鼻咽癌血清肽差异表达模式及血清miRNA分子标志物筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:恶性肿瘤难以治愈的主要原因是早期不容易被发现,一旦出现明显症状就诊,大多数已经到中晚期,伴有较广泛的浸润或转移,临床治疗效果差。目前,最佳抗肿瘤治疗策略仍然有赖于早期发现及密切监测早期复发。寻找方便有效的肿瘤早期诊断分子标志物和方法,一直是肿瘤研究亟待解决的问题。血液天然反映着机体的生理和病理状态,且血液标本较易获取,是寻找疾病分子标志物最理想的材料。鼻咽癌在欧美等西方国家罕见,而在我国高发,鼻咽癌也被形象的称为“中国癌”。鼻咽癌发病隐秘,早期没有明显临床表现,不容易发现,且鼻咽癌淋巴结转移发生早。因此,鼻咽癌早期诊断在我国尤为重要。由于鼻咽癌与EB病毒感染存在一定相关性,目前,临床上针对鼻咽癌的筛查主要是检测血液中EB病毒感染情况,如EBV-DNA、EBV-VCA-IgA等检测。但鼻咽癌与EBV并非完全相关,且许多疾病(如淋巴瘤、胃癌、乳腺癌、咽炎、传染性单核细胞增多症等)都可伴有EBV感染,健康人群也有一定比例感染者,大量的临床实践证明,EBV相关检测诊断鼻咽癌的灵敏度与特异性都不高,达不到作为早期诊断标志物的要求。肿瘤本身就是组织微环境的产物,肿瘤与微环境之间相互影响,组织微环境的多肽成分可以进入血液循环。血清中包含大量的低分子肽,这些肽受到机体生理和病理状态的影响,天然的“记录”着机体的生理和病理信息。因此,血清肽很可能是进行疾病血液学诊断的良好资源,昔日认为是生物垃圾的血清肽如今成了“诊断黄金”。在多种肿瘤中,血清肽的研究也正在兴起。miRNA是一种非编码小RNA,在基因的转录后调控中发挥巨大作用。miRNA的异常表达在许多疾病中扮演重要角色,特别是在肿瘤性疾病中,miRNA的意义尤其重要。近年来的研究发现,血清中存在miRNA,血清(?)niRNA的表达受疾病的影响,且这些miRNA十分稳定,具有成为疾病标志物的天然优势,是十分有应用前景的疾病诊断标志物。
     目的:本研究拟通过对鼻咽癌患者血清和非癌人群血清的血清肽谱和血清miRNA表达谱进行比较研究,经过筛选、验证,寻找差异表达血清肽(表达模式)和血清miRNA,并建立鼻咽癌血清肽和血清miRNA诊断模型或判别方程,为鼻咽癌早期诊断、病情监测和预后提供实验依据,并可能为治疗提供思路和靶点。
     方法:1.制定血清采集的标准程序按照标准程序广泛收集鼻咽癌患者(包括治疗前、一个疗程后)血清和非癌人群血清标本,完善基本资料和相关临床资料,建立血清样本库;2.使用EBV-VCA-IgA ELISA检测试剂盒检测所有血清标本中EBV的感染情况;3.运用WCX磁珠固相分离与MALDI-TOF质谱技术相结合的方法,获得鼻咽癌血清肽谱和非癌血清肽谱,对其二组血清肽谱进行比较研究,使用Clinpro Tools软件和CARS (competitive adaptive reweighted sampling)算法建立鼻咽癌血清肽诊断模型(判别方程),同时观察不同临床阶段鼻咽癌血清肽谱和鼻咽癌治疗前后血清肽变化情况;通过随访,分析血清肽表达模式与预后的关系;4.通过TaqMan Low-Density array (TLDA) miRNA芯片获取鼻咽癌患者血清和非癌人群血清的miRNA表达谱,通过比较分析和定量PCR验证筛选鼻咽癌差异表达血清miRNA;建立鼻咽癌血清miRNA诊断模型,并验证诊断模型的诊断效率;随访患者,采用Kaplan-Meier法分析鼻咽癌差异表达血清miRNA与预后的相关性。
     结果:1.收集了一定量的鼻咽癌血清样本和非癌血清样本,初步建立了资料齐全的血清样本库;2.通过EBV-VCA-IgA检测得到非癌血清样本EBV阳性率为11.4%,鼻咽癌患者血清样本EBV阳性率为66.2%,差异有高度显著性。3.在正式实验前,通过磁珠-质谱实验条件摸索,发现了一系列影响结果的实验条件,制订了合理可靠的磁珠-质谱方法实验流程;4.通过不同年龄段和不同性别血清肽的比较研究,发现年龄对血清肽谱有较大影响,性别对血清肽谱的影响相对较小;5.获得了基于WCX磁珠和MALDI-TOF质谱技术的鼻咽癌血清肽谱和非癌人群血清肽谱。6.使用Clinpro Tools建立鼻咽癌血清肽诊断模型,外部验证其特异性为85.7%、灵敏度为80.7%;7.运用CARS算法建立鼻咽癌的诊断判别方程:Y=0.2884X1+0.2073X2-0.2223 X3+0.3985 X4+0.2446 X5(X1:1741.10Da;X2:2991.11Da;X3:3192.36Da;X4:3890.71Da;X5:5064.67Da),其特异性为84.08%,灵敏度为93.50%,曲线下面积(AUC)为0.9425;8.通过对不同临床阶段鼻咽癌血清肽谱的比较分析发现,血清肽的改变主要发生在正常-早期鼻咽癌过程中,鼻咽癌各个临床阶段之间血清肽表达模式无明显差异;9.鼻咽癌治疗前后血清肽表达模式有较小差异;10.EBV阳性和阴性鼻咽癌血清肽谱无明显差异;11.生存曲线分析提示3890Da血清肽与预后存在相关性;12.使用TLDA芯片获得了鼻咽癌患者和非癌人群血清miRNA表达谱,分别检测到103个和125个miRNA表达;13.对鼻咽癌患者和非癌人群血清miRNA表达谱进行比较分析和验证,发现miR-17、miR-20a、miR-486-3p在鼻咽癌血清中表达升高,miR-29c、miR-223在鼻咽癌血清中表达下降。14.建立了鼻咽癌血清miRNA诊断模型:A=(CtmiR-29c+CtmiR-223)-(CtmiR-17+CtmiR-20a)>-3.30(即A>-3.30诊断为鼻咽癌;A<-3.30诊断为非癌),其灵敏度和特异性在96%以上。15.生存曲线分析提示血清miR-20a与预后存在相关性。
     结论:1.血清肽受到除疾病之外的多种因素的影响,血清肽组研究必须制定并按照严格标准统一的实验流程进行;2.鼻咽癌患者与非癌人群的血清肽表达模式及血清(?)niRNA表达谱都存在一定差异;3.血清肽表达模式的改变是鼻咽癌的早期事件;4.鼻咽癌血清肽和血清miRNA诊断模型的可靠性显著高于血清EBV-VCA-IgA检测方法,可能应用于临床鼻咽癌血清学诊断,且可能成为评价鼻咽癌预后的参考指标。
