miR-367在RYR3基因靶序列的多态性影响乳腺癌的发病风险、钙化和预后
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是妇女最常见的恶性肿瘤之一。单核苷酸多态性(single nucleotide polymorphisms, SNPs)会影响癌症的发病风险和预后,但机制尚不是很清楚。微小RNA (microRNAs, miRNA)是一类高度保守的,内源的,单链非编码核苷酸序列,miRNA通过调节基因的表达参与了很多生物学过程,包括细胞增殖、细胞凋亡和肿瘤的形成。miRNA通常结合于靶基因mRNA的3’端非翻译区(3'-untranslated region,3'UTR)区域,来剪切mRNA或抑制mRNA的转录。研究者发现有越来越多与癌症和药物敏感性有关的多态位点是位于miRNA靶基因3'UTR的SNP,推测其原因是miRNA与不同基因型的3'UTR结合能力有区别。位于miRNA靶基因3'UTR结合区域的SNP代表了一类能调节miRNA与靶基因环路的遗传变异。以碱基互补原理为基础的生物信息学分析已经预测了一系列miRNA靶结合区SNPs,为进一步功能验证和病例对照研究提供了候选位点。
     目的
     近来,发现有一类单核苷酸多态位点通过影响miRNA对靶基因的调控,来影响癌症的发病风险和预后。在本项研究中,我们通过检测位于miR-367靶基因RYR3 3'UTR结合区域的多态位点rs1044129的基因型,来探究钙离子释放通道基因RYR3 3'UTR的SNP是否与乳腺癌的发病风险性、乳腺癌钙化和预后相关。从功能上验证miR-367与靶基因是否结合,rs1044129多态位点是否能影响miR-367对RYR3的调控,探究RYR3在乳腺癌细胞中发挥的重要作用和对临床医学的指导意义。
     方法
     这是一项以中国妇女为对象的病例-对照研究,对1532名乳腺癌患者和1605名健康人进行了SNP rs 1044129基因型检测。非条件logistic回归分析得出调整前后的比值比和95%可信区间。采用Kaplan-Meier曲线和Cox多因素分析评价不同基因型的生存状况。热力学模型预测和报告基因实验用来验证rs1044129对miR-367与RYR3结合的影响。在RYR3机制研究中,应用MTT实验检测细胞增殖,划痕实验评价细胞迁移,荧光染料法检测细胞内钙离子浓度。
     结果
     rs1044129 G等位基因型可以增加乳腺癌的发病风险(aOR,1.26;95% CI,1.02-1.54),并与乳腺癌钙化相关(OR,1.52;95% CI,1.21-1.90)。生存分析显示G等位基因型的乳腺癌患者预后差(P=0.036)。基于RYR3 mRNA 3'UTR和miR-367碱基互补原则和二级结构原理的热力学模型的预测结果显示miR-367与A基因型的结合能力高于G基因型。通过荧光素酶报告基因证实了rs1044129对miR-367与RYR3结合的影响。并在功能实验中发现RYR3作为钙离子通道对乳腺癌细胞生长、迁移、细胞内钙离子浓度的影响和细胞形态学的改变。
     结论
     rs1044129多态位点是一个新发现的影响miRNA调控靶基因的SNP,与响乳腺癌的发病风险、乳腺癌钙化和预后密切相关。
Breast cancer is one of the most common malignant disease in women. Single nucleotide polymorphisms (SNPs) have been shown to impact both cancer risk and cancer prognosis although the underlying mechanism is largely obscure. MicroRNAs (miRNAs) are evolutionarily conserved, endogenous, single-stranded, non-coding RNA molecules that are reported to be involved in many biological processes, including cell proliferation, apoptosis, and tumorigenesis, through their regulation of gene expression. Most miRNAs bind to target sequences located within the 3'-untranslated region (3'UTR) of mRNAs by base pairing, resulting in the cleavage of target mRNAs or repression of their translation. An increasing number of 3'UTR SNPs located in miRNA binding sites have been reported to be associated with cancers and drug response, presumably due to the differential binding affinities of the SNPs for miRNA. Polymorphisms in these miRNA binding sites in the 3'UTRs of target genes represent a group of genetic variations that modulate the regulatory loop between miRNAs and their target genes. Sequence-based bioinformatic predictions have identified a number of these types of SNPs, which has provided candidates for experimental verifications and case-control studies to determine their importance.
     Objective
     Recently, a new class of single nucleotide polymorphisms (SNPs) that directly affect gene regulation by microRNAs (miRs) has emerged as important for cancer risk and prognosis. In this study, we interrogated a SNP, rs 1044129, that is located in the miR-367 binding site at the 3'UTR of the calcium release channel ryanodine receptor 3 (RYR3) gene and determined whether this SNP was associated with breast cancer risk, calcification and prognosis. We then functionally validated SNP rs1044129, which is located in the miR-367 binding site in the 3'UTR of RYR3. Finally, we studied the important role of RYR3 in breast cancer cells and the significance in clinical medicine.
