TNF-α诱导的caspase非依赖性死亡需要Rip3介导的胞内ROS积聚
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TNF-α是一种重要的前炎症细胞因子,通过结合膜表面受体TNFRⅠ或TNFRⅡ,发挥其生物学功能,在众多细胞事件中发挥了重要作用。而只有结合带死亡结构域的TNFRⅠ,TNF-α才能诱导细胞死亡。依据具体处理条件和细胞对象的不同,TNF-α能诱导不同类型的死亡:凋亡或坏死。也就是说,TNF-α结合TNFRⅠ后,可以通过多种途径传递死亡信号。目前最为人知的是TNF-α通过TRADD、FADD、caspase-8介导的凋亡性死亡途径,众多caspase家族成员在这一事件中起了重要的作用。而在一些细胞中,TNF-α也能在caspases受抑制的情况下诱导细胞死亡,但如今人们还不十分了解这种死亡方式的信号转导机制。深入研究TNF-α诱导死亡的不同通路,了解它们的差别与关联,不仅可使我们进一步了解细胞死亡的调控机理,还有助于找出一些相关疑难病的治疗方法,为临床实践提供理论依据。
     本论文以两株NIH3T3细胞作为实验对象。它们在TNF-α刺激下分别通过不同途径传递死亡信号:NIH3T3(R)细胞借助caspases传递凋亡信号;而NIH3T3(S)细胞则通过另一条未知的,不依赖于caspases的信号通路执行死亡事件。由于这两株细胞最初来源是一致的,只是在长期的培养过程发生了自然突变,分化成两株在TNF-α刺激下有着不同表型的细胞,因此可以利用此二者同时研究TNF-α诱导下caspase依赖及非依赖的细胞死亡机制。为了初步探究两株细胞在TNF-α刺激下选择不同死亡途径的机理,我们利用cDNA表达谱芯片分析这两株细胞基因表达的差异,并通过逆转录PCR对差异基因进行验证。最终从众多的差异基因中选择Rip3作为本论文的研究对象,该基因仅在NIH3T3(S)细胞表达,而未在NIH3T3(R)细胞内表达。
     Rip3属于Rip激酶家族成员,拥有N末端Ser/Thr激酶活性区和独特的C末端,二者间有一个能介导同源相互作用的RHIM结构。现有研究已经表明与Rip3同家族成员Rip1是TNFRⅠ或Trif介导的NF-κB信号通路的重要成员,而Rip3会通过RHIM竞争结合并磷酸化Rip1,抑制NF-κB的激活。另外,有实验表明过量表达Rip3会诱导细胞凋亡,Rip3的C末端正是诱发凋亡的功能区。不过,总的来说,Rip3的功能研究尚处于探索阶段,仍有很多问题有待解决。
     本论文发现了Rip3的一个新功能:通过介导ROS积聚,传递TNF-α诱导的caspase非依赖的死亡信号。而这一过程的ROS的积聚需要有氧的糖酵解途径。这一发现将有助于进一步了解TNF-α诱导死亡的机制,在实践上则将提升TNF-α的临床应用价值。
As a proinflammatory cytokine,TNF-αplays an important role in many cellular events.TNF-αelicits its biological effects by binding to the receptors,TNFRⅠand TNFRⅡ.But only TNFRⅠis a death receptor.By binding to the receptor TNFRⅠ, TNF-αinduces both apoptotic and necrotic cell death,depending on cell types and treatment condition.It means that TNF-αcan induce cell death through distinct signal transduction pathways.It has been extensively studied that the mechanisms of TNF-induced apoptotic cell death,which is mediated by TRADD,FADD and caspase-8.Caspases are required for apoptotic cell death.In some types of cells, TNF-αcan induced caspase-independent cell death,of which mechanism is still largely unknown.Further study elucidating the mechanism of TNF-induced cell death and difference and relationship among different signal pathways will facilitate our understanding of cell death control and be helpful for clinical treatment.
