records where there were obvious surface-related multiples and the wavefields included the specular reflecting and the scattering.
     ②According to the wavefields separation theory, used K-L transform, plane-wave distruction filter, median filter and Radon transform respectively to separate the wavefields, and compared the effects.
     ③Used the conventional SRME method directly to do multiple elimination.
     ④Chose the best effective wavefields separation method to combine with the conventional SRME method, and compared the effects with the conventional SRME method (namely didn’t separate the wavefields).
     ⑤Used the combination of single trace Winer matching filter and Curvelet threshold method as a new subtraction method to process, and compared the effects with the conventional subtraction method.
     ⑥Combined the new subtraction method with the new multiple prediction based on wavefields separation to generate a new SRME method, and compared the effects with other methods.
     (7) Summarized the above work.
引文
[1]王汝珍.多次波识别与衰减[J].勘探地球物理进展,2003,26(5-6):423-432.
    [2] Foster D J,Mosher C C.Suppression of multiple reflections using the Radon transform[J].Geophysics,1992,57(3):386-395.
    [3]刘喜武,等.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展,2004,19(1):8-15.
    [4] Yilmaz O.Seismic data processing[M].Society of Exploration Geophysics,1987.
    [5] Lokshtanov D.Multiple suppression by data-consistent deconvolution[J].The Leading Edge,1999,18(1):115-119.
    [6] M.G.Lamont,et al.Multiple attenuation using the MMO and ISR preconditioning transforms[J].The Leading Edge,1999,18(1):110-114.
    [7]胡天跃,王润秋,White R E.地震资料处理中的聚束滤波法[J].地球物理学报,2000,43(1):105-114.
    [8]洪菲,胡天跃,等.用优化聚束域滤波方法消除低信噪比地震资料中的多次波[J].地球物理学报,2004,47(6):1106-1110.
    [9] Loewent hal D,Lu L,Roberson R,Sherwood J W C.The wave equation applied to migration and water bottom multiples[A].Presented at the 36th Mtg,Eur Assn Expl Geophys[C],1974.
    [10] Riley D C,Claerbout J F.2-D multiple reflections[J].Geophysics,1976,41(4):592-620.
    [11] Morley L.Predictive deconvolution in short-receiver space[J].Geophysics,1983,48 (5):515-531.
    [12] Wiggins J W.Attenuation of complex water-bottom multiples by wave-equation-based prediction and subtraction[J].Geophysics,1988,53(12):1527-1539.
    [13] Berryhell J R,Kim Y C.Deep-water peg legs and multiples:Emulation and suppression[J].Geophysics,1986,51(12):2177-2184.
    [14] Kennett B L N.The suppression of surface multiples on seismic records[J].Geophys. Prosp.,1979,27(3):584-600.
    [15] Berkhout A J.Seismic Migration:Imaging of acoustic energy by wave field extrapolation [M].Elsevier Scientific Pub.Com.,1982.
    [16] Verschuur D J,Berkhout A J,Wapenaar C P A.Adaptive surface-related multipleelimination[J].Geophysics,1992,57(9):1166-1177.
    [17] Berkhout A J,Verschuur D J.Estimation of multiple scattering by iterative inversion,Part I:Theoretical considerations[J].Geophysics,1997,62(5):1586-1595.
    [18] Verschuur D J,Berkhout A J.Estimation of multiple scattering by iterative inversion,Part II:Practical aspects and examples[J].Geophysics,1997,62(5):1596-1611.
    [19] Yanghua Wang.Multiple prediction through inversion:A fully data-driven concept for surface-related multiple attenuation[J].Geophysics,2004,69(2):547-553.
    [20]杨文采.地震波场反演的BG-逆散射方法[J].地球物理学报,1995,38(5):358-361.
    [21] Carvalho F M,Weglein A B,Stolt R H.Examples of a nonlinear inversion method based on the t matrix of scattering theory:application to multiple suppression[A].61st Ann.Internat. Mtg.,Soc.Expl.Geophys.,Expanded abstracts[C],1991:1319-1322.
    [22] Araujo F V,Weglein A B,Carvalho P M,Stolt R H.Inverse scattering series for multiple attenuation:an example with surface and internal multiples[A].64th Ann.Internat.Mtg.,Soc. Expl.Geophys.,Expanded abstracts[C],1994:1039-1041.
    [23] Coates R T,Weglein A B.Internal multiple attenuation using inverse scattering:Result from prestack 1 and 2-D acoustic and elastic synthetics[A].66th Annual Meeting of the Society of Exploration Geophysicists,Expanded abstracts[C],1996:1522-1525.
