曲古抑素A诱导人肺腺癌耐顺铂细胞株凋亡及增强对顺铂敏感性机制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肺癌是全球最常见的恶性肿瘤之一,严重危害人类健康,其中大部分为非小细胞肺癌,约占80%。早期手术治疗是首选的治疗方法,但是由于多数病人在早期不易诊断,就诊时已是中晚期以及术后存在高的复发率,化疗仍是主要的治疗方法。
     以铂类药物为基础的联合化疗是非小细胞肺癌目前一线化疗方案,然而由于铂类药物的毒副作用和肺癌耐药的出现,限制了铂类药物的广泛应用。因此,寻找有效的方法和药物逆转肺癌耐药具有十分重要的意义。
     研究表明,顺铂的耐药性是由多因素,多因子参与的,存在多种机制,包括药物的蓄积降低、巯基分子如谷胱甘肽(GSH)的过度流入及其钝化作用、DNA修复能力增强以及细胞凋亡的抑制等。肺癌对顺铂的化疗敏感性改变可能与细胞周期管理基因、凋亡相关基因的表达改变有关。
     表观遗传修饰的分子机制主要包括DNA甲基化及组蛋白乙酰化,它们在基因表达调控起着重要的作用。表观遗传修饰的改变与肿瘤的发生发展密切相关,越来越多的证据表明,它们在肿瘤耐药中起着重要的作用。组蛋白去乙酰化酶抑制剂能抑制组蛋白乙酰化酶的活性,促进基因转录能诱导肿瘤细胞生长抑制、分化、凋亡,具有较广泛的应用前景。
     曲古抑素A(Trichostatin A,曲古抑素A)是组蛋白去乙酰化酶抑制剂的经典化合物之一,最初是作为一种抗真菌药物,能抑制Ⅰ、Ⅱ类组蛋白去乙酰化酶,研究发现曲古抑素A诱导多种肿瘤细胞分化促进肿瘤细胞凋亡,并且对正常细胞毒性较低,因而被认为是一种有希望的新的抗癌药物。新近研究发现组蛋白去乙酰化酶抑制剂能增强化疗或放疗的敏感性,具体机制仍待进一步研究。
     本实验拟以体外培养人肺腺癌A549细胞及其耐顺铂细胞株A549/CDDP细胞为研究对象,探讨曲古抑素A能否促进A549/CDDP细胞凋亡及提高其对顺铂的敏感性,并对其作用机制进一步研究,为临床肺癌的治疗寻找新途径和提供实验基础。
     目的研究曲古抑素A能否诱导人肺腺癌耐顺铂细胞株凋亡并增强对顺铂的敏感性。方法1.常规培养A549、A549/CDDP细胞株,用中性红方法检测耐药指数。2曲古抑素A处理A549/CDDP细胞株3.荧光染色、流式细胞仪检测细胞凋亡,流式细胞仪分析细胞周期及线粒体膜电位的变化。4.曲古抑素A联合顺铂处理A549/CDDP细胞株。结果1.A549/CDDP细胞耐药指数为12.8。2.TSA对A549/CDDP细胞的IC50是446.59±27.32 nmol/L,随着曲古抑素A浓度升高,A549/CDDP细胞生长率明显下降。3.曲古抑素A处理A549/CDDP细胞株后,荧光染色主要表现为核染色质固缩,荧光染色增强。流式细胞仪检测亚二倍峰出现。流式细胞仪检测发现曲古抑素A阻滞细胞于S期,线粒体膜电位降低。4.低浓度(31.25、62.5 nmol/L)的曲古抑素A联合顺铂处理后,逆转倍数分别为1.52,1.70。结论1.人肺腺癌耐顺铂细胞株A549/CDDP耐药性良好,耐药指数为12.8。2.曲古抑素A能诱导A549/CDDP细胞株凋亡。3.曲古抑素A阻滞A549/CDDP细胞株细胞周期于S期。4.曲古抑素A增加A549/CDDP细胞株对顺铂的敏感性。
     目的探讨曲古抑素A是否通过上调死亡相关蛋白激酶(Death-associated protein kinase,DAPK)表达增强人肺腺癌耐顺铂细胞株对顺铂敏感性。方法为了明确死亡相关蛋白激酶在曲古抑素A增加A549/CDDP细胞对顺铂敏感性的作用,将pcDNA3.1(+)-DAPK转染入A549/CDDP细胞,使其表达较高的DAPK水平。将对DAPK有负调控作用的DAPK-C末端导入A549/CDDP细胞,并应用RNA干扰技术抑制DAPK的表达,用曲古抑素A及顺铂进行处理,采用Western blot检测蛋白表达,中性红方法检测细胞抑制率。结果死亡相关蛋白激酶蛋白水平在A549/CDDP比在A549细胞中表达教低。当死亡相关蛋白激酶过表达时,A549/CDDP细胞对顺铂敏感性增加,曲古抑素A的作用增强。当死亡相关蛋白激酶活性被DAPK-C末端抑制及RNA干扰下调死亡相关蛋白激酶表达水平时,曲古抑素A的作用减低。结论死亡相关蛋白激酶的表达可能参与顺铂耐药,它的表达上调可能是曲古抑素A提高人肺腺癌耐顺铂细胞株A549/CDDP对顺铂敏感性机制之一