Introduction:The main reason of the difficulty of curing malignant tumors is that they are not easy to be detected early. Once clinical manifestation appears, the majority has reached the middle or advanced stage, with extensive invasion or metastasis and poor clinical treatment effect. At present, the optimal strategy for anti-cancer depends on early detecting and close monitoring for early recurrence to adjust treatment plan reasonably. Development of minimally invasive biomarker assays for early detection and effective clinical management of pancreatic cancer is urgently needed to reduce high morbidity and mortality associated with this malignancy. There has been widespread consensus that bloodstream is considerably suitable for the detection of noninvasive biomarker in population. However, few serum (or plasma) markers with high specificity and sensitivity have been applied. Nasopharyngeal carcinoma (NPC) is seldom seen in western countries, however, it has a high incidence in China and it is also called'Chinese Cancer'. The morbility of nasopharyngeal carcinoma is very concealed without obvious clinical manifestation in earlier period. It is not easy to be detected and the diversion of lymphatic gland happens early. Therefore, early diagnosis of nasopharyngeal carcinoma is very urgent in China. At present, the detecting of the infection status of EBV (eg. EBV-DNA, BV-VCA-IgA, etc) has been commonly used in clinical screening for nasopharyngeal carcinoma. However, nasopharyngeal carcinoma is not completely related with EBV. People with other diseases (eg. lymphoma, gastric carcinoma, breast cancer, pharyngitis, acute lymphadenosis, etc) have EBV infection, and a proportion of healthy individual also has EBV infection. A large number of clinical practice demonstrate that the sensitivity and specificity of EBV-related detection for diagnosing nasopharyngeal carcinoma are poor, which can not meet the requirements of early diagnosing.
     It had been demonstrated that cancer is a product of the tissue microenvironment. Serum contains a large number of low molecular weight (LMW) peptides which are "records" for the cellular and extracellular events that take place at the level of the cancer-tissue microenvironment. They could be a rich source of cancer-specific diagnostic information. The blood peptidomic were a higher dimension of information content for cancer biomarker discovery. There is a growing interest in the research of using serum peptidome as markers in a series of tumor.
     MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the posttranscriptional level by degrading or blocking translation of messenger RNA (mRNA) targets. MiRNAs play important regulatory roles in a variety of cellular functions as well as in several diseases, including cancer. MiRNA-specific expression profiles have been reported for several pathological conditions. Recently, the discovery of miRNAs in serum opens up the possibility of using miRNAs as biomarkers of disease. The potential of microRNAs (miRNAs) as novel tumor markers has been the focus of recent scrutiny because of their tissue specificity, stability, and association with clinicopathological parameters. Therefore, circulating microRNAs (serum miRNAs/plasma miRNAs) were looked as stable blood-based markers for cancer detection and circulating microRNAs have been reported as potential biomarkers for the noninvasive diagnosis of cancer.