     Methods
     In a case-control study, rs 1044129 was genotyped in 1,532 breast cancer cases and 1,605 healthy Chinese women. Crude and adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were calculated with an unconditional logistic regression model. Kaplan-Meier curves and Cox regression analysis were used to evaluate the relationship between genotype and survival. A thermodynamic model and the reporter gene assay were used to functionally validate the role of rs 1044129 in miR367-RYR3 regulation in breast cancer. In RYR3 functional studies, we used MTT assay to detect cell proliferation, wound healing assay in migration experiment, Fluo-4AM to evaluate the intercellular calcium concentration.
     Results
     The rs 1044129 G allele genotypes were associated with increased breast cancer risk (aOR,1.26; 95%CI,1.02 to 1.54) and increased incidence of mammographically detected microcalcifications (OR,1.52; 95%CI,1.21 to 1.90). Kaplan-Meier survival curves showed that G allele genotypes were significantly associated with poor progression-free survival in cases(P=0.036). A thermodynamic model based on base-pairing and the secondary structure of the RYR3 mRNA and miR-367 miRNA showed that miR-367 had a higher binding affinity for the A genotype than G genotype. We confirmed that miR-367 regulates the expression of a reporter gene driven by the RYR33'UTR and that the regulation was affected by the RYR3 genotype. We provided evidence that the ryanodine receptor gene (RYR3), which encodes a large protein that forms a calcium channel, is important for the growth, migration, intracellular calcium concentration and morphology of breast cancer cells.
     Conclusion
     Thus, rs 1044129 is a novel SNP that resides in a miRNA-gene regulatory loop that affects breast cancer risk, calcification, and survival.
引文
[1]Mishra PJ, Humeniuk R, Mishra PJ, Bertino JR. A mir-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance [J]. PNAS,2007,104(33):13513-13518.
    [2]Coughlin SS, Ekwueme DU. Breast cancer as a global health concern [J]. Cancer Epidemiol,2009,33(5):315-318.
    [3]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics [J]. CA Cancer J Clin,2011,61(2):69-90.
    [4]Parkin DM, Nambooze S, Wabwire-Mangen F, Wabinga HR. Changing cancer incidence in Kampala, Uganda,1991-2006 [J]. Int J Cancer,2010, 126(5):1187-1195.
    [5]Cancer incidence in five continents. Volume IX [J]. IARC Sci Publ, 2008(160):1-837.
    [6]Yang L, Parkin DM, Ferlay J, Li L, Chen Y. Estimates of cancer incidence in China for 2000 and projections for 2005 [J]. Cancer Epidemiol Biomarkers Prev,2005,14(1):243-250.
    [7]Song F, He M, Li H, Qian B, Wei Q, Zhang W, Chen K, Hao X. A cancer incidence survey in Tianjin:the third largest city in China-between 1981 and 2000[J]. Cancer Causes Control,2008,19(5):443-450.
    [8]Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends [J]. Cancer Epidemiol Biomarkers Prev,2010,19(8):1893-1907.
    [9]Hulka BS, Moorman PG. Breast cancer:hormones and other risk factors [J]. Maturitas,2008,61(1-2):203-213; discussion 213.
    [10]Lachenmeier DW, Kanteres F, Rehm J. Carcinogenicity of acetaldehyde in alcoholic beverages:risk assessment outside ethanol metabolism [J]. Addiction,2009,104(4):533-550.
    [11]Knight JA, Bernstein L, Largent J et al. Alcohol intake and cigarette smoking and risk of a contralateral breast cancer:The Women's Environmental Cancer and Radiation Epidemiology Study [J]. Am J Epidemiol,2009, 169(8):962-968.
    [12]Stewart BW, Kleihues P, International Agency for Research on Cancer.: World cancer report. Lyon:IARC Press; 2003.
    [13]Walsh T, Casadei S, Coats KH et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer [J]. JAMA,2006,295(12):1379-1388.
    [14]Nathanson KL, Wooster R, Weber BL. Breast cancer genetics:what we know and what we need [J]. Nat Med,2001,7(5):552-556.
    [15]Balmain A, Gray J, Ponder B. The genetics and genomics of cancer [J]. Nat Genet,2003,33 Suppl:238-244.
    [16]Houlston RS, Peto J. The search for low-penetrance cancer susceptibility alleles [J]. Oncogene,2004,23(38):6471-6476.
    [17]Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease [J]. Nat Genet,2003,33 Suppl:228-237.
    [18]Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA. Association between common variation in 120 candidate genes and breast cancer risk [J]. PLoS Genet,2007,3(3):e42.