     In this study,we used two cell lines derived from NIH3T3 cells:NIH3T3(R) and NIH3T3(S).In NIH3T3(R) cell,TNF-αcan induce apoptosis which requires caspases; but in NIH3T3(S) cell,under a caspase-inhibited condition,TNF-αcan effectively induce cell death through an unknown signal pathway.We believe that these two cell lines would be good material for studying these two distinct mechanisms of the caspase-dependent or caspase-independent cell death induced by TNF-αat the same time,because which differentiated from the same ancestor in the long culture process. Large-scale gene expression profiles between these two cell lines were detected with cDNA microarray.As a result,one gene,namely Rip3,is selected for further study, which was detected only in NIH3T3(S) cell not in NIH3T3(R) cell in mRNA level, which was confirmed by RT-PCR.
     Rip3 is the member of the Rip family,which processes N-terminal Ser/Thr kinase domain,RHIM and a unique C-terminus.Rip1,belonging to the Rip family too,is an important NF-κB-activating molecule mediated by TNFR I or Trif.Rip3,via its RHIM,interacts with,and subsequently phosphorylates Rip1,resulting in diminished NF-κB activation.In addition,overexpression of Rip3 in some cell lines can induce apoptosis,which requires the C-terminus of Rip3.But additional studies are required to better understand the function of Rip3.
     This thesis reveals a novel role for Rip3,which is crucial in mediating ROS accumulation in TNF-induced caspase-independent cell death.And generation of cytocidal ROS requires an aerobic glycolytic pathway.This result will facilitate our understanding of the mechanism of TNF-induced cell death and improve the value in clinical application of TNF.
引文
[1] Palladino MA, Bahjat FR, Theodorakis E A, et al. Anti-TNF-a therapies: The next generation[J]. Nat Rev Immunol, 2003,2:736-746.
    
    [2] Aggarwal BB. Signaling pathways of the superfamily: A double-edged sword[J].Nat Rev Immunol, 2003,3: 745-756.
    [3] MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequen[J]. Cell Signal, 2002,14(6): 477-492.
    [4] Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies:integrating mammalian biology[J]. Cell, 2001,104(4): 487-501.
    [5] Vandenabeele P, Declercq W, Beyaert R, et al. Two tumor necrosis factor receptors: structure and function[J]. Trends Cell Biol, 1995, 5(10): 392-399.
    [6] Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors[J]. Cytokine & Growth Factor Rev, 2003,14: 185-191.
    [7] Dempsey PW, Doyle SE, He JQ, et al. The signaling adaptors and pathways activated by TNF superfamily[J]. Cytokine & Growth Factor Rev, 2003, 14:193-209.
    [8] Barnes PJ, Karin M. Nuclear factor-κB: a pivotal transcRiption factor in chronic inflammatory diseases[J]. New Engl J Med, 1997, 336: 1066-1071.
    [9] Karin M., Liu Z, Zandi E. AP-1 function and regulation[J]. Curr Opin Cell Biol,1997, 9: 240-246.
    [10] Wang CY, Mayo MW, Korneluk RG, et al. NF-kB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and C-IAP2 to suppress caspase-8 activation[J].Science, 1998,281: 1680 - 1683.
    
    [11] Wu MX, Ao Z, Prasad KV. et al. IEX-1L, an apoptosis inhibitor involved in NF-KB-mediated cell survival[J]. Science, 1998,281: 998 - 1001.
    
    [12] Hsu H, Shu HB, Pan MG, et al. FADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways[J]. Cell, 1996,84(2): 299-308.
    [13] Rothe M, Wong SC, Henzel WJ, et al. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor[J]. Cell, 1994, 8(4): 681-692.
    [14] Rothe M, Sarma V, Dixit VM, et al. TRAF2-mediated activation of NF-kB by TNF receptor 2 and CD40[J]. Science, 1995,269(5229): 1424-1427.
    [15] Stanger BZ, Leder P, Lee TH, et al. Rip: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death[J].Cell, 1995, 81(4): 513-523.
    [16] Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives[J]. Trends Cell Biol, 2001,11(9): 372-377.
    [17] Rath PC, Aggarwal BB. TNF-induced signaling in apoptosis[J]. J Clin Immunol,1999, 19: 350-364.
    [18] Micheau O, Tschopp J. Induction of TNF receptor Imediated apoptosis via two sequential signaling complexes[J]. Cell, 2003,114: 181-190.