     Objectives:The aim of this study was to compare serum peptide profiling and serum miRNAs expression profiling of tumor free population and patients with nasopharyngeal carcinoma; to screen for serum molecular biomarkers(serum peptide pattern or serum miRNA) and establish diagnosis model to improve early diagnosis, disease monitoring and prognosis evaluation; and to provide possible target for treatment of nasopharyngeal cancer.
     Methods:1. Formulate standard procedure for serum sampling, extensive serum specimen of tumor free population and patients with nasopharyngeal carcinoma were gathered (including prior treatment, after one course of treatment), basic and clinical data were consummated, and the storeroom of serum specimen was established; 2. EBV-VCA-IgA ELISA was used to detect the infection of EBV in all serum specimen.3. WCX Magnetic bead combined with MALDI-TOF mass spectrometry were performed to obtain serum peptide profiling of tumor free population and patients with nasopharyngeal carcinoma, and these two groups of serum peptide profiling were compared. Clinpro Tools and CARS were used to establish diagnosis model of serum peptide pattern of nasopharyngeal carcinoma, the variation in different clinical stages was observed, and the relation between the prognosis and serum peptide profiling was analyzed.4. TaqMan Low-Density array (TLDA) was used to obtain serum miRNAs expression profiling of tumor free population and patients with nasopharyngeal carcinoma, quantity real-time PCR was used to verify and screen for serum miRNAs with differential expression, the diagnosis model of serum miRNAs of nasopharyngeal carcinoma was established, and its diagnostic efficiency was verified, and the relation between the prognosis and serum miRNAs with differential expression was analyzed using Kaplan-Meier.
     Results:
     1. Serum specimen of tumor free population and patients with nasopharyngeal carcinoma were gathered, and the storeroom of serum specimen with complete information was primarily established.
     2. The positive rate of serum EBV-VCA-IgA was 11.4% in tumor free population, and 66.2% in patients with nasopharyngeal carcinoma. The latter was significantly higher than the former.
     3. A series of experiment condition affecting results were discovered and a reasonable and stable experiment flow-sheet was formulated by exporing the experiment condition (parameter) of the magnetic bead combined with MALDI-TOF mass spectrometry.
     4. The result showed that age had great influence on the serum peptidome profiling, but gender had little influence compared with age.
     5. Serum peptide profiling of tumor free population and patients with nasopharyngeal carcinoma were obtained based on WCX magnetic bead and MALDI-TOF mass spectrometry.
     6. The diagnosis model of serum peptide profiling of nasopharyngeal carcinoma was established by using Clinpro Tools. The specificity was 85.7% and the sensitivity was 80.7%.
     7. The discrimination equations of diagnosis of nasopharyngeal carcinoma was established by using CARS algorithm:
     Y=0.2884X1+0.2073X2-0.2223 X3+0.3985 X4+0.2446 X5 (X1:1741.10Da; X2:2991.11Da; X3:3192.36Da; X4:3890.71Da; X5: 5064.67Da)
     The sensitivity was 93.50% and the specificity was 84.08%, AUC was 0.9425.
     8. The variation of serum peptide profiling happened in the early stage of nasopharyngeal carcinoma, but there are not evident variation among different clinical stages of nasopharyngeal carcinoma, by observing the variation of serum peptide profiling in different stages.
     9. The variation of serum peptide profiling was a litttle between pre-treatment and post-treatment of nasopharyngeal carcinoma.
     10. The difference of serum peptide profiling was not obvious in nasopharyngeal carcinoma patients with positive and negative EBV.
     11. The survival curve suggested that the 3890Da serum peptide was related with prognosis.
     12. The expression of the 103 and 125 miRNAs were detected by using TaqMan Low-Density array(TLDA) to obtain serum miRNAs expression profiling of nasopharyngeal carcinoma patients and tumor free population.
     13. The expression of miR-17、miR-20a、miR-486-3p increased, and the expression of miR-29c、miR-223 decrease in serum of nasopharyngeal carcinoma by analyzing and verifying the serum miRNAs expression profiling of tumor free population and patients with nasopharyngeal carcinoma.
     14. The diagnosis model of serum miRNAs of nasopharyngeal carcinoma was established A=(CtmiR-29c+CtmiR-223)-(CtmiR-17+CtmiR-20a)>-3.30 (A>-3.30:nasopharyngeal carcinoma; A<-3.30:tumor free), and its sensitivity and specificity were more than 96%.
     15. The survival curve showed serum miR-20a was related with prognosis of nasopharyngeal carcinoma.
     Conclusion:
     1. Serum peptide was affected by disease and many other factors, so the experiment condition in research of serum peptidome should be standardized strictly.