    [19]Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants [J]. Nat Rev Cancer,2004, 4(11):850-860.
    [20]Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention [J]. Nat Genet,2002,31(1):33-36.
    [211 Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer:the role of polymorphisms in candidate genes [J]. JAMA,2008,299(20):2423-2436.
    [22]Reich DE, Schaffner SF, Daly MJ, McVean G, Mullikin JC, Higgins JM, Richter DJ, Lander ES, Altshuler D. Human genome sequence variation and the influence of gene history, mutation and recombination [J]. Nat Genet, 2002,32(1):135-142.
    [23]Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? [J]. Nat Rev Genet,2008,9(2):102-114.
    [24]Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes [J]. Cell,2006, 126(6):1203-1217.
    [25]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell,1993, 75(5):843-854.
    [26]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II [J]. EMBO J,2004,23(20):4051-4060.
    [27]Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation:stepwise processing and subcellular localization [J]. EMBO J,2002,21(17):4663-4670.
    [28]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116(2):281-297.
    [29]Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in micro RNA targets:a gold mine for molecular epidemiology [J]. Carcinogenesis,2008,29(7):1306-1311.
    [30]Nicoloso MS, Sun H, Spizzo R et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility [J]. Cancer Res,2010, 70(7):2789-2798.
    [31]Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer [J]. Cancer Res, 2008,68(7):2530-2537.
    [32]Landi D, Gemignani F, Naccarati A et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer [J]. Carcinogenesis,2008,29(3):579-584.
    [33]Kertesz M, lovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition [J]. Nat Genet,2007, 39(10):1278-1284.
    [34]Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance [J]. Proc Natl Acad Sci U S A,2007, 104(33):13513-13518.
    [35]Yu Z, Baserga R, Chen L, Wang C, Lisanti MP, Pestell RG. microRNA, Cell Cycle, and Human Breast Cancer [J]. Am J Pathol,2010.
    [36]Tchatchou S, Jung A, Hemminki K et al. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women [J]. Carcinogenesis,2009,30(1):59-64.
    [37]Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, Wu M, Shen SH. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers [J]. Nucleic Acids Res,2007, 35(13):4535-4541.
    [38]Landi D, Gemignani F, Barale R, Landi S. A catalog of polymorphisms falling in microRNA-binding regions of cancer genes [J]. DNA Cell Biol,2008, 27(1):35-43.
    [39]Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues [J]. J Cell Biol,1995, 128(5):893-904.
    [40]Abdul M, Ramlal S, Hoosein N. Ryanodine receptor expression correlates with tumor grade in breast cancer [J]. Pathol Oncol Res,2008,14(2):157-160.
    [41]Pessah IN, Waterhouse AL, Casida JE. The calcium-ryanodine receptor complex of skeletal and cardiac muscle [J]. Biochem Biophys Res Commun, 1985,128(1):449-456.
    [42]McGrath CM, Soule HD. Calcium regulation of normal human mammary epithelial cell growth in culture [J]. In Vitro,1984,20(8):652-662.
    [43]Russo J, Mills MJ, Moussalli MJ, Russo IH. Influence of human breast development on the growth properties of primary cultures [J]. In Vitro Cell Dev Biol,1989,25(7):643-649.
    [44]Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling [J]. Nat Rev Mol Cell Biol,2000,1(1):11-21.
    [45]Berridge MJ, Bootman MD, Roderick HL. Calcium signalling:dynamics, homeostasis and remodelling [J]. Nat Rev Mol Cell Biol,2003,4(7):517-529.
    [46]Carafoli E, Santella L, Branca D, Brini M. Generation, control, and processing of cellular calcium signals [J]. Crit Rev Biochem Mol Biol,2001, 36(2):107-260.
    [47]Liu G, Hu X, Chakrabarty S. Calcium sensing receptor down-regulates malignant cell behavior and promotes chemosensitivity in human breast cancer cells [J]. Cell Calcium,2009,45(3):216-225.
    [48]Lee WJ, Robinson JA, Holman NA, McCall MN, Roberts-Thomson SJ, Monteith GR. Antisense-mediated Inhibition of the plasma membrane calcium-ATPase suppresses proliferation of MCF-7 cells [J]. J Biol Chem. 2005,280(29):27076-27084.
    [49]Saidak Z, Boudot C, Abdoune R, Petit L, Brazier M, Mentaverri R, Kamel S. Extracellular calcium promotes the migration of breast cancer cells through the activation of the calcium sensing receptor [J]. Exp Cell Res,2009. 315(12):2072-2080.
    [50]Sorrentino V, Giannini G, Malzac P, Mattei MG. Localization of a novel ryanodine receptor gene (RYR3) to human chromosome 15q14-q15 by in situ hybridization [J]. Genomics,1993,18(1):163-165.