     目的探讨曲古抑素A诱导人肺腺癌耐顺铂细胞株凋亡的作用及机制。方法Western blot分析蛋白表达的变化,比色法测定Capase-8活性。结果Western blot结果显示,曲古抑素A处理细胞后,cFLIP蛋白水平下降,procaspase-8减少,提示Caspase-8被激活,促使Bid蛋白切割,使全长Bid蛋白水平减少,截断Bid条带增加。procaspase-3减少,提示此Caspase-3被激活。聚腺苷二磷酸核糖聚合酶(PARP)蛋白减少,PARP切割的条带逐渐增加,提示PARP活性增加,加促切割DNA,促进细胞凋亡。Western blot结果显示,曲古抑素A处理细胞后,cFLIP蛋白水平下降,同时观察到Caspase-8, Caspase-3, PARP被激活,Bid切割增加,曲古抑素A对Caspase-8活性和cFLIP的影响具有浓度和时间依赖性。结论曲古抑素A可以通过降低cFLIP水平激活Caspase-8诱导人肺腺癌耐顺铂细胞株A549/CDDP凋亡。
     目的探讨曲古抑素A诱导人肺腺癌耐顺铂细胞株凋亡的作用机制。方法Western blot分析凋亡相关蛋白的变化。转染Bcl-2表达质粒过表达Bcl-2和利用siRNA下调Bcl-2表达水平。结果Westernblot结果显示,曲古抑素A处理细胞后,Bcl-2蛋白水平下降,而Bax表达上调,同时观察到Caspase-3被激活。转染Bcl-2表达质粒可以抑制曲古抑素A诱导的细胞凋亡,而沉默Bcl-2表达可以增加细胞对曲古抑素A的敏感性。结论曲古抑素A可能通过线粒体途径诱导人肺腺癌耐顺铂细胞株A549/CDDP凋亡。
Background
     Lung cancer is one of the most common cancers worldwide. There are about 80% of lung cancers are defined as non-small cell lung cancer (NSCLC). While surgery remains to be the primary treatment at the early stage, many stageⅡandⅢpatients will progress within few months after tumor resection. For most NSCLC patients, they are diagnosed at local or more often distant advanced stage, chemotherapy is the leading way to lung cancer.The use of platinum-based combination chemotherpy remains the standard treatment for non-small lung cancer,However, the resistance to platinum limits further treatment clinically. For this reason, it is important to search for an appropriate and effective way to reverse cisplatin resistance in lung cancer.