     2. There were difference in serum peptide profiling and serum miRNAs expression profiling of tumor free population and patients with nasopharyngeal carcinoma.
     3. The variation of serum peptide pattern was an early incident of nasopharyngeal carcinoma.
     4. The reliability of the diagnosis model of serum peptide profiling and serum miRNAs of nasopharyngeal carcinoma was significantly higher than the EBV-VCA-IgA detection. The diagnosis model could be applied in clinical diagnosis of nasopharyngeal carcinoma, and could provide reference for evaluating the prognosis of nasopharyngeal carcinoma.
引文
[1]Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer 2003; 3:243-252.
    [2]Takeshita H, Furukawa M, Fujieda S, et al. Epidemiological research into nasopharyngeal carcinoma in the Chubu region of Japan. Auris Nasus Larynx 1999; 26:277-286.
    [3]Muir CS. Nasopharyngeal carcinoma in non-Chinese populations with special reference to south-east Asia and Africa. Int J Cancer 1971; 8:351-363.
    [4]Hu B, Hong G, Li Z, Xu J, Zhu Z, Li L. Expression of VCA (viral capsid antigen) and EBNA1 (Epstein-Barr-virus-encoded nuclear antigen 1) genes of Epstein-Barr virus in Pichia pastoris and application of the products in a screening test for patients with nasopharyngeal carcinoma. Biotechnol Appl Biochem 2007; 47:59-69.
    [5]Ardekani AM, Liotta LA, Petricoin EF,3rd. Clinical potential of proteomics in the diagnosis of ovarian cancer. Expert Rev Mol Diagn 2002; 2:312-320.
    [6]Ho HC, Kwan HC, Ng MH, de The G.Serum IgA antibodies to Epstein-Barr virus capsid antigen preceding symptoms of nasopharyngeal carcinoma. Lancet 1978; 1:436.
    [7]邓洪,曾毅,郑裕明,等.自然人群413164人鼻咽癌血清学普查.中国癌症杂志2003;13:109-111.
    [8]张伟,狄飚,鲁恩洁,等.广州市健康人群EB病毒-IgA抗体的调查.医学动物防制2007;23:492-493.
    [9]张文英.EB病毒VCA—IgA检测对鼻咽癌诊断的意义.实用医技杂志2006;13:61-62.
    [10]利显民,杨成章,陈佩君,等.鼻咽癌患者鼻咽组织和血清中EBV检测.临床耳鼻咽喉科杂志2000;14:400-401.
    [11]唐国全,周向阳,阳茂春.EB病毒IgA滴度在鼻咽癌诊断的敏感性和特异性.广西医学2008;30:831-832.
    [12]Abelev GI, Perova SD, Khramkova NI, Postnikova ZA, Irlin IS. Production of embryonal alpha-globulin by transplantable mouse hepatomas. Transplantation 1963; 1:174-180.
    [13]Grossklaus DJ, Smith JA, Jr., Shappell SB, Coffey CS, Chang SS, Cookson MS. The free/total prostate-specific antigen ratio (%fPSA) is the best predictor of tumor involvement in the radical prostatectomy specimen among men with an elevated PSA. Urol Oncol 2002; 7:195-198.
    [14]Whitehouse C, Solomon E. Current status of the molecular characterization of the ovarian cancer antigen CA125 and implications for its use in clinical screening. Gynecol Oncol 2003; 88:S152-157.
    [15]Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer 2002; 2:210-219.
    [16]Bidart JM, Thuillier F, Augereau C, et al. Kinetics of serum tumor marker concentrations and usefulness in clinical monitoring. Clin Chem 1999; 45:1695-1707.
    [17]Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2003; 2:1096-1103.
    [18]Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002; 359:572-577.
    [19]Liotta LA, Petricoin EF. Serum peptidome for cancer detection:spinning biologic trash into diagnostic gold. J Clin Invest 2006; 116:26-30.
    [20]Ornstein DK, Rayford W, Fusaro VA, et al. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J Urol 2004; 172:1302-1305.
    [21]Petricoin EF,3rd, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002; 94:1576-1578.
    [22]Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 2002; 48:1296-1304.
    [23]Zhukov TA, Johanson RA, Cantor AB, Clark RA, Tockman MS. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 2003; 40:267-279.
    [24]Ebert MP, Meuer J, Wiemer JC, et al. Identification of gastric cancer patients by serum protein profiling. J Proteome Res 2004; 3:1261-1266.
    [25]Cheng AJ, Chen LC, Chien KY, et al. Oral cancer plasma tumor marker identified with bead-based affinity-fractionated proteomic technology. Clin Chem 2005; 51:2236-2244.
    [26]Zhang Z, Bast RC, Jr., Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004; 64:5882-5890.
    [27]Villanueva J, Shaffer DR, Philip J, et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 2006; 116:271-284.