    [51]Wang NJ, Liu D, Parokonny AS, Schanen NC. High-resolution molecular characterization of 15ql 1-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage [J]. Am J Hum Genet,2004,75(2):267-281.
    [52]Thomas DB, Whitehead J, Dorse C, Threatt BA, Gilbert FI, Jr., Present AJ, Carlile T. Mammographic calcifications and risk of subsequent breast cancer [J]. J Natl Cancer Inst,1993,85(3):230-235.
    [53]Taylor JM, Simpson RU. Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse [J]. Cancer Res,1992,52(9):2413-2418.
    [54]Bittner RB. Guide to mammography reports:BI-RADS terminology [J]. Am Fam Physician,2010,82(2):114-115.
    [55]Lahiri DK, Schnabel B. DNA isolation by a rapid method from human blood samples:effects of MgC12, EDTA, storage time, and temperature on DNA yield and quality [J]. Biochem Genet,1993,31(7-8):321-328.
    [56]Almquist M, Manjer J, Bondeson L, Bondeson AG. Serum calcium and breast cancer risk:results from a prospective cohort study of 7,847 women [J]. Cancer Causes Control,2007,18(6):595-602.
    [57]Lee WJ, Roberts-Thomson SJ, Holman NA, May FJ, Lehrbach GM, Monteith GR. Expression of plasma membrane calcium pump isoform mRNAs in breast cancer cell lines [J]. Cell Signal,2002,14(12):1015-1022.
    [58]Rossi AM, Picotto G, de Boland AR, Boland RL. Evidence on the operation of ATP-induced capacitative calcium entry in breast cancer cells and its blockade by 17beta-estradiol [J]. J Cell Biochem,2002,87(3):324-333.
    [59]Nie L, Oishi Y, Doi I, Shibata H, Kojima I. Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca(2+)-permeable channel [J]. Cell Calcium,1997,22(2):75-82.
    [60]Ross JS, Carlson JA, Brock G. miRNA:the new gene silencer [J]. Am J Clin Pathol,2007,128(5):830-836.
    [61]Didiano D, Hobert O. Molecular architecture of a miRNA-regulated 31 UTR [J].RNA,2008,14(7):1297-1317.
    [62]Wiese KC, Hendriks A. Comparison of P-RnaPredict and mfold--algorithms for RNA secondary structure prediction [J]. Bioinformatics,2006, 22(8):934-942.
    [63]Hofacker IL. Vienna RNA secondary structure server [J]. Nucleic Acids Res, 2003,31(13):3429-3431.
    [64]Wuchty S, Fontana W, Hofacker IL, Schuster P. Complete suboptimal folding of RNA and the stability of secondary structures [J]. Biopolymers,1999, 49(2):145-165.
    [65]Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure [J]. J Mol Biol,1999,288(5):911-940.
    [66]Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL. Thermodynamics of RNA-RNA binding [J]. Bioinformatics,2006, 22(10):1177-1182.
    [67]Yuan JS, Reed A, Chen F, Stewart CN, Jr. Statistical analysis of real-time PCR data [J]. BMC Bioinformatics,2006,7:85.
    [68]Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets [J]. Cell,2002,110(4):513-520.
    [69]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA [J]. Mol Cell, 2004,14(6):787-799.
    [70]Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines [J]. Mol Endocrinol,2007,21(5):1132-1147.
    [71]Chin LJ, Ratner E, Leng S et al. A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk [J]. Cancer Res,2008,68(20):8535-8540.
    [72]Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions [J]. Nat Struct Mol Biol,2006,13(9):849-851.
    [73]Parker JS, Roe SM, Barford D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex [J]. Nature,2005, 434(7033):663-666.
    [74]Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution [J]. Cell,2005,123(6):1133-1146.
    [75]Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets [J]. PLoS Comput Biol,2005, 1(1):e13.
    [76]Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function [J]. Nat Struct Mol Biol,2007, 14(4):287-294.
    [77]Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition [J]. PLoS Biol,2005,3(3):e85.
    [78]Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes [J]. RNA,2004,10(10):1507-1517.
    [79]Vella MC, Reinert K, Slack FJ. Architecture of a validated micro RNA::target interaction [J]. Chem Biol,2004,11 (12):1619-1623.
    [80]Vendeix FA, Munoz AM, Agris PF. Free energy calculation of modified base-pair formation in explicit solvent:A predictive model [J]. RNA,2009, 15(12):2278-2287.
    [81]Yang Z, Kaye DM. Mechanistic insights into the link between a polymorphism of the 3'UTR of the SLC7A1 gene and hypertension [J]. Hum Mutat,2009,30(3):328-333.
    [82]Xu B, Feng NH, Li PC et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo [J]. Prostate,2010,70(5):467-472.
