影响小秦岭金矿区矿渣型泥石流形成的主要因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山泥石流起动机理是当今泥石流形成学及泥石流预警的热点领域和学科前缘问题,开展影响矿山泥石流起动的主要控制因素研究不仅具有推动与完善泥石流形成的理论意义,而且对于矿山泥石流气象预警的防灾减灾工作具有重要的指导意义。
     本文依托中国地质调查局西安地质调查中心“陕西潼关金矿区环境地质问题专题调查”和“小秦岭金矿区矿山地质环境调查与评价”项目,就影响矿渣型泥石流起动的物源特征及临界雨量两大主控因素开展了深化调查、分析、测试及研究工作,首次较为系统地完成了废渣物源岩土工程参数测定、临界降雨条件分析,提出了研究区矿渣型泥石流起动模式。
     主要成果及认识包括:
     (1)积累了研究区矿渣型泥石流起动的一批原创性数据,包括渣堆状态、颗粒级配、渗透系数、物源容重、孔隙率、泥石流体容重、抗剪强度指标等。
     (2)矿渣型泥石流废渣堆特点包括:采矿废石渣堆高度在5-15m,个别高达30m;自然安息角在30°~45°之间;无工程保护措施的渣堆占总数的65%;稳定性差、极差的占76%;挤占2/3或堆满沟道的占58.37%;粗颗粒含量大,P5为78.19%~91.38%;孔隙率为34%~57%且连通性好;渗透性好,为0.094~0.127cm/s;据此在普通降雨条件下难以起动的新认识。
     (3)模拟了导致矿渣堆起动的临界雨强。得到大西岔沟矿渣型泥石流起动的降雨临界雨强为67.14~134.29mm/h,即遭遇50a或100a一遇的特大暴雨时有大约50%的固体颗粒处于临界起动状态。研究表明颗粒越细,临界起动的雨强越小;沟谷泄洪“卡口”愈严重,泥石流起动所需的雨强愈小。很好解释了研究区矿渣型泥石流“不易”发生的原因。
     (4)提出了矿渣型泥石流起动模式。通过对物源特征和降雨强度对矿渣型泥石流影响的分析,得出研究区矿渣型泥石流主要为暴雨型水石流。其起动模式主要包括“河谷起动型”和“坡面滑塌—堵塞—溃决型”两种起动模式。
The mine waste debris flow initiation mechanism is the hot spot and the advanced front question in debris flow forms study and the debris flow early warning now, studying on the key control factors which influence the mine waste debris flow initiation not only has the significance which push and consume debris flow form theory, but has the important guiding sense regarding the mine waste debris flow meteorology early warning's disaster prevention disaster reduction work.
     This thesis depends on the project named:"Shanxi Tongguan gold area environmental geology question special investigation" and "the Xiaoqinling gold area environmental geology survey and assessment" of the Xi'an center of CGS, the influence mine waste debris flow starts the thing source characteristic and the critical rainfall two key control factors have carried out the advanced investigation, analysis, test and some research work, has completed the waste residue source rock earthwork regulation parameter determination, the critical rainfall condition analysis systematically for the first time, proposed the research area gangue mud-rock flow starting pattern.
     The main achievement and the understanding include:
     (1) Accumulated a series of original data, including slag muck condition, grain composition, penetration coefficient, source volumeweight, factor of porosity, mudstone fluid volumeweight, shearing strength parameter and so on.
     (2) The waste slag muck characteristic includes:The slag muck piles are 5-15m high, sometimes individually reaches as high as 30m; The nature slope of reposes are between 30°and 45°; The non-protected slag muck accounts for 65%; The poor and extremely poor stability accounts for 76%; The 2/3 and absolutly blockages are account for 58.37%; The coarse particles content is big, P5 is 78.19%~91.38%; The factor of porosity is 34%~57% with good connectivity; The permeability is 0.094~0.127cm/s; According to above a new understanding that initiation is difficult under the ordinary rainfall condition.
     (3) Simulated has formed the critical raininess of gangue initiating. Obtains the critical raininess of the debris flows initiation is 67.14~134.29mm/h in Daxicha gully, that is encounters a-fifty-year or a-hundred-year rainstorm, there would be has about 50% solid particle to be at the critical initial condition. The research indicated that the pellet is thinner, the critical starting's raininess is smaller; The flood discharge blockage is more serious, the debris flow initial raininess would be smaller. It well explained the hardness initiation of the debris flows in the research area.