    [19] Yeh WC, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis[J]. Science, 1998, 279(5338):1954-1958.
    [20] Varfolomeev EE, Schuchmann M, Luria V. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors,Fas/Apo1, and DR3 and is lethal prenatally[J]. Immunity, 1998, 9(2): 267-276.
    [21] Boldin MP, Goncharov TM, Goltsev YV, et al. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death[J]. Cell, 1996, 85(6): 803-815.
    [22] Zhang J, Cado D, Chen A, et al. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1[J]. Nature, 1998,392(6673): 296-300.
    [23] Fiers W, Beyaert R, Boone E, et al. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis[J]. J Inflamm,1995-96,47(1-2): 67-75.
    [24] Fiers W, Beyaert R, Declercq W, et al. More than one way to die: apoptosis,necrosis and reactive oxygen damage[J]. Oncogene, 1999,18(54):7719-7730.
    [25] Scaffidi C, Kirchhoff S, Krammer PH, et al. Apoptosis signaling in lymphocytes[J]. Curr Opin Immunol, 1999,11: 277-285.
    
    [26] Cryns V, Yuan J. Proteases to die for[J]. Genes Dev, 1998,12(11): 1551-1570.
    [27] Faleiro L, Kobayashi R, Fearnhead H, et al. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells[J]. EMBO J, 1997, 16(9): 2271-2281.
    [28] Muzio M, Stockwell BR, Stennicke HR, et al. An induced proximity model for caspase-8 activation[J]. J. Biol Chem, 1998,273: 2926-2930.
    [29] Li H, Zhu H, Xu CJ, et al. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell, 1998, 94: 491 -501.
    [30] Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors[J]. Cell, 1998,94: 481 - 490.
    [31] Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis[J].Nat Rev Cancer, 2002, 2(4):277-288.
    [32] Deng Y, Ren X, Yang L, et al. A JNK-dependent pathway is required for TNF-α-induced apoptosis[J]. Cell, 2003, 115(1): 61-70.
    [33] Liu ZG, Hsu H, Goeddel DV, et al. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kB activation prevents cell death[J]. Cell, 1996, 87(3): 565 - 576.
    [34] Ting AT, Pimentel-Muinos FX, Seed B. Rip mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis[J]. EMBO J, 1996,15:6189-6196.
    [35] Natoli G, Costanzo A, Ianni A, et al. Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway[J]. Science, 1997, 275: 200-203.
    [36] Reinhard C, Shamoon B, Shyamala V, et al. Tumor necrosis factor alpha-induced activation of cjun amino-terminal kinase is mediated by TRAF2[J]. EMBO J,1997,16:1080-1092.
    [37] Yeh WC, Shahinian A, Speiser D, et al. Early lethality, functional NF-kB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice[J]. Immunity, 1997, 7: 715 - 725.
    [38] Kelliher MA, Grimm S, Ishida Y, et al. The death domain kinase Rip mediates the TNF-induced NF-kB signal [J]. Immunity, 1998, 8: 297 - 303.
    [49] Karin M, Lin A. NF-kB at the crossroads of life and death[J]. Nat Immunol,2002,3(3): 221-227.
    [40]Li Q,Verma IM.NF-κB regulation in the immune system[J].Nat Rev Immunol,2002,2:725-734.
    [41]Karin M,Delhase M.The IκB kinase(IKK) and NF-κB:key elements of proinflammatory signalling[J].Semin Immunol,2000,12:85-98.
    [42]Deveraux QL,Reed JC.IAP family proteins - suppressors of apoptosis[J].Genes Dev,1999,13:239-252.
    [43]Davis RJ.Signal transduction by the JNK group of MAP kinases[J].Cell,2000,103(2):239-252.
    [44]Sakon S,Xue X,Takekawa M,et al.NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death[J].EMBO J,2003,22:3898-3909.
    [45]Lamb JA,Ventura JJ,Hess P,et al.JunD mediates survival signaling by the JNK signal transduction pathway[J].Mol Cell,2003,11:1479-1489.
    [46]Tang G,Minemoto Y,Dibling B,et al.Inhibition of JNK activation through NF-κB target genes[J].Nature,2001,414:313-317.