    [24] Weglein A B,Gasparotto F A,Carvalho P M,Stolt R H.An inverse-scattering series method for attenuating multiples in seismic reflection data[J].Geophysics,1997,62(6):1975-1989.
    [25] Kroode A P E.Prediction of internal multiples[J].Wave Motion,2002,35:315-338.
    [26] Malcolm A E.Inverse multiple scattering in the downward-continuation approach[A]. 74st,Ann.Internat.Mtg[C],2004:456-459.
    [27] Sen M K.A unified treatment to free surface multiple elimination methods[J].J.Seis. Expl.,1998,7:129-143.
    [28] Liu F.Dip selective 2-D multiple attenuation in the plane-wave domain[J]. Geophysics,2000,65(1):264-274.
    [29] Monk D J.Wave-equation multiple suppression using constrained gross-equalization [J].Geoghysics Prospecting,1993,41:725-736.
    [30] Wang Y.Multiple subtraction using an expanded multichannel matching filter[J].Geophysics,2003,68(1):346-354.
    [31]陆文凯,骆毅,等.基于独立分量分析的多次波自适应相减技术[J].地球物理学报,2004,47(5):886-891.
    [32] Guitton A.Multiple attenuation with multidimensional prediction-error filter[A].73rd Ann.Internat.Mtg.,Soc.Expl Geophys,Expanded Abstracts[C],2003:57-74.
    [33] Spitz S.Pattern recognition,spatial predictability,and subtraction of multiple event s[J].The Leading Edge,1999,18(1):55-58.
    [34] Anstey N A,Newman P.Part I:The sectional auto-correlogram and Part II:The sectional retro-correlogram[J].Geophys.Prosp.,1967,14:391-426.
    [35] Verschuur D J,Berkhout A J,Wapenaar C P A.Wavelet estimation by prestack multiple elimination[A].59th Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded abstracts[C],1994: 1129-1132.
    [36] Wapenaar C P A,Herrmann P,Verschuur D J,Berkhout A J.Decomposition of multi-component seismic data into primary P- and S-wave responses[J].Geophys.Prosp., 1990,38:633-661.
    [37] Bernth H,Sonneland L.Wavefield extrapolation techniques for prestack attenuation of water reverberations[A].53rd Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded abstracts[C],1983: 264-265.
    [38] Harlan W S,J F Claerbout,and F Rocca.Signal/noise separation and velocity estimation[J].Geophysics,1984,49(11):1869-1880.
    [39] Landa E,V Shtivelman,and B Gelchinsky.A method for detection of diffracted waves on common-offset sections[J].Geophys.Prosp.,1987,35:359-373.
    [40] Landa E,and S Keydar.Seismic monitoring of diffracted images for detection of local heterogeneities[J].Geophysics,1998,63(3):1093-1100.
    [41] Taner M T,Fomel S,Landa E.Separation and imaging of seismic diffractions using plane-wave decomposition[A].76th Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded abstracts[C],2006:2401-2405.
    [42] Taner M T.Simplan:similated plane-wave exploration[A].46th Ann.Internat.Mtg.,Soc. Expl.Geophys.,Expanded abstracts[C],1976:186-187.
    [43] Schultz P S,and Claerbout J F.Velocity estimation and downward continuation by wavefront synthesis[J].Geophysics,1978,43(4):691-714.
    [44] Fomel S,E Landa,and M T Taner.Post-stack velocity analysis by separation and imaging of seismic diffractions[A].76th Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded abstracts[C],2006: 2559-2575.
    [45] Claerbout J F.Earth soundings analysis: Processing versus inversion[M].Blackwell., 1992
    [46] Fomel S.Applications of plane-wave destruction filters[J].Geophysics,2002,67(6): 1946–1960.
    [47] Claerbout J F.Applications of two- and three dimensional filtering[A].64th Ann.Internat.Mtg,Soc.Expl.Geophys.,Expanded abstracts[C],1994:1572–1575.
    [48] N Kabir,and R Abma.Weighted subtraction for diffracted multiple attenuation[A].73th Ann.Internat.Mtg,Soc.Expl.Geophys.,Expanded abstracts[C],2003:1941.
    [49] V Khaidukov,E Landa,and T J Moser.Diffraction imaging by focusing-defocusing:An outlook on seismic superresolution.Geophysics,2004,69(6):1478–1490.
    [50] D J Verschuur,Deli Wang,and F J Herrmann.Multi-term multiple prediction using separated reflections and diffractions combined with curvelet-based subtraction[A].77th Ann.Internat. Mtg,Soc.Expl.Geophys.,Expanded abstracts[C],2007:2535-2538.