     (4) Proposed initial pattern of the min waste debris flow. Through the analysis on debris source characteristic and the rainfall intensity's influences, obtains the mine waste debris flow in the research area is rainstorm water-stone flow. Its two kinds of starting patterns are mainly includes "tarting in the gully type" and "the slope collapses-jamming-burst slippery type".
引文
[1]费祥俊,舒安平.泥石流运动机理与灾害防治[M].北京:高等教育出版社,2004:12—13.
    [2]中共中央马克思,恩格斯,列宁,斯大林著作编译局.马克思、恩格斯选集(第三卷)[M].北京:人民出版社,1995:517-518.
    [3]C.M.弗莱施曼.泥石流及其散布区的道路建设[M].北京:人民铁道出版社,1957.
    [4]M.A.维利康诺夫.泥石流及其防止法[M].北京:科学出版社,1963.
    [5]Negel A.Skermer, Dougles F. VanDine. Debris Flow in History[J]. Debris-Flows Harzards and Related Phenomena,2005:25~51.
    [6]Tamotsu Takahashi. Debris Flow Mechanics, predection and Countermeasures[M]. London, UK:Taylor & Francis Group,2007:103—123.
    [7]Jeffrey A. Coe, David A. Kinner, Jonathan W. Godt. Initiation Conditions for Debris Flows Generated by Runoff at Chalk Cliffs, Central Colorado[J]. Geomorphology,2008,270—297.
    [8]Tognacca, C, Bezzola,GR. Debris Flow Initiation by Channel-bed Failure[A].1st International Conference on Debris Flow Hazards Mitigation-Mechanics, Prediction, and Assessment[C]. San Francisco,1997.
    [9]C. Gregoretti, G. Dalla Fontana. The Triggering of Debris Flow Due to Channel-bed Failure in Some Alpine Headwater Basins of the Dolomites:Analyses of Critical Runoff[J]. Hydrological Processes, 2007,2248-2263.
    [10]M. Berti, A. Simoni. Experimental Evidences and Numerical Modelling of Debris Flow Initiated by Channel Runoff[J]. Landslide,2005:171-182.
    [11]康志诚,李焯芬,马蔼乃,等.中国泥石流研究[M].北京:科学出版社,2004.
    [12]唐邦兴.中国泥石流[M].北京:商务印书馆,2000.
    [13]崔鹏,柳素清,唐邦兴,等.风景区泥石流研究与防治[M].北京:科学出版社,2005:
    [14]李昭淑.陕西省泥石流灾害与防治[M].西安:西安地图出版社,2002:112-117.
    [15]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995.
    [16]王裕宜,严璧玉,詹钱灯.泥石流体结构和流变特性[M].长沙:湖南科学技术出版社,2001.
    [17]王礼先,于志民.山洪及泥石流灾害预报[M].北京:中国林业出版社,2001.
    [18]罗元华,陈崇希.泥石流堆积数值模拟及泥石流灾害风险评估方法[M].北京:地质出版社,2000.
    [19]王继康,黄荣鉴,丁秀燕.泥石流防治工程技术[M].北京:中国铁道出版社,1996.
    [20]钱宁.高含沙水流运动[M].北京:清华大学出版社,1989:155-160.
    [21]徐友宁,何芳,张江华,等.矿山泥石流特点及其防灾减灾对策[J].山地学报,2010.
    [22]谢洪,游勇,钟敦伦.长江上游一场典型的人为泥石流[J].山地研究,1994,12(2):1259~128.
    [23]李昭淑.陕西潼关金矿区94'人工泥石流灾害研究[J].灾害学,1995,10(3):51-56.
    [24]钟敦伦,严润群,陈金日.初论矿山泥石流[A].泥石流论文集(1)[C].重庆:科学技术文献出 版社重庆分社,1981:43-49.
    [25]Natural Resources Canada. Geoscape Canada[EB/OL]. http://geoscape.nrcan.gc.ca.2008-01-03.
    [26]ONE News. Mining Plans Could Place Thames at Risk[EB/OL]. http://tvnz.co.nz,2010-3-14.
    [27]M. J. McSaveney, R. D. Betham. The Potential For Debris Flows from Daraka Stream at Thames[R]. GNS Science,2006.