     The mechanism of cisplatin-resistance has been associated with multi-factors including different cellular accumulation and detoxification of the drug, inhibition of apoptosis and DNA repairs. In treating lung cancers, the chemo-sensitivity of cisplatin is affected by the changes of gene expression, including those known to be associated with cell cycle regulation and apoptosis.
     Epigenetic alterations, such as the histone acetylation and DNA methylation in the promoter of genes, contribute to the changes of gene expression. The dys-regulation in the epigenetics can lead the onset and progression of cancer, increasingly more reports have demonstrated that it also plays an important role in drug resistance. Histone deacetylase (HDAC) inhibitors have been known to promote transcription of genes required for cell differentiation and apoptosis; therefore,they emerged as a class of cancer therapeutic agents.
     Trichostatin A (TSA) is one of such HDAC inhibitors. It was originally isolated from Streptomyces and identified as a fungicidic antibiotic and inhibited all class I and II HDACs. TSA can act as a chemo-sensitizer in ovarian cancer, gastric cancer, erythroleukemia cells, the molecular mechanisms of TSA-sensitized cytotoxicity of chemotherapeutic drugs remain largely unknown.
     In this study, we investigate the apoptosis-inducing effect of TSA in the human lung adenocarcinoma cisplatin-resistant cell line (A549/CDDP cell line) and examine whether TSA can enhance the sensitivity to cisplatin treatment and the underlying molecular mechanisms.
     Objective To investigate the apoptosis-inducing effect of TSA in the human lung adenocarcinoma cisplatin-resistant cell line A549/CDDP and to examine whether TSA can enhance the sensitivity to cisplatin treatment. Methods 1.A549 and A549/CDDP Cell lines were cultured with DMEM medium. Neutral Red assay Cell viability was performed to evaluate the resistance of A549/CDDP cells. 2. The A549/CDDP cells were treated with different concentrations of TSA.3. Apoptosis was studied using Hoechst 33258 staining and flow cytometry analysis. cell cycle and mitochondrial membrane potential were analyzed by flow cytometry.4. The A549/CDDP cells were treated with the combined treatment of cisplatin and TSA. Results 1.The resistant index of A549/CDDP cell was 12.8.2. TSA was 446.59±27.32 nmol/L,The growth curve showed the ratio of growth decreased with the increase of concentration of TSA.3.TSA induced apoptosis in A549/CDDP cells. morphologic changes including nuclear chromatin condensation fluorescence strength was observed with fluorescence microscope. Apoptosis was measured as the percentage of sub-G1 DNA content by flow cytometry.Treated by TSA, mitochondrial membrane potential was descreased and cells were arrested at S phase.4. Treated by the combined treatment of cisplatin and TSA(31.25 nmol/L and 62.5 nmol/L), the reverse multiple was 1.52,1.70. Conclusions 1.Compared with A549 cells, A549/CDDP cells have good resistance.2. TSA induced apoptosis in A549/CDDP cells.3. Treated by TSA, mitochondrial membrane potential was descreased and cells were arrested at S phase.4 TSA enhances the sensitivity of CDDP-resistant A549 cells to cisplatin.
     Objective To investigate whether DAP kinase contributes to cisplatin resistance and the underlying molecular mechanisms. Methods Different proteins was detected by Western blot method. To confirm the role of Death-associated protein kinase (DAPK) in the TSA-induced apoptosis in A549/CDDP cell line, cells were transfected with pcDNA3.1(+)-DAPK, which has higher expression level of DAPK expression,and the DAPK activity was inhibited by C-terminal fragment of DAPK and RNA interference.Results TSA induced apoptosis in A549/CDDP cells, along with the concomitant DAPK up-regulation. When DAPK is over-expressed, CDDP-resistant A549 cells become sensitive to both TSA and cisplatin. Moreover, the cytotoxicity of TSA can be alleviated when DAPK activity is inhibited by the expression of a recombinant C-terminal fragment of DAPK or RNA interference. Conclusions DAPK might involve in cisplatin-resistance of the A549/CDDP cells,the up-regulation of DAPK is one of the mechanisms mediating TSA action to sensitize cisplatin-resistant cells to apoptosis.