    [28]Ward DG, Suggett N, Cheng Y, et al. Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer 2006; 94:1898-1905.
    [29]Martorella A, Robbins R. Serum peptide profiling:identifying novel cancer biomarkers for early disease detection. Acta Biomed 2007; 78 Suppl 1:123-128.
    [30]Freed GL, Cazares LH, Fichandler CE, et al. Differential capture of serum proteins for expression profiling and biomarker discovery in pre-and posttreatment head and neck cancer samples. Laryngoscope 2008; 118:61-68.
    [31]Voortman J, Pham TV, Knol JC, Giaccone G, Jimenez CR. Prediction of outcome of non-small cell lung cancer patients treated with chemotherapy and bortezomib by time-course MALDI-TOF-MS serum peptide profiling. Proteome Sci 2009; 7:34.
    [32]Fiedler GM, Leichtle AB, Kase J, et al. Serum peptidome profiling revealed platelet factor 4 as a potential discriminating Peptide associated with pancreatic cancer. Clin Cancer Res 2009; 15:3812-3819.
    [33]Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum:comparing datasets from different experiments. Bioinformatics 2004; 20:777-785.
    [34]Ransohoff DF. Lessons from controversy:ovarian cancer screening and serum proteomics. J Natl Cancer Inst 2005; 97:315-319.
    [35]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev 2004; 23:34-44.
    [36]Jimenez CR, El Filali Z, Knol JC, et al. Automated serum peptide profiling using novel magnetic C18 beads off-line coupled to MALDI-TOF-MS. Proteomics Clin Appl 2007; 1:598-604.
    [37]Villanueva J, Philip J, Chaparro CA, et al. Correcting common errors in identifying cancer-specific serum peptide signatures. J Proteome Res 2005; 4:1060-1072.
    [38]Villanueva J, Philip J, Entenberg D, et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 2004; 76:1560-1570.
    [39]Petricoin EF, Belluco C, Araujo RP, Liotta LA. The blood peptidome:a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 2006; 6:961-967.
    [40]Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411:375-379.
    [41]Jodele S, Blavier L, Yoon JM, DeClerck YA. Modifying the soil to affect the seed:role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 2006; 25:35-43.
    [42]Hagendoorn J, Tong R, Fukumura D, et al. Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res 2006; 66:3360-3364.
    [43]Traub F, Jost M, Hess R, et al. Peptidomic analysis of breast cancer reveals a putative surrogate marker for estrogen receptor-negative carcinomas. Lab Invest 2006; 86:246-253.
    [44]Schulz-Knappe P, Schrader M, Zucht HD, The peptidomics concept. Comb Chem High Throughput Screen,2005:697-704.
    [45]Petricoin EF, Fishman DA, Conrads TP, Veenstra TD, Liotta LA. Lessons from Kitty Hawk:from feasibility to routine clinical use for the field of proteomic pattern diagnostics. Proteomics 2004; 4:2357-2360.
    [46]Diamandis EP. Peptidomics for cancer diagnosis:present and future. J Proteome Res 2006; 5:2079-2082.
    [47]Anderson NL, Anderson NG. The human plasma proteome:history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1:845-867.
    [48]Conrads TP, Fusaro VA, Ross S, et al. High-resolution serum proteomic features for ovarian cancer detection. Endocr Relat Cancer 2004; 11:163-178.
    [49]Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002; 62:3609-3614.
    [50]Hu L, Boos KS, Ye M, Wu R, Zou H. Selective on-line serum peptide extraction and multidimensional separation by coupling a restricted-access material-based capillary trap column with nanoliquid chromatography-tandem mass spectrometry. J Chromatogr A 2009; 1216:5377-5384.
    [51]Weinberger SR, Dalmasso EA, Fung ET. Current achievements using ProteinChip Array technology. Curr Opin Chem Biol 2002; 6:86-91.
    [52]Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool:opportunities and potential limitations. Mol Cell Proteomics 2004; 3:367-378.
    [53]Check E. Proteomics and cancer:running before we can walk? Nature 2004; 429:496-497.
    [54]Villanueva J, Tempst P. OvaCheck:let's not dismiss the concept. Nature 2004; 430:611.
    [55]Umemura H, Nezu M, Kodera Y, et al. Effects of the time intervals between venipuncture and serum preparation for serum peptidome analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta 2009; 406:179-180.
    [56]Hsieh SY, Chen RK, Pan YH, Lee HL. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 2006; 6:3189-3198.
    [57]Qiu F, Liu HY, Zhang XJ, Tian YP. Optimization of magnetic beads for maldi-TOF MS analysis. Front Biosci 2009; 14:3712-3723.
    [58]Li H, Liang Y, Xu Q, Cao D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal Chim Acta 2009; 648:77-84.
    [59]Li HD, Liang YZ, Xu QS, Cao DS. Model population analysis for variable selection. Journal of Chemometrics 2010; 24:-.