    [47]Thome M,Hofmann K,Burns K,et al.Identification of CARDIAK,a Rip-like kinase that associates with caspase-1[J].Curr Biol,1998,8:885-888.
    [48]McCarthy JV,Ni J,Dixit VM.Rip2 is a novel NF-κB-activating and cell death-inducing kinase[J].J Biol Chem,1998,273(27):16968-16975.
    [49]Navas TA,Baldwin DT,Stewart TA.Rip2 is a Rafl-activated mitogen-activated protein kinase kinase[J].J Biol Chem,1999,274(47):33684-33690.
    [50]Kasof GM,Prosser JC,Liu D,et al.The Rip-like kinase,Rip3,induces apoptosis and NF-κ3 nuclear translocation and localizes to mitochondria[J].FEBS Lett,2000,473:285-291.
    [51]Pazdernik NJ,Donner DB,Goebl MG,et al.Mouse receptor interacting protein 3does not contain a caspase-recruiting or a death domain but induces apoptosis and activates NF-κB[J].Mol Cell Biol,1999,19:6500-45508.
    [52]Yu PW,Huang BC,Shen M,et al.Identification of Rip3,a Rip-like kinase that activates apoptosis and NF-κ3[J].Curr Biol,1999,9:539-542.
    [53]Sun X,Lee J,Navas T,et al.Rip3,a novel apoptosis-inducing kinase[J].J Biol Chem,1999,274:16871-16875.
    [54]Meylan E,Tschopp J.The Rip kinases:crucial integrators of cellular stress[J]. Trends Biochem Sci, 2005, 30(3): 151-159.
    [55] Hsu H, Huang J, Shu HB, et al. TNF-dependent recruitment of the protein kinase Rip to the TNF receptor-1 signaling complex.Immunity[J]. Immunity, 1996, 4(4):387-396.
    [56] Devin A, Cook A, Lin Y, et al. The distinct roles of TRAF2 and Rip in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while Rip mediates IKK activation[J]. Immunity, 2000,12(4): 419-429.
    [57] Henkel T, Machleidt T, Alkalay I, et al. Rapid proteolysis of IκB-α is necessary for activation of the transcRiption factor NF-kB[J]. Nature, 1993, 365(6442):182-185.
    [58] Chen Z, Hagler J, Palombella VJ, et al. Signal-induced site-specific phosphorylation targets IkBci to the ubiquitin-proteasome pathway[J]. Genes Dev, 1995, 9(13): 1586-1597.
    [59] Alkalay I, Yaron A, Hatzubai A, et al. Stimulation-dependent IκB phosphorylation marks the NF-kB inhibitor for degradation via the ubiquitin-proteasome pathway[J]. Proc Natl Acad Sci U.S.A., 1995, 92(23):10599-10603.
    [60] Yaron A, Gonen H, Alkalay I, et al. Inhibition of NF-kB cellular function by specific targeting of the IkB ubiquitin ligase[J]. EMBO J, 1995, 16(21): 101-107.
    [61] Delhase M, Karin M. The IkB kinase: A master regulator of NF-kB, innate immunity, and epidermal differentiation[J]. Cold Spring Harb Symp Quant Biol,1999, 64: 491 - 503.
    [62] Hur GM, Lewis J, Yang Q, et al. The death domain kinase Rip has an essential role in DNA damage-induced NF-kB activation[J]. Genes Dev, 2003, 17(7):873-882.
    [63] Li N, Banin S, Ouyang H, et al. ATM is required for IkB kinase (IKKκ) activation in response to DNA double strand breaks [J]. J Biol Chem, 2001,276(12): 8898-8903.
    [64] Opipari AW Jr, Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein[J]. J Biol Chem,1990,265(25): 14705-14708.
    [65] Zhang SQ, Kovalenko A, Cantarella G, et al. Recruitment of the IKK signalosome to the p55 TNF receptor: Rip and A20 bind to NEMO (IKKγ) upon receptor stimulation[J]. Immunity, 2000,12(3): 301-311.
    [66] Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice[J]. Science, 2000,289: 2350-2354.