     Objective To investigate the mechanism of TSA induced apoptosis of cisplatin-resistant human lung adenocarcinoma cell line A549/CDDP. Methods Different proteins were analyzed by Western blot method, Colorimetric method was used to measure Caspase-8 activities. Results Treated by TSA,Western blotting analyses showed that the levels of cFLIP decreased, procaspase-8 decreased, and it resulted in the activation of Caspase-8 and Bid cleavage. The levels of procaspase-3 and PARP decreased, the cleavage of the activated PARP molecules would undergo more rapid apoptosis. Caspase-8 activity increase and cFLIP level decrease were regulated by TSA in a dose and time-dependent manner. Conclusion TSA induce A549/CDDP cell apoptosis by decreasing cFLIP level, activating caspase-8.
     Objective To investigate the action mechanism of TSA on cisplatin-resistant human lung adenocarcinoma cell line A549/CDDP. Methods Different proteins were analyzed by Western blot method, A549/CDDP cells were transfected by Bcl-2 expression Vector or endogenous Bcl-2 was downregulated by siRNA. Results Western blot analyses showed that the levels of Bcl-2 decreased, while expression of Bax increased. Simultaneously Caspase-3 was activated.Over expression of Bcl-2 can inhibit TSA-induced A549/CDDP cell apoptosis, while the decrease of Bcl-2 enhanced the sensitivity of A549/CDDP cell to TSA.Conclusion TSA induce A549/CDDP cell apoptosis by mitochondria pathway.
引文
[1]Hoffman PC, Mauer AM, Vokes EE. Lung cancer. Lancet 2000,355(9202): 479-485.
    [2]李为民,陈勃江.重视肺癌危险因素,提高肺癌早期诊断水平。西部医学,2009,21(9),1447-1448.
    [3]Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant Cisplatin evaluation:a pooled analysis by the LACE Collaborative Group. J Clin Oncol 2008;26(21):3552-3559.
    [4]Bria E, Cuppone F, Cecere FL, et al. Adjuvant chemotherapy for non-small cell lung cancer. J Thorac Oncol 2007,2 (5 Suppl):S7-11.
    [5]Winton T, Livingston R, Johnson D, et al. Vinorelbine plus Cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med 2005, 352 (25):2589-2597.
    [6]Douillard JY, Rosell R, De Lena M, et al. Adjuvant vinorelbine plus Cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]):a randomised controlled trial. Lancet Oncol 2006 7(9):719-27.
    [7]Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 2007,63(1):12-31.
    [8]张梅春,胡成平.肺癌顺铂耐药的分子机制.国际呼吸杂志,2006;26(2):152-155.
    [9]Chen JT, Huang CY, Chiang YY, et al. HGF increases cisplatin resistance via down-regulation of AIF in lung cancer cells. Am J Respir Cell Mol Biol.2008,38(5):559-65.
    [10]Chanvorachote P, Pongrakhananon V, Wannachaiyasit S, et. al. Curcumin sensitizes lung cancer cells to cisplatin-induced apoptosis through superoxide anion-mediated Bcl-2 degradation.Cancer Invest.2009,27(6):624-35.
    [11]Losert D, Pratscher B, Soutschek J, et al. Bcl-2 downregulation sensitizes nonsmall cell lung cancer cells to Cisplatin, but not to docetaxel. Anticancer Drugs 2007,18(7):755-61.
    [12]Yang H, Fu JH, Hu Y, et al. Influence of SiRNA targeting survivin on chemosensitivity of H460/CDDP lung cancer cells. J Int Med Res 2008,36(4): 734-47.
    [13]Huang Z, Lei X, Zhong M, Zhu B, et al. Bcl-2 small interfering RNA sensitizes cisplatin-resistant human lung adenocarcinoma A549/DDP cell to cisplatin and diallyl disulfide. Acta Biochim Biophys Sin (Shanghai).2007 39(11):835-43.