    [60]Chang JT, Chen LC, Wei SY, et al. Increase diagnostic efficacy by combined use of fingerprint markers in mass spectrometry--plasma peptidomes from nasopharyngeal cancer patients for example. Clin Biochem 2006; 39:1144-1151.
    [61]Koomen JM, Li D, Xiao LC, et al. Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J Proteome Res 2005; 4:972-981.
    [62]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834-838.
    [63]Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39:673-677.
    [64]Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40:43-50.
    [65]Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6:857-866.
    [66]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006; 6:259-269.
    [67]Song B, Ju J. Impact of miRNAs in gastrointestinal cancer diagnosis and prognosis. Expert Rev Mol Med; 12:e33.
    [68]Ju J. miRNAs as biomarkers in colorectal cancer diagnosis and prognosis. Bioanalysis; 2:901-906.
    [69]Ferracin M, Veronese A, Negrini M. Micromarkers:miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn; 10:297-308.
    [70]Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 2008; 105:5874-5878.
    [71]Chen HC, Chen GH, Chen YH, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 2009; 100:1002-1011.
    [72]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A2008; 105:10513-10518.
    [73]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18:997-1006.
    [74]Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141:672-675.
    [75]Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008; 3:e3148.
    [76]Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2009; 127:118-126.
    [77]Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One 2009; 4:e6229.
    [78]Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut 2009; 58:1375-1381.
    [79]Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA:a diagnostic marker for lung cancer. Clin Lung Cancer 2009; 10:42-46.
    [80]Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 2009; 112:55-59.
    [81]Rosell R, Wei J, Taron M. Circulating MicroRNA Signatures of Tumor-Derived Exosomes for Early Diagnosis of Non-Small-Cell Lung Cancer. Clin Lung Cancer 2009; 10:8-9.
    [82]Sabbaghian MS, Rothberger G, Alongi AP, et al. Levels of elevated circulating endothelial cell decline after tumor resection in patients with pancreatic ductal adenocarcinoma. Anticancer Res 2010; 30:2911-2917.
    [83]Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110:13-21.
    [84]Zhu W, Qin W, Atasoy U, Sauter ER. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2009; 2:89.
    [85]Ho AS HX, Cao H, Koong AC, Le QT. Detection of circulating hypoxia-regulated miR-210 in pancreatic adenocarcinoma patients. J Clin Oncol 2009; 27:4624.
    [86]Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2009; 2:807-813.
    [87]Tanaka M, Oikawa K, Takanashi M, et al. Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 2009; 4:e5532.
    [88]Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg; 251:499-505.
    [89]Hu Z, Chen X, Zhao Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol; 28:1721-1726.
    [90]Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer; 47:784-791.
    [91]Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res; 12:R90.
    [92]Tsujiura M, Ichikawa D, Komatsu S, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer; 102:1174-1179.
    [93]Xu J, Wu C, Che X, et al. Circulating MicroRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog.
    [94]Zhang L, Xiao H, Karlan S, et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS One;5:el5573.
    [95]Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One; 5:e13735.
    [96]Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist; 15:673-682.
    [97]Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008; 54:482-490.
    [98]Vasilescu C, Rossi S, Shimizu M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One 2009; 4:e7405.
    [99]Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 2009; 106:4402-4407.
    [100]Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 2009; 55:1944-1949.
    [101]Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 2009; 55:1977-1983.
    [102]Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008; 3:e3694.
    [103]Brase JC, Wuttig D, Kuner R, Sultmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer; 9:306.
    [104]Wittmann J, Jack HM. Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta; 1806:200-207.
    [105]Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res; 107:677-684.
    [106]Redell JB, Moore AN, Ward NH,3rd, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma; 27:2147-2156.
    [107]Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res; 107:810-817.
    [108]Wang F, Zheng Z, Guo J, Ding X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol; 119:586-593.
    [109]Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res; 38:7248-7259.
    [110]Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11:441-450.
    [111]Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008; 9:219-230.
    [112]Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009; 4:199-227.
    [113]McLerran D, Grizzle WE, Feng Z, et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin Chem 2008; 54:53-60.
    [114]Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis; 16:360-364.
    [115]Wang JF, Yu ML, Yu G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun; 394:184-188.
    [116]Ai J, Zhang R, Li Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun; 391:73-77.
    [117]Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs:Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol.
    [118]Lin SC, Liu CJ, Lin JA, Chiang WF, Hung PS, Chang KW. miR-24 up-regulation in oral carcinoma:positive association from clinical and in vitro analysis. Oral Oncol; 46:204-208.
    [119]Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 2008; 14:2588-2592.
    [120]Yamamoto Y, Kosaka N, Tanaka M, et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers 2009; 14:529-538.
    [121]Heneghan HM, Miller N, Kerin MJ. Circulating miRNA signatures:promising prognostic tools for cancer. J Clin Oncol; 28:e573-574; author reply e575-576.