    [83]Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR13' untranslated region:a mechanism for functional single-nucleotide polymorphisms related to phenotypes [J]. Am J Hum Genet,2007, 81(2):405-413.
    [84]Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility [J]. Nat Genet,2008,40(1):17-22.
    [85]Wang YH, Lee YH, Tseng PT, Shen CH, Chiou HY. Human NAD(P)H:quinone oxidoreductase 1 (NQO1) and sulfotransferase 1A1 (SULT1A1) polymorphisms and urothelial cancer risk in Taiwan [J]. J Cancer Res Clin Oncol,2008,134(2):203-209.
    [86]Kim J, Bartel DP. Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression [J]. Nat Biotechnol,2009,27(5):472-477.
    [87]Meissner G. Ryanodine receptor/Ca2+release channels and their regulation by endogenous effectors [J]. Annu Rev Physiol,1994,56:485-508.
    [88]Weisleder N, Ferrante C, Hirata Y, Collet C, Chu Y, Cheng H, Takeshima H, Ma J. Systemic ablation of RyR3 alters Ca2+spark signaling in adult skeletal muscle [J]. Cell Calcium,2007,42(6):548-555.
    [89]Perez CF, Lopez JR, Allen PD. Expression levels of RyRl and RyR3 control resting free Ca2+in skeletal muscle [J]. Am J Physiol Cell Physiol,2005, 288(3):C640-649.
    [90]Murayama T, Ogawa Y. RyRl exhibits lower gain of C1CR activity than RyR3 in the SR:evidence for selective stabilization of RyRl channel [J]. Am J Physiol Cell Physiol,2004,287(1):C36-45.
    [91]Ogawa Y, Kurebayashi N, Murayama T. Putative roles of type 3 ryanodine receptor isoforms (RyR3) [J]. Trends Cardiovasc Med,2000,10(2):65-70.
    [92]Manunta M, Rossi D, Simeoni Ⅰ, Butelli E, Romanin C, Sorrentino V, Schindler H. ATP-induced activation of expressed RyR3 at low free calcium [J]. FEBS Lett,2000,471(2-3):256-260.
    [93]LeVine H,3rd, Sahyoun N, Cuatrecasas P. Endogenous dephosphorylation of synaptosomal calmodulin-dependent protein kinase type Ⅱ [J]. Biochem Biophys Res Commun,1985,131 (3):1212-1218.
    [94]Lee JS, Gotlieb AI. Understanding the role of the cytoskeleton in the complex regulation of the endothelial repair [J]. Histol Histopathol,2003, 18(3):879-887.
    [95]Wiebe JP, Muzia D. The endogenous progesterone metabolite, 5a-pregnane-3,20-dione, decreases cell-substrate attachment, adhesion plaques, vinculin expression, and polymerized F-actin in MCF-7 breast cancer cells [J]. Endocrine,2001,16(1):7-14.
    [96]Mercer RR, Mastro AM. Cytokines secreted by bone-metastatic breast cancer cells alter the expression pattern of f-actin and reduce focal adhesion plaques in osteoblasts through PI3K [J]. Exp Cell Res,2005,310(2):270-281.
    [97]Tu CL, Chang W, Xie Z, Bikle DD. Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell-cell adhesion and calcium-induced differentiation in human epidermal keratinocytes [J]. J Biol Chem,2008, 283(6):3519-3528.
    [98]Vater W, Bohm KJ, Unger E. Tubulin assembly in the presence of calcium ions and taxol:microtubule bundling and formation of macrotubule-ring complexes [J]. Cell Motil Cytoskeleton,1997,36(1):76-83.
    [99]Fisher DD, Gilroy S, Cyr RJ. Evidence for Opposing Effects of Calmodulin on Cortical Microtubules [J]. Plant Physiol,1996,112(3):1079-1087.
    [100]Qi HL. [Study on the nuclear microtubule organizing center (MTOC)] [J]. Shi Yan Sheng Wu Xue Bao,1988,21(1):87-99.
    [101]Vallano ML, Goldenring JR, Lasher RS, Delorenzo RJ. Association of calcium/calmodulin-dependent kinase with cytoskeletal preparations: phosphorylation of tubulin, neurofilament, and microtubule-associated proteins [J]. Ann N Y Acad Sci,1986,466:357-374.
    [102]Ding J, Swain JE, Smith GD. Aurora kinase-A regulates microtubule organizing center (MTOC) localization, chromosome dynamics, and histone-H3 phosphorylation in mouse oocytes [J]. Mol Reprod Dev,2011, 78(2):80-90.
    [103]Ma W, Koch JA, Viveiros MM. Protein kinase C delta (PKCdelta) interacts with microtubule organizing center (MTOC)-associated proteins and participates in meiotic spindle organization [J]. Dev Biol,2008, 320(2):414-425.