    [14]Wang L, Chanvorachote P, Toledo D, et al. Peroxide is a key mediator of Bcl-2 down-regulation and apoptosis induction by cisplatin in human lung cancer cells. Mol Pharmacol.2008,73(1):119-27.
    [15]张梅春,胡成平,陈琼.Survivin反义寡核苷酸提高人肺腺癌A549耐药细胞系对顺铂敏感性的研究.中华肿瘤杂志,2006,28(6),13-18.
    [16]何勇范士志蒋耀光.p73基因过量表达对人肺癌细胞A549凋亡及其化疗敏感性的作用。癌症,2006,25(8),925-932.
    [17]Esteller M. Cancer epigenomics:DNA methylomes and histone-modification maps. Nat Rev Genet,2007,8(4):286-298.
    [18]Jones PA, Baylin SB. The epigenomics of cancer. Cell.2007,128(4): 683-692.
    [19]Staub J, Chien J, Pan Y, et al. Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance. Oncogene.2007,26(34):4969-78.
    [20]Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene.2003, 22 (47):7512-7523.
    [21]Luzhna L, Kovalchuk O.Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis.Biochem Biophys Res Commun.2010,392(2):113-7.
    [22]Mariadason JM. HDACs and HDAC inhibitors in colon cancer. Epigenetics.2008,3(1):28-37.
    [23]Lund AH, van Lohuizen M. Epigenetics and cancer. Genes Dev.2004, 18 (19):2315-35.
    [24]Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004,4 (2):143-53.
    [25]Marks PA, Rifkind RA, Richon VM. et al. Histone deacetylase and cancer: cause and therapies. Nat Rev Cancer 2001,1 (3):194-202.
    [26]Zhu P, Martin E, Mengwasser J et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004,5(5):455-63.
    [27]Karagiannis TC, Smith AJ, El'Osta A. Radio-and chemo-sensitization of human erythroleukemic K562 cells by the histone deacetylase inhibitor Trichostatin A. Hell J Nucl Med,2004,7 (3):184-191.
    [28]Strait KA, Warnick CT, Ford CD, et al. Histone deacetylase inhibitors induce G2-checkpoint arrest and apoptosis in cisplatinum-resistant ovarian cancer cells associated with overexpression of the Bcl-2-related protein Bad. Mol Cancer Ther 2005,4 (4):603-11.
    [29]Muscolini M, Cianfrocca R, Sajeva A, et al. Trichostatin A up-regulates p73 and induces Bax-dependent apoptosis in Cisplatin-resistant ovarian cancer cells. Mol Cancer Ther 2008,7 (6):1410-9.
    [30]Tereshko V, Teplova M, Brunzelle J, et al. Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression. Nat Struct Biol.2001,8(10):899-907.
    [31]Shohat G, Spivak-Kroizman T, Cohen O, et al. The Pro-apoptotic Function of Death-associated Protein Kinase Is Controlled by a Unique Inhibitory Autophosphorylation-based Mechamism. J Biol Chem,2001, 276(50):47460-47467.
    [32]Raveh T, Berissi H, Eisenstein M,et al. A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc Natl Acad Sci U S A.2000,97(4):1572-1577.
    [33]Cohen O, Kimchi A. DAP-kinase:from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ.2001,8(1): 6-15.
    [34]Jang CW, Chen CH, Chen CC, et al. TGFβ induces apoptosis through Smad-mediated expression of DAP kinase. Nat Cell Biol.2002,4(1):51-58.
    [35]Pelled D, Raveh T, Riebeling C, et al. Death-associated protein (DAP) kinase plays a central role in ceramide induced apoptosis in cultured hippocampal neurons. J Biol Chem,2002,277(3):1957-1961.
    [36]Wang WJ, Kuo JC, Yao CC et al. DAP kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol, 2002,159(1):169-179.