    [67] Wertz IE, O'Rourke KM., Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kB signaling[J]. Nature, 2004, 430(7000):694-699.
    [68] Makarova KS, Aravind L, Koonin-EV. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae[J]. Trends Biochem Sci, 2000,25: 50-52.
    [69] Sun X, Yin J, Starovasnik MA, et al. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (Rip) by Rip3[J]. J Biol Chem, 2002,277(11): 9505-9511.
    [70] Lewis J, Devin A, Miller A, et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (Rip), and blockage of tumor necrosis factor-induced nuclear factor-κB activation[J]. J Biol Chem, 2000,275(14): 10519-10526.
    [71] Meylan E, Burns K, Hofrnann K, et al. Rip1 is an essential mediator of Toll-like receptor 3-induced NF-kB activation[J]. Nat Immunol, 2004, 5(5): 503-507.
    [72] Akira S, Takeda K. Toll-like receptor signaling[J]. Nat Rev Immunol, 2004,4(7):499-511.
    [73] Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3[J]. Nature, 2001,413(6857): 732-738.
    [74] Poltorak A, He X, Smirnoval I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene[J]. Science, 1998, 282(5396):2085-2088.
    [75] Kawai T, Takeuchi O, Fujita T, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes[J]. J Immunol, 2001, 167(10): 5887-5894.
    [76] Hoshino K, Kaisho K, Iwabel T, et al. Differential involvement of IFN-P in Toll-like receptor-stimulated dendritic cell activation[J]. Int Immunol, 2002, 14(10):1225-1231.
    [77] Hiroyuki O, Misako M, Kenji F. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-P induction [J]. Nat. Immunol., 2003,4(2): 161-167.
    [78] Yamamoto M, Sato S, Mori K, et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-P promoter in the Toll-like receptor signaling[J]. J Immunol, 2002,169(12): 6668-6672.
    [79] Hoebel K, Du X, Georgel P, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signaling[J]. Nature, 2003,424(6950): 743-748.
    [80] Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science, 2003,301(5633): 640-643.
    [81] Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative,caspase-8-independent cell death pathway using the kinase Rip as effector molecule[J]. Nat Immunol, 2000,1: 489-495.
    [82] Barton GM, Medzhitov R. Toll signaling: Ripping off the TNF pathway[J]. Nat Immunol, 2004, 5(5): 472-474.
    [83] Lin Y, Devin A, Rodriguez Y, et al. Cleavage of the death domain kinase Rip by caspase-8 prompts TNF-induced apoptosis[J]. Genes Dev, 1999,13: 2514-2526.
    [84] Kim JW, Choi EJ, Joe CO, et al. Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of Rip[J]. Oncogene, 2000,19(39):4491-4499.
    [85] Martinon F, Holler N, Richard C, et al. Activation of a pro-apoptotic amplification loop through inhibition of NF-κB-dependent survival signals by caspase-mediated inactivation of Rip[J]. FEBS Lett, 2000,468: 134-136.
    [86] Liu Y, Choksi S, Shen HM, et al. TNF induced non-apoptotic cell death requires Rip mediated cellular reactive oxygen species accumulation[J]. J Biol Chem,2004,279(11): 10822-10828.
    [87] Duan H, Dixit V. RAIDD is a new 'death' adaptor molecule[J]. Nature, 1997,385(6611): 86-89.
    [88] Ahmad M, Srinivasula SM, Wang L, et al. CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein Rip[J]. Cancer Res, 1997, 57: 615-619.
    [89] Chou JJ, Matsuo H., Duan H. et al. Solution structure of the RAIDD/CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment[J].Cell, 1998, 94(2): 171-180.
    [90] Khush RS, Leulier F, Lemaitre B. Drosophila immunity: two paths to NF-kB[J].Trends Immunol, 2001,22(5): 260-264.
    [91] Georgel P, Naitza S, Kappler C, et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis[J]. Dev Cell, 2001,1(4): 503-514.
    [92] Inohara N, del Peso L, Koseki T, et al. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis[J]. J Biol Chem, 1998,273(20): 12296-12300.