    [28]Hungr O,Dawson R, Kent A, et.al. Rapid flow slides of coal mine waste in British Columbia, Canada, in:Catastrophic landslides:Effects, occurrence and mechanisms:Boulder, Colorado, edited by:Evans, S. G. and DeGraff, J. V. Geological Society of America Reviews in Engineering Geology,15,191-208, 2002.
    [29]Lucia P C, Duncan J M, Seed H B. Summary of Research on Case Histories of Flow Failues of Mine Tailings Impoundments[J]. Information Circular No.8857:46-53.
    [30]中国科学院甘肃冰川冻土沙漠研究所.泥石流[M].北京:科学出版社,1973.
    [31]王文龙,张平仓,高学田.神府东胜矿区一、二期工程与人为泥石流[J].水土保持研究,1994,(1):54-59.
    [32]李国元.海南铁矿排土场泥石流的形成与防治[A].全国泥石流防治经验交流会论文集[C].重庆:科学技术文献出版社重庆分社,1983:54-56.
    [33]王景荣,蔡祥兴.宁夏西北轴承厂厂区泥石流防治[A].全国泥石流防治经验交流会论文集[c].重庆:科学技术文献出版社重庆分社,1983:54-56.
    [34]冠玉贞.盐井沟流域内堆积物的粘土矿物分析.山地研究,1990,(2):130-136.
    [35]罗德富.成昆铁路盐井沟泥石流特征及防治意见[J].铁道工程学报,1986,(4):172-175.
    [36]唐邦兴,柳素清.成昆铁路盐井沟矿山泥石流的初步分析[A].泥石流学术讨论会兰州会议论文集[C].成都:四川科技技术出版社,1986:107-113.
    [37]周国良.大格排土场滑坡泥石流的教训[J].水土保持通报,1985,(1):62-64.
    [38]陈循兼.论生态环境的破坏与泥石流活动[A].全国泥石流防治经验交流会论文集[c].重庆:科学技术文献出版社重庆分社,1983:144-146.
    [39]徐友宁,曹琰波,张江华,等.基于人工模拟试验的小秦岭金矿区矿渣型泥石流起动研究[J].岩石力学与工程学报,2009,(07)28:1388-1395.
    [40]唐克丽,张丽萍.矿山泥石流[M].北京:地质出版社,2001:11-12.
    [41]徐友宁,何芳.西北地区矿山泥石流分布及特点[J].山地学报,2007,25(6):729-736.
    [42]刘世建,谢洪,韦方强,等.小秦岭金矿区人为泥石流.山地研究,1996,14(4):259-263.
    [43]Adrian Stolz, Christian Huggel. Debris Flows in the Swiss National Park:the Influence of Different Flow Models and Varying DEM Grid Size on Modeling Results[J]. Landslides,2008,5:311-319.
    [44]Liao Chaolin, He Yurong. Fractal Characteristic of Soil in Typical Debris Flow-Triggering Region:A Case Study in Jiangjia Ravine of Dongchuan, Yunnan[J]. Wuhan University Journal of Natural Sciences,2006,11(04):859-864.
    [45]徐友宁,李育敬,张江华等.潼关县地质灾害防治规划(2006-2015)[R].潼关:潼关县矿产资 源管理局,2006.
    [46]灵宝市地质矿产局.灵宝市地质灾害防治规划(2005-2015)[R].2005.
    [47]灵宝市地质矿产局.灵宝市矿山环境恢复与治理规划(2006—2015)[R].2006.
    [48]潼关县矿管局.潼关县矿产资源规划(2001-2005年)[R].潼关:潼关县矿产资源管理局,2004.
    [49]杨敏,徐冬寅,乔彦军,等.Spot5遥感图像数据在矿山地质环境调查中的应用研究[J].黄金,2010,31(1):51-55.
    [50]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998:15-16.
    [51]灵宝市林业局.灵宝市林业生态市建设规划(2008-2012年)[R].灵宝:灵宝市政府,2007.
    [52]邢永强.小秦岭地区泥石流发生趋势研究[J].中国水土保持,2007, (8):20-22.
    [53]徐友宁,陈社斌,何芳,等.潼关金矿区矿渣型泥石流灾害及防治对策[R].山地学报,2006,24(6):667-671.
    [54]梁晓玲.潼关矿区大西岔沟矿渣泥石流的危险度评价与防治工程研究[D].西安:长安大学,2008.