    [37]Bovellan M, Fritzsche M, Stevens C, et al. Death-associated protein kinase (DAPK) and signal transduction:blebbing in programmed cell death. FEBS J.2010,277(1):58-65.
    [38]Kogel D, Reimertz C, Dussmann H, et al. The death associated protein (DAP) kinase homologue Dlk/ZIP kinase induces p19ARF-and p53-independent apoptosis. Eur J Cancer.2003 Jan,39(2):249-256.
    [39]Inbal B, Bialik S, Sabanay I, et al. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol.2002,157(3):455-468.
    [40]Cohen O, Inbal B, Kissil JL, et al. DAP kinase participates in TNF-alpha-and Fas-induced apoptosis and its function requires the death domain. J Cell Biol,1999,146 (1):141-148.
    [41]Bai T, Tanaka T, Yukawa K, Umesaki N. A novel mechanism for acquired cisplatin-resistance:suppressed translation of death-associated protein kinase mRNA is insensitive to 5-aza-2'-deoxycitidine and trichostatin in cisplatin-resistant cervical squamous cancer cells. Int J Oncol 2006,28 (2): 497-508.
    [42]Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature.1997,388(6638):190-195.
    [43]Kim Y, Suh N, SpornM, et al. An inducible pathway for degradation of FL IP p rotein sensitizes tumor cell to TRA IL-induced apoptosis. J Biol Chem, 2002,277(25):22320-22329.
    [44]Matsuda F, Inoue N, Goto Y, et al. cFLIP regulates death receptor-mediated apoptosis in an ovarian granulosa cell line by inhibiting procaspase-8 cleavage. J Reprod Dev.2008,54(5):314-20.
    [45]顾宇平,束永前. 非小细胞肺癌组织中cFLIP和P53蛋白的表达.中国现代医学杂.2006,16(21):3254-3256.
    [46]Hsu SY, Hsueh AJ. Tissue-specific Bcl-2 protein partners in apoptosis:An ovarian paradigm. Physiol Rev,2000,80(2):593-614.
    [47]Minn AJ, Velez P, Schendel SL, et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature.1997,385(6614):353-7.
    [48]Grare M, Mourer M, Fontanay S, et al. In vitro activity of para-guanidinoethylcalix[4] arene against susceptible and antibiotic-resistant Gram-negative and Gram-positive bacteria. J. Antimicrob. Chemother 2007, 60 (3):575-81.
    [49]McKeague AL, Wilson DJ, Nelson J. Staurosporine-induced apoptosis and hydrogen peroxide-induced necrosis in two human breast cell lines. Br J Cancer 2003,88 (1):125-131.
    [50]Zhang HT, Wu J, Zhang HF, et.al. Efflux of potassium ion is an important reason of HL-60 cells apoptosis induced by Tachyplesin. Acta Pharmacol Sin 2006,27(10):1367-74.
    [51]张海涛,张海风,祝其锋等。鲎血细胞多肽诱导HL—60细胞凋亡时线粒体膜电位的变化.中国癌症杂志,2002,12,(2),123-126.
    [52]刘小东,孙华,刘耕陶.基于调控细胞凋亡的肿瘤化疗增敏策略,中国药理学通报,2009,25(10):1261-1264.
    [53]Shankar S, Srivastava RK. Histone deacetylase inhibitors:mechanisms and clinical significance in cancer:HDAC inhibitor-induced apoptosis. Adv Exp Med Biol.2008,615:261-98.
    [54]Lee MJ, Kim YS, Kummar S, et al. Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol.2008,20(6):639-49.
    [55]Sambucetti LC, Fischer DD, Zabludoff S, et al. Histone Deacetylase Inhibition Selectively Alters the Activity and Expression of Cell Cycle Proteins Leading to Specific Chromatin Acetylation and Antiproliferative Effects. J Biol Chem,1999,274 (49):34940-34947.
    [56]张海涛,冯哲玲,梁念慈,朱振宇,马涧泉.丁酸钠诱导Raji细胞表达DAPK的研究.中国药理学通报,2005,21(12):1438-1451.