    [93] Inohara N, Nuez G. NODS: intracellular proteins involved in inflammation and apoptosis [J]. Nature Rev. Immunol., 2003, 3: 371-382.
    [94] Philpot DJ, Girardin SE, Sanaonetti PJ. Innate immune responses of epithelial cells following infection with bacterial phathogens[J]. Curr Opin Immunol, 2001,13:410-416.
    [95] Inohara N, Koseki T, Peso L, et al. Nodi, an Apaf-1-like activator of caspase-9 and nuclear-factor-KB[J]. J Biol Chem, 1999, 247: 14560-14567.
    [96] Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kB[J]. J Biol Chem, 2001, 276:4812-4818.
    [97] Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adapative immune system[J]. Nature,2002,416: 194-199.
    [98] Chin AI, Dempsey PW, Bruhn K, et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses[J]. Nature, 2002, 416(6877):190-194.
    [99] Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity[J]. Nat Immunol, 2001,2: 675-680.
    [100]Medzhitov R. Toll-like receptors and innate immunity[J]. Nat Rev Immunol,2001,1: 135-145.
    [101]Zhang G, Ghosh S. Toll-like receptoe mediated NF-KpB activation : a phylogenetically conserved paradigm in innate immunity[J]. J Clin Invest, 2001, 107(1): 13-19.
    [102]Guha M, Mackman N. LPS induction of gene expression in human monocytes[J].Cell Singal, 2001,13(2): 85-94.
    
    [103]Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members[J]. Mol Cell,2003,11:293-302.
    [104]Ruefli-Brasse AA, Lee WP, Hurst S, et al. Rip2 participates in Bel10 signaling and T-cell receptor-mediated NF-kB activation[J]. J Biol Chem, 2004, 279(2):1570-1574.
    [105]Bergeron L, Perez GI, Macdonald G, et al. Defects in regulation of apoptosis in caspase-2-deficientmice[J]. Genes Dev, 1998,12(9): 1304-1314.
    [106]Newton K, Sun X, Dixit VM, et al. Kinase Rip3 is dispensable for normal NF-kBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4[J]. Mol Cell Biol, 2004, 24:1464-1469.
    [107]Susin SA, Lorenzo HK, Zamzami N, et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process[J]. J Exp Med, 1999,189(2): 381-394.
    [108]Yang Y, Ma J, Chen Y, et al. Nucleocytoplasmic shuttling of receptor interacting protein 3 (Rip3): identification of novel nuclear export and import signals in Rip3[J]. J Biol. Chem, 2004,279: 38820-38829.
    [109]Fukuda M, Asano S, Nakamura T, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal[J]. Nature, 1997, 390: 308-311.
    [110] Kudo N, Matsumori N, Taoka H, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region[J]. Proc Natl Acad Sci U.S.A., 1999, 96(16): 9112-9117.
    [111] Morgan M, Thorburn J, Pandolfi PP, et al. Nuclear and cytoplasmic shuttling of TRADD induces apoptosis via different mechanisms[J]. J Cell Biol, 2002, 157(6):975-984.
    [112]Go'mez-Angelats M, Cidlowski JA. Molecular evidence for the nuclear localization of FADD[J]. Cell Death Differ, 2003, 10(7): 791-797.
    [113]Screaton RA, Kiessling S, Sansom OJ, et al. Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis[J]. Proc Natl Acad Sci U. S. A., 2003,100(9): 5211-5216.
    [114]Fabbro M, Henderson BR. Regulation of tumor suppressor by nuclear-cytoplasmic shuttling[J]. Exp Cell Res, 2003,282 (2): 59 - 69.
    [115] Yang Y, Hu W, Feng S, et al. Rip3 β and Rip3 γ, two novel splice variants of receptor-interacting protein 3 (Rip3), downregulate Rip3-induced apoptosis[J].Biochem Biophys Res Commun, 2005, 332(1): 181-187.
    [116]Bahr C, Rohwer A, Stempka L, et al. DIK, a novel protein kinase that interacts with protein kinase C8. Cloning, characterization, and gene analysis[J]. J Biol Chem, 2000,275(46): 36350-36357.