    [122]Lee JW, Choi CH, Choi JJ, et al. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 2008; 14:2535-2542.
    [123]Mestdagh P, Feys T, Bernard N, et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 2008; 36:e143.
    [124]Navarro A, Bea S, Fernandez V, et al. MicroRNA expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in Mantle cell lymphomas. Cancer Res 2009; 69:7071-7078.
    [125]Zhang ZW, An Y, Teng CB. [The roles of miR-17-92 cluster in mammal development and tumorigenesis]. Yi Chuan 2009; 31:1094-1100.
    [126]Bonauer A, Dimmeler S. The microRNA-17-92 cluster:still a miRacle? Cell Cycle 2009; 8:3866-3873.
    [127]Motoyama K, Inoue H, Takatsuno Y, et al. Over-and under-expressed microRNAs in human colorectal cancer. Int J Oncol 2009; 34:1069-1075.
    [128]Wang Z, Liu M, Zhu H, et al. Suppression of p21 by c-Myc through members of miR-17 family at the post-transcriptional level. Int J Oncol; 37:1315-1321.
    [129]Hui AB, Lenarduzzi M, Krushel T, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res; 16:1129-1139.
    [130]Chow TF, Mankaruos M, Scorilas A, et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol; 183:743-751.
    [131]Malzkorn B, Wolter M, Liesenberg F, et al. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol; 20:539-550.
    [132]Guo J, Miao Y, Xiao B, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 2009; 24:652-657.
    [133]Yan HL, Xue G, Mei Q, et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 2009; 28:2719-2732.
    [134]Rizzo M, Mariani L, Pitto L, Rainaldi G, Simili M. miR-20a and miR-290, multi-faceted players with a role in tumourigenesis and senescence. J Cell Mol Med; 14:2633-2640.
    [135]Ebi H, Sato T, Sugito N, et al. Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 2009; 28:3371-3379.
    [136]Hackl M, Brunner S, Fortschegger K, et al. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell; 9:291-296.
    [137]Zhang HL, Yang LF, Zhu Y, et al. Serum miRNA-21:elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate; 71:326-331.
    [138]Silva J, Garcia V, Zaballos A, et al. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J; 37:617-623.
    [139]Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J. MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma 2009; 50:506-509.
    [140]Wang G, Zhang H, He H, et al. Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol; 42:95-102.
    [141]Stamatopoulos B, Meuleman N, Haibe-Kains B, et al. microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood 2009; 113:5237-5245.
    [142]Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2009; 16:23-29.
    [143]Eyholzer M, Schmid S, Schardt JA, Haefliger S, Mueller BU, Pabst T. Complexity of miR-223 regulation by CEBPA in human AML. Leuk Res; 34:672-676.
    [144]Chiaretti S, Messina M, Tavolaro S, et al. Gene expression profiling identifies a subset of adult T-cell acute lymphoblastic leukemia with myeloid-like gene features and over-expression of miR-223. Haematologica; 95:1114-1121.
    [145]Liu Q, Zhang M, Jiang X, et al. miR-223 suppresses differentiation of tumor-induced CD11b(+)Gr1(+)myeloid derived suppressor cells from bone marrow cells. Int J Cancer.
    [146]Liu TY, Chen SU, Kuo SH, Cheng AL, Lin CW. E2A-positive gastric MALT lymphoma has weaker plasmacytoid infiltrates and stronger expression of the memory B-cell-associated miR-223:possible correlation with stage and treatment response. Mod Pathol; 23:1507-1517.
    [147]Yu SC, Chen SU, Lu W, Liu TY, Lin CW. Expression of CD 19 and lack of miR-223 distinguish extramedullary plasmacytoma from multiple myeloma. Histopathology.
    [148]Fulci V, Scappucci G, Sebastiani GD, et al. miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol; 71:206-211.
    [149]Laios A, O'Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 2008; 7:35.
    [150]Li S, Li Z, Guo F, et al. miR-223 regulates migration and invasion by targeting Artemin in human esophageal carcinoma. J Biomed Sci; 18:24.
    [151]Jackson DB. Serum-based microRNAs:are we blinded by potential? Proc Natl Acad Sci U S A 2009;106:E5.
    [1]American Cancer Society. Cancer Facts & Figures 2008. Atlanta:American Cancer Society,2008
    [2]Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer, 2003,3(4):243-252
    [3]Lee, R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75(5):843-854
    [4]Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75(5): 855-862
    [5]Kloosterman W P, Plasterk R H. The diverse functions of microRNAs in animal development and disease. Dev Cell,2006,11(4):441-450
    [6]Stefani G, Slack F J. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol,2008,9(3):219-230
    [7]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature,2005,435(7043):834-838
    [8]Kumar M S, Lu J, Mercer K L, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet,2007,39(5):673-677
    [9]Chang T C, Yu D, Lee Y S, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet,2008,40(1):43-50
    [10]Calin G A, Croce M C. MicroRNA signatures in human cancers. Nat Rev Cancer,2006, 6(11):857-866
    [11]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006,6(4):259-269.