    [1]Cancer incidence in five continents. Volume VII [J]. IARC Sci Publ, 1997(143):i-xxxiv,1-1240.
    [2]Garfinkel L. Current trends in breast cancer [J]. CA Cancer J Clin,1993, 43(1):5-6.
    [3]Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002 [J]. CA Cancer J Clin,2005,55(2):74-108.
    [4]Sturgeon SR, Schairer C, Grauman D, El Ghormli L, Devesa S. Trends in breast cancer mortality rates by region of the United States,1950-1999 [J]. Cancer Causes Control,2004,15(10):987-995.
    [5]Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990 [J]. Int J Cancer,1999,80(6):827-841.
    [6]Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985 [J]. Int J Cancer,1993,54(4):594-606.
    [7]Ma H. Bernstein L, Pike MC, Ursin G. Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status:a meta-analysis of epidemiological studies [J]. Breast Cancer Res,2006, 8(4):R43.
    [8]Clemons M, Goss P. Estrogen and the risk of breast cancer [J]. N Engl J Med, 2001,344(4):276-285.
    [9]Vachon CM, Cerhan JR, Vierkant RA, Sellers TA. Investigation of an interaction of alcohol intake and family history on breast cancer risk in the Minnesota Breast Cancer Family Study [J]. Cancer,2001,92(2):240-248.
    [10]Ellison RC, Zhang Y, McLennan CE, Rothman KJ. Exploring the relation of alcohol consumption to risk of breast cancer [J]. Am J Epidemiol,2001, 154(8):740-747.
    [11]Bowlin SJ, Leske MC, Varma A, Nasca P, Weinstein A, Caplan L. Breast cancer risk and alcohol consumption:results from a large case-control study [J]. Int J Epidemiol,1997,26(5):915-923.
    [12]Calle EE, Miracle-McMahill HL, Thun MJ, Heath CW, Jr. Cigarette smoking and risk of fatal breast cancer [J]. Am J Epidemiol,1994,139(10):1001-1007.
    [13]Walsh T, Casadei S, Coats KH et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer [J]. JAMA,2006,295(12):1379-1388.
    [14]Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1 [J]. Science,1994, 266(5182):66-71.
    [15]Wooster R, Neuhausen SL, Mangion J et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13 [J]. Science,1994, 265(5181):2088-2090.
    [16]Nathanson KL, Wooster R, Weber BL. Breast cancer genetics:what we know and what we need [J]. Nat Med,2001,7(5):552-556.
    [17]Balmain A, Gray J, Ponder B. The genetics and genomics of cancer [J]. Nat Genet,2003,33 Suppl:238-244.
    [18]Houlston RS, Peto J. The search for low-penetrance cancer susceptibility alleles [J]. Oncogene.2004,23(38):6471-6476.
    [19]Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease [J]. Nat Genet,2003,33 Suppl:228-237.
    [20]Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA. Association between common variation in 120 candidate genes and breast cancer risk [J]. PLoS Genet,2007,3(3):e42.
    [21]Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants [J]. Nat Rev Cancer,2004, 4(11):850-860.
    [22]Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention [J]. Nat Genet,2002,31(1):33-36.
    [23]Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer:the role of polymorphisms in candidate genes [J]. JAMA,2008,299(20):2423-2436.
    [24]Reich DE, Schaffner SF, Daly MJ, McVean G, Mullikin JC, Higgins JM, Richter DJ, Lander ES, Altshuler D. Human genome sequence variation and the influence of gene history, mutation and recombination [J]. Nat Genet, 2002,32(1):135-142.
    [25]Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs [J]. Nature,2007, 449(7164):851-861.
    [26]Gabriel SB, Schaffner SF, Nguyen H et al. The structure of haplotype blocks in the human genome [J]. Science,2002,296(5576):2225-2229.
    [27]A haplotype map of the human genome [J]. Nature,2005, 437(7063):1299-1320.
    [28]Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits [J]. Nat Rev Genet,2005,6(2):95-108.
    [29]Klein RJ, Zeiss C, Chew EY et al. Complement factor H polymorphism in age-related macular degeneration [J]. Science,2005,308(5720):385-389.
    [30]Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci [J]. Nature,2007. 447(7148):1087-1093.
    [31]Hunter DJ, Kraft P, Jacobs KB et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer [J]. Nat Genet,2007,39(7):870-874.
    [32]Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosome 5pl2 confer susceptibility to estrogen receptor-positive breast cancer [J]. Nat Genet,2008,40(6):703-706.
    [33]Gold B, Kirchhoff T, Stefanov S et al. Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33 [J]. Proc Natl Acad Sci USA,2008,105(11):4340-4345.
    [34]Zheng W, Long J, Gao YT et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1 [J]. Nat Genet,2009, 41(3):324-328.