    [117]Chen L, Haider K, Ponda M, et al. PKC associated kinase (PKK), a novel membrane-associated, ankyrin-repeat containing protein kinase[J]. J Biol Chem,2001, 276(46): 21737-21744.
    [118]Holland P, Willis C, Kanaly S, et al. Rip4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation[J]. Curr Biol, 2002, 12(16): 1424-1428.
    [119]Meylan E, Martinon F, Thome M, et al. Rip4 (DIK/PKK), a novel member of the Rip kinase family, activates NF-kB and is processed during apoptosis[J].EMBO Rep, 2002, 3(12): 1201-1208.
    [120]Muto A, Puland J, McAllister-Lucas LM, et al. Protein kinase C-associated kinase (PKK) mediates Bcl10-independent NF-kB activation induced by phorbol ester[J]. J Biol Chem, 2002,277(35): 31871-31876.
    [121]Cariappa A, Chen L, Haider K, et al. A catalytically inactive form of protein kinase C-associated kinase/receptor interacting protein 4, a protein kinase C β-associated kinase that mediates NF-kB activation, interferes with early B cell development[J]. J Immunol, 2003,171(4): 1875-1880.
    [122]Hu Y, Baud V, Delhase M, et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKa subunit of IkB kinase[J]. Science, 1996,284(5412): 316-320.
    [123]Li Q, Lu Q, Hwang JY, et al. IKK 1-deficient mice exhibit abnormal development of skin and skeleton[J]. Genes Dev, 1999,13(10): 1322-1328.
    [124]Takeda K, Takeuchi O, Tsujimura T, et al. Limb and skin abnormalities in mice lacking IKKα[J]. Science, 1999, 284(5412): 313-316.
    [125]Zha J, Zhou Q, Xu LG, et al. Rip5 is a Rip-homologous inducer of cell death[J]. Biochem Biophys Res Commun, 2004, 319(2): 298-303.
    [126]Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome[J]. Science, 2002,298(5600): 1912-1934.
    [127]Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomaldominant Parkinsonism with pleomorphic pathology[J]. Neuron, 2004,44(4): 601-607.
    [128]Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease[J]. Neuron, 2004, 44(4):595-600.
    [129]Herrman M, Corenz HM, Vou R, et al. A rapid and simple method for the isolation of apoptotic DNA fragment[J]. Nuletic Acid Res, 1994, 22(21):5506-5507.
    [130]Garg AK, Aggarwal BB. Reactive oxygen intermediates in TNF signaling[J].Mol Immunol, 2002, 39(9): 509-517.
    [131]Vercammen D, Beyaert R, Denecker G, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor[J]. J ExpMed, 1998,187(9): 1477-1485.
    [132]Sakon S, Xue X, Takekawa M, et al. NF-kB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death[J].EMBO J, 2003, 22(15): 3898-3909.
    [133]Izban KF, Ergin M, Qin JZ, et al. Constitutive expression of NF-kB is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis[J]. Hum Pathol, 2000, 31(12):1482-1490.
    [134]Gong J, Traganos F, Darzynkiewicz Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry[J]. Anal Biochem, 1994,218(2): 314-319.
    [135]Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease[J].Annu Rev Cell Biol, 1993, 9: 317-343.
    [136] Los M, Mozoluk M, Ferrari D,. et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling[J]. Mol. Biol. Cell, 2002, 13: 978-988.
    [137]Eguchi,Y., Shimizu,S., Tsujimoto,Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis[J]. Cancer Res.,1997, 57: 1835-1840.
    [138] Leist,M., Single,B., Castoldi, et al. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis[J]. J. Exp.Med.,1997,185: 1481-1486.
    [139]Goossens V, Grooten J, De Vos K, et al. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity[J]. Proc Natl Acad Sci U.S.A., 1995, 92(18):8115-8119.
    [140]Vercammen D, Beyaert R, Denecker G, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor[J]. J Exp Med, 1998, 187(9): 1477-1485.
    [141]Temkin,V., Huang,Q., Liu,H., et al. Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis[J]. Mol. Cell Biol.,2006, 26,:2215-2225.
    [142]. Vercammen D, Beyaert R, Denecker G., et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor[J]. J.Exp. Med, 1998,187:1477-1485 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700