    [51] F J Herrmann,and E Verschuur.Curvelet-domain multiple elimination with sparseness constraints[A].74th Ann.Internat.Mtg,Soc.Expl.Geophys.,Expanded abstracts[C],2004: 1333-1336.
    [52]郑旭刚,张军华,等.Curvelet变换及其在地震资料去噪中的应用[A].中国地球物理[C],2008:465.
    [53]刘冰,王德利.Curvelet软阈值迭代去噪法[A].中国地球物理[C],2008:396.
    [54]张恒磊,张云翠,等.基于Curvelet域的叠前地震资料去噪方法[J].石油地球物理勘探,2008,43(5):508-515.
    [55]彭才,常智,等.基于曲波变换的地震数据去噪方法[J].石油物探,2008,47(5):561-565.
    [56]耿瑜,吴帮玉,等.地震数据的Curvelet压缩方法[A].中国地球物理[C],2007:579.
    [57]包乾宗,高静怀,等.Curvelet域垂直地震剖面波场分离[J].西安交通大学学报,2007,41(6):155-159.
    [58]张建贵.Hyp-Curvelet变换与多次波的识别、分离和压制[D].中南大学,2002.
    [59]张素芳,徐义贤,等.基于Curvelet变换的多次波去除技术[J].石油地球物理勘探,2006,41(3):262-267.
    [60] Orhan YiImaz,and M.Turhan Taner.Discrete plane-wave decomposition by least-mean-square-error method[J].Geophysics,1994,59(6):973–982.
    [61]高浩军,杜宇人.中值滤波在图像处理中的应用[J].电子工程师,2004,30(8):35-36.
    [62] Spitz S.Seismic trace interpolation in the f-x domain[J].Geophysics,1991,56(6):785–794.
    [63] Crawley S.,Clapp R.,and Claerbout J.Interpolation with smoothly nonstationary prediction-error filters[A].69th Ann.Internat.Mtg,Soc.Expl.Geophys.,Expanded abstracts[C],1999:1154-1157.
    [64] Guitton A.,Brown M.,Rickett J.,and Clapp R.Multiple attenuation using a t-x pattern-based subtraction method[A].71th Ann.Internat.Mtg,Soc.Expl.Geophys.,Expanded abstracts[C], 2001:1305-1308.
    [65] Clapp R.,Biondi B.,Fomel S.,and Claerbout J.Regularizing velocity estimation using geologic dip information[A].68th Ann.Internat.Mtg,Soc.Expl.Geophys.,Expanded abstracts[C],1998:1851-1854.
    [66] Neidell N.S.,and Taner M.T. Semblance and other coherency measures for multichannel data[J].Geophysics,1971,36(3):482–497.
    [67] Symes W.W.,and Carazzone J.J.Velocity inversion by differential semblance optimization[J].Geophysics,1991,56(5):654–663.
    [68] Claerbout J.F. Multidimensional recursive filters via a helix[J].Geophysics,1998,63(5): 1532–1541.
    [69]岳承祺,唐权钧.用K-L变换提高多道地震记录的信噪比[J].石油地球物理勘探,1988,23(5):560-568.
    [70] Candes E J,Demanet L,Donoho D L,et al.Fast discrete curvelet transforms[J].SIAM Multiscale Model Simul,2006,5(3):861–899.
    [71] Candes E J, Donoho D L.Continuous Curvelet Transform:I.Resolution of the Wavefront Set[J].Applied and Computational Harmonic Analysis,2005,19(2):162–197.
    [72] Candes E J, Donoho D L.Continuous Curvelet Transform:II.Discretization and Frames[J].Applied and Computational Harmonic Analysis,2005,19(2):198–222.
    [73]朱铉,赵曙白,虞永革.多次波衰减技术的新进展[J].石油物探译丛,1999(4):1-11.
    [74]郭全仕.多次波衰减技术[A].油气地球物理技术新进展—第71届、72届SEG年会论文概要[C],2001:205-215.
    [75]李鹏,刘伊克,常旭,金德刚,赵珊珊.多次波问题的研究进展[J].地球物理学进展,2006,21(3):888-897.
    [76]徐楷亮.多次反射波对地震资料处理结果的影响及衰减方法[J].资源环境与工程,2007,21(2):970-972.
    [77]马宏达,杨金华,黄录忠,胡天跃.表面多次波的压制方法研究[A].中国地球物理学会第二十三届年会论文集[C],2007:589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700