    [55]西安地质矿产研究所.陕西潼关金矿区环境地质问题专题调查成果报告[R].西安:西安地质矿产研究所,2008.
    [56]徐友宁,陈社斌,李育敬,等.陕西潼关金矿区泥石流潜势度评价[J].水文地质工程地质,2006,33(2):89~92.
    [57]崔鹏.泥石流起动机理的研究[D].北京:北京林业大学,1990.
    [58]徐富强.滑坡转化成泥石流的流态化研究[D].成都:西南交通大学,2003.
    [59]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994:5-7.、
    [60]余斌.稀性泥石流容重计算的改进方法[J].山地学报,2009,27(1):70-75.
    [61]屈智炯,何昌荣,刘双光.新型石渣坝——粗粒土筑坝的理论与实践[M].北京:中国水利水电出版社.2002:10-70.
    [62]陈晓清.滑坡转化泥石流起动机理试验研究[D].成都:西南交通大学,2006.
    [63]王勇.堆石料渗透特性试验研究[D].南京:河海大学,2006.
    [64]SL237—1999,土工试验规程[S].沈阳:辽宁民族出版社,1999.
    [65]陈华清,徐友宁,张江华,等.小秦岭大湖峪矿渣型泥石流的物源特征及其危险度评价[J].地质通报,2008,27(8):1292-1298.
    [66]Horton R E. Surface Runoff Phenomena[M]. Horton Hydrology Laboratory Publication,1935,73: 101.
    [67]Hewlett J D, et al. Moisture and Energy Conditions within a Sloping Soil Mass During Drainge[J]. Geophysical Research,1963,68(4):1081-1087.
    [68]芮孝芳.产汇流理论[M].北京:水利水电出版社,1995.
    [69]Kirkby M J. Hillslope Hydrology[M]. John Wiley and Sons,1978.389.
    [70]Philip J R. Hillslope infiltration:Planerslope[J]. Water Resource Res,1991,27(6):1035-1048.
    [71]张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000(6):16-19.
    [72]杨学震.影响坡地径流的若干因子与径流量的数量化回归分析[J].福建水土保持,1996(4):37-41.
    [73]高冬光.桥涵水文[M].北京:人民交通出版社,2005:76-87.
    [74]SL319—2005,混凝土重力坝设计规范[S].北京:电子工业出版社,2005.
    [75]张瑞瑾.河流泥沙动力学[M].北京:中国水利水电出版社,1989:63-84.
    [76]李荣,李义天,王迎春.非均匀沙起动规律研究[J].泥沙研究,1999,(1):27-32.
    [77]刘兴年,等.卵石河道宽级配推移质输移特性研究[A].第二届全国泥沙基本理论研究学术讨论会论文集[C],中国建材工业出版社,1995.
    [78]赵洪.某矿山排土场泥石流形成机理及其防治对策研究[D].昆明:昆明理工大学,2008.
    [79]C M弗列斯曼.泥石流.[M].姚德基.北京:科学出版社,1986.
    [80]谭万沛,王成华,姚令侃,等.暴雨泥石流滑坡的区域预测与预报[M].成都:四川科学技术出版社,1994.
    [81]谭万沛.中国暴雨泥石流预报研究基本理论与现状[J].土壤侵蚀与水土保持学报,1996,2(1):88-95.
    [82]谭炳炎.泥石流沟严重程度的数量化综合评判[J].水土保持通报,1986,6(1):51-57.
    [83]钟敦伦,谢洪等.四川境内成昆铁路泥石流预测预报研究[J].山地研究,1990,8(2):82-88.
    [84]鲁小兵,李德基.基于神经网络的泥石流预测[J].自然灾害学报,1996,5(3):47-50.
    [85]罗晓梅.GIS技术在暴雨泥石流减灾预报中的运用[J].山地学报,1998,16(1):73-76.
    [86]姚令侃.模糊相似选择在确定泥石流沟危险雨情区上的应用[J].水土保持学报,1986,6(6)21-29.
    [87]姚令侃.用泥石流发生频率及暴雨频率推求临界雨量的探讨[J].水土保持学报,1988,2(4)72-77.
    [88]谭炳炎,段爱英.山区铁路沿线暴雨泥石流预报的研究[J].自然灾害学报,1995,4(2):43-52.
    [89]魏永明,谢又予.降雨型泥石流(水石流)预报模型研究[J].自然灾害学报,1997,6(4):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700