    [12]Mandel P, Metais P. Les acides nucleiques du plasma sanguin chezl'Homme. C R Acad Sci Paris,1948,142(3):241-243
    [13]Kamm R C, Smith A G. Nucleic acid concentrations in normal human plasma. Clin Chem,1972,18(6):519-522
    [14]Chen X Q, Bonnefoi H, Pelte M F, et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res,2000,6(10):3823-3826
    [15]Miura N, Shiota G, Nakagawa T, et al. Sensitive detection of human telomerase reverse transcrip tase mRNA in the serum of patients with hepatocellular carcinoma. Oncology, 2003,64 (4):430-434
    [16]Silva J M, Dominguez G, Silva J, et al. Detection of epithelial messenger RNA in the plasma of breast cancer patients is associated with poor prognosis tumor characteristics. Clin Cancer Res,2001,7(9):2821-2825
    [17]Wong S C, Lo S F, Cheung M T, et al. Quantification of plasma beta-catenin mRNA in colorectal cancer and adenoma patients. Clin Cancer Res,2004,10(5):1613-1617
    [18]El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem,2004,50(3): 564-573
    [19]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating miRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA,2008,105(30):10513-10518
    [20]Chen X, Ba Y, Ma L, et al. Characterization of miRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res,2008,18(10): 997-1006
    [21]Gilad S, Meiri E, Yogev Y, et al. Yariv Yogev, et al. Serum microRNAs are promising novel biomarkers. PLoS ONE,2008,3(9):e3148
    [22]Rabinowits G, Gercel-Taylor C, Day J M, et al. Exosomal MicroRNA:a diagnostic marker for lung cancer. Clin Lung Cancer,2009,10(1):42-46
    [23]Hunter M P, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE,2008,3(11):e3694
    [24]Taylor D D, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110(1):13-21
    [25]Pall G S, Hamilton A J. Improved northern blot method for enhanced detection of small RNA. Nat Protoc,2008,3(6):1077-1084
    [26]Zhu W Z, Qin W Y, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects. BMC Research Notes,2009,2:89:1-5
    [27]Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33(20):e179
    [28]Fu H J, Zhu J, Yang M, et al. A novel method to monitor the expression of microRNAs. Mol Biotechnol,2006,32(3):197-204
    [29]Liu C G, Calin G A, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA,2004, 101(26):9740-9744
    [30]Mestdagh P, Feys T, Bernard N, et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Research, 2008,36(21):1-8
    [31]Hafner M, Landgraf P, Ludwig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods,2008,44(1):3-12
    [32]Fu H, Tie Y, Xu C, et al. Identification of human fetal liver miRNAs by a novel method. FEBS Lett,2005,579(17):3849-3854
    [33]Ng E K, Chong W W, Jin H, et al. Differential expression of microRNAs in plasma of colorectal cancer patients:a potential marker for colorectal cancer screening. Gut,2009, 58(10):1375-1381
    [34]Resnick K E, Alder H, Hagan J P, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol,2009;112(1):55-59
    [35]Vasilescu C, Rossi S, Shimizu M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis.2009,4(10):e7405
    [36]Lawrie C H, Gal S, Dunlop H M, et al. Detection of elevated levels of tumour associated miRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008,141(5):672-675
    [37]Huang Z H, Huang D, Ni S J, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer,2009
    [38]Lodes M J, Caraballo M, Suciu D, et al. Detection of cancer with serum miRNAs on an oligonucleotide Microarray. PLoS ONE,2009,4(7):e6229
    [39]Ho A S, Huang X, Cao H, et al. Detection of circulating hypoxia-regulated miR-210 in pancreatic adenocarcinoma patients. J Clin Oncol,2009; 27(15 Suppl.):4624
    [40]Wang J, Chen J Y, Chang P, et al. MicroRNAs in Plasma of Pancreatic Ductal Adenocarcinoma Patients as Novel Blood-Based Biomarkers of Disease. Cancer Prev Res,2009,2(9):807-813
    [41]Tanaka M, Oikawa K, Masakatsu T, et al. Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE,2009,4(5):e5532
    [42]Stephen S.C. Chim, Tristan K.F. Shing, Emily C.W. Hung, et al. Detection and Characterization of Placental MicroRNAs in Maternal Plasma. Clin Chem,2008,54(3): 482-490
    [43]Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. PNSA,2009,106(11):4402-4407
    [44]Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem,2009,
    [45]Laterza O F, Lim L, Garrett-Engele P W, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem,2009,55(11):1977-1983.
    [46]David B. Jackson. Serum-based microRNAs:Are we blinded by potential? Proc Natl Acad Sci USA,2009,106 (1):E5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700