    [35]Sun J, Zheng SL, Wiklund F et al. Sequence variants at 22q13 are associated with prostate cancer risk [J]. Cancer Res,2009,69(1):10-15.
    [36]Eeles RA, Kote-Jarai Z, Giles GG et al. Multiple newly identified loci associated with prostate cancer susceptibility [J]. Nat Genet,2008, 40(3):316-321.
    [37]Gudmundsson J, Sulem P, Rafnar T et al. Common sequence variants on 2pl5 and Xp 11.22 confer susceptibility to prostate cancer [J]. Nat Genet,2008, 40(3):281-283.
    [38]Thomas G, Jacobs KB, Yeager M et al. Multiple loci identified in a genome-wide association study of prostate cancer [J]. Nat Genet,2008, 40(3):310-315.
    [39]Duggan D, Zheng SL, Knowlton M et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP [J]. J Natl Cancer Inst,2007,99(24):1836-1844.
    [40]Gudmundsson J, Sulem P, Steinthorsdottir V et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes [J]. Nat Genet,2007,39(8):977-983.
    [41]Gudmundsson J, Sulem P, Manolescu A et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24 [J]. Nat Genet, 2007,39(5):631-637.
    [42]Yang JJ, Cheng C, Yang W et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia [J]. JAMA,2009,301(4):393-403.
    [43]Di Bernardo MC, Crowther-Swanepoel D, Broderick P et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia [J]. Nat Genet,2008,40(10):1204-1210.
    [44]Erdmann J, Grosshennig A, Braund PS et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3 [J]. Nat Genet,2009, 41(3):280-282.
    [45]Tregouet DA, Konig IR, Erdmann J et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease [J]. Nat Genet,2009,41(3):283-285.
    [46]Aulchenko YS, Ripatti S, Lindqvist I et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts [J]. Nat Genet, 2009,41(1):47-55.
    [47]Wilier CJ, Sanna S, Jackson AU et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease [J]. Nat Genet,2008, 40(2):161-169.
    [48]McPherson R, Pertsemlidis A, Kavaslar N et al. A common allele on chromosome 9 associated with coronary heart disease [J]. Science,2007, 316(5830):1488-1491.
    [49]Frayling TM, Timpson NJ, Weedon MN et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity [J]. Science,2007,316(5826):889-894.
    [50]Scuteri A, Sanna S, Chen WM et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits [J]. PLoS Genet,2007,3(7):e115.
    [51]Loos RJ, Lindgren CM, Li S et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity [J]. Nat Genet,2008, 40(6):768-775.
    [52]Thorleifsson G, Walters GB, Gudbjartsson DF et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity [J]. Nat Genet,2009,41(1):18-24.
    [53]Meyre D, Delplanque J, Chevre JC et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations [J]. Nat Genet,2009,41(2):157-159.
    [54]Takeuchi F, Serizawa M, Yamamoto K et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population [J]. Diabetes,2009,58(7):1690-1699.
    [55]Timpson NJ, Lindgren CM, Weedon MN et al. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data [J]. Diabetes,2009,58(2):505-510.
    [56]Cooper JD, Smyth DJ, Smiles AM et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci [J]. Nat Genet,2008,40(12):1399-1401.
    [57]Grant SF, Qu HQ, Bradfield JP et al. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes [J]. Diabetes,2009, 58(1):290-295.
    [58]Unoki H, Takahashi A, Kawaguchi T et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations [J]. Nat Genet,2008,40(9):1098-1102.
    [59]Hakonarson H, Qu HQ, Bradfield JP et al. A novel susceptibility locus for type 1 diabetes on Chrl2ql3 identified by a genome-wide association study [J]. Diabetes,2008,57(4):1143-1146.
    [60]Florez JC, Manning AK, Dupuis J et al. A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study:replication and integration with other genome-wide datasets [J]. Diabetes,2007, 56(12):3063-3074.
    [61]Hakonarson H, Grant SF, Bradfield JP et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene [J]. Nature,2007, 448(7153):591-594.
    [62]Sladek R, Rocheleau G, Rung J et al. A genome-wide association study identifies novel risk loci for type 2 diabetes [J]. Nature,2007, 445(7130):881-885.
    [63]Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder [J]. Nature,2009,460(7256):748-752.
    [64]Shi J, Levinson DF, Duan J et al. Common variants on chromosome 6p22.1 are associated with schizophrenia [J]. Nature,2009,460(7256):753-757.
    [65]Stefansson H, Ophoff RA, Steinberg S et al. Common variants conferring risk of schizophrenia [J]. Nature,2009,460(7256):744-747.
    [66]Need AC, Ge D, Weale ME et al. A genome-wide investigation of SNPs and CNVs in schizophrenia [J]. PLoS Genet,2009,5(2):e1000373.
    [67]O'Donovan MC, Craddock N, Norton N et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up [J]. Nat Genet, 2008,40(9):1053-1055.
    [68]Walsh T, McClellan JM, McCarthy SE et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia [J]. Science, 2008,320(5875):539-543.
    [69]Shifman S, Johannesson M, Bronstein M et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women [J]. PLoS Genet,2008,4(2):e28.
    [70]Valdes AM, Loughlin J, Timms KM et al. Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis [J]. Am J Hum Genet,2008,82(6):1231-1240.
    [71]Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans [J]. Nat Genet,2003, 33(4):518-521.
    [72]The International HapMap Project [J]. Nature,2003,426(6968):789-796.
    [73]Oliphant A, Barker DL, Stuelpnagel JR, Chee MS. BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping [J]. Biotechniques,2002, Suppl:56-58,60-51.
    [74]Shen R, Fan JB, Campbell D et al. High-throughput SNP genotyping on universal bead arrays [J]. Mutat Res,2005,573(1-2):70-82.
    [75]Matsuzaki H, Dong S, Loi H et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays [J]. Nat Methods,2004, 1(2):109-111.
    [76]Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer [J]. Nat Genet,2007,39(7):865-869.
    [77]Udler MS, Meyer KB, Pooley KA et al. FGFR2 variants and breast cancer risk:fine-scale mapping using African American studies and analysis of chromatin conformation [J]. Hum Mol Genet,2009,18(9):1692-1703.
    [78]Liang J, Chen P, Hu Z et al. Genetic variants in fibroblast growth factor receptor 2 (FGFR2) contribute to susceptibility of breast cancer in Chinese women [J]. Carcinogenesis,2008,29(12):2341-2346.
    [79]Raskin L, Pinchev M, Arad C, Lejbkowicz F, Tamir A, Rennert HS, Rennert G, Gruber SB. FGFR2 is a breast cancer susceptibility gene in Jewish and Arab Israeli populations [J]. Cancer Epidemiol Biomarkers Prev,2008, 17(5):1060-1065.
    [80]Meyer KB, Maia AT, O'Reilly M, Teschendorff AE, Chin SF, Caldas C, Ponder BA. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer [J]. PLoS Biol,2008,6(5):e108.
    [81]Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression [J]. J Mammary Gland Biol Neoplasia,1998,3(1):49-61.
    [82]Gomez R, Magana JJ, Cisneros B et al. Association of the estrogen receptor alpha gene polymorphisms with osteoporosis in the Mexican population [J]. Clin Genet,2007,72(6):574-581.
    [83]Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al. New sequence variants associated with bone mineral density [J]. Nat Genet,2009,41(1):15-17.
    [84]Kruglyak L. The road to genome-wide association studies [J]. Nat Rev Genet. 2008,9(4):314-318.
    [85]Turnbull C, Rahman N. Genetic predisposition to breast cancer:past, present, and future [J]. Annu Rev Genomics Hum Genet,2008,9:321-345.
    [86]Donnelly P. Progress and challenges in genome-wide association studies in humans [J]. Nature,2008,456(7223):728-731.
    [87]Wheeler DL, Barrett T, Benson DA et al. Database resources of the National Center for Biotechnology Information [J]. Nucleic Acids Res,2008, 36(Database issue):D 13-21.
    [88]Hubbard T, Barker D, Birney E et al. The Ensembl genome database project [J]. Nucleic Acids Res,2002,30(1):38-41.
    [89]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC [J]. Genome Res,2002, 12(6):996-1006.
    [90]Mailman MD, Feolo M, Jin Y et al. The NCBI dbGaP database of genotypes and phenotypes [J]. Nat Genet,2007,39(10):1181-1186.
    [91]Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting gene-environment interaction to detect genetic associations [J]. Hum Hered, 2007,63(2):111-119.
    [92]Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide association studies [J]. Am J Epidemiol,2009,169(2):219-226.
    [93]Estivill X, Armengol L. Copy number variants and common disorders:filling the gaps and exploring complexity in genome-wide association studies [J]. PLoS Genet,2007,3(10):1787-1799.
    [94]Ahmed S, Thomas G, Ghoussaini M et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 [J]. Nat Genet,2009,41(5):585-590.
    [95]Thomas G, Jacobs KB, Kraft P et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) [J]. Nat Genet,2009,41(5):579-584.
    [96]Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL, Antman K, Hwang SJ. A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study [J]. BMC Med Genet,2007,8 Suppl 1:S6.
    [97]Kibriya MG, Jasmine F, Argos M, Andrulis IL, John EM, Chang-Claude J, Ahsan H. A pilot genome-wide association study of early-onset breast cancer [J]. Breast Cancer Res Treat,2009,114(3):463-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700