    [57]Rosato RR, Maggio SC, Almenara JA, et al. The Histone Deacetylase Inhibitor LAQ824 Induces Human Leukemia Cell Death through a Process Involving XIAP Down-Regulation, Oxidative Injury, and the Acid Sphingomyelinase-Dependent Generation of Ceramide. Mol Pharmacol,2006, 69 (1):216-225.
    [58]Strait KA, Dabbas B, Hammond EH,et al. Cell Cycle Blockade and Differentiation of Ovarian Cancer Cells by the Histone Deacetylase Inhibitor Trichostatin A Are Associated with Changes in p21, Rb, and Id Proteins. Mol. Cancer Ther, 2002,1(11):1181-1190.
    [59]Toth KF, Knoch TA, Wachsmuth M, et al. Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci,2004, 117(18):4277-428
    [60]Preuss U, Biebaum H, Buchenau P, et al. DAP-like kinase, a mem-ber of the death-associated protein kinase family, associates with centrosomes centromers, and the contractile ring during mitosis. Eur J Cell Biol,2003,82(9): 447-459.
    [61]Bialik S, Kimchi A. The death-associated protein kinases:structure, function, and beyond. Annu Rev Biochem.2006,75:189-210.
    [62]Zhang X, Yashiro M, Ren J, et al. Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep.2006,16(3):563-8.
    [63]Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr.1996,5 (4-5):245-53.
    [64]Zhang HT, Feng ZL, WuJ, et al. Sodium butyrate-induced death-associated protein kinase expression promote Raji cell morphological change and apoptosis by reducing FAK protein levels. Acta Pharmacol Sin.2007,28(11): 1783-1790.
    [65]Gessner C, Liebers U, Kuhn H, et al. BAX and p16INK4A are independent positive prognostic markers for advanced tumour stage of nonsmall cell lung cancer. Eur Respir J.2002,19 (1):134-40.
    [66]Tang X, Wu W, Sun SY, et al. Hypermethylation of the death-associated protein kinase promoter attenuates the sensitivity to TRAIL-induced apoptosis in human non-small cell lung cancer cells. Mol Cancer Res.2004,2 (12): 685-91
    [67]Shamloo M, Soriano L, Wieloch T, et al. Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem.2005,280 (51):42290-9.
    [68]Jin Y, Blue EK, Gallagher PJ. Control of death-associated protein kinase (DAPK) activity by phosphorylation and proteasomal degradation. J Biol Chem.2006,281 (51):39033-40.
    [69]曹勇,李清泉.cFLIP与肿瘤的关系,国外医学生理与病理科学与临床分册,2002,22(5),453-455.
    [70]Ghavami S, Hashemi M, Ande S R, et al. Apoptosis and cancer:mutations within caspase genes. J. Med. Genet.2009,46(8):497-510.
    [71]Guicciardi ME, Bronk SF, Werneburg NW, et al. cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis. Gores. Am J Physiol Gastrointest Liver Physiol, 2007,292(5):G1337-46.
    [72]Tazzari PL, Tabellini G, Ricci F, et al. Synergistic Proapoptotic Activity of Recombinant TRAIL Plus the Akt Inhibitor Perifosine in Acute Myelogenous Leukemia Cells. Cancer Res,2008,68(22):9394-403.
    [73]Bartova E, Pachernik J, Harnicarova A, et. al. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci.2005,118(Pt 21):5035-46.
    [74]Kim HR, Kim EJ, Yang SH, et. al. Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway? Exp Mol Med.2006,38(6):616-24.
    [75]Seki K, Yoshikawa H, Shiiki K, et al. Cisplatin (CDDP) specifically induces apoptosis via sequential activation of caspase-8,-3 and-6 in osteosarcoma. Cancer Chemother Pharmacol,2000,45(3):199-206.
    [76]刘晓翌,刘建军.Caspase与细胞凋亡,武汉大学学报(医学版),2004, 25(6),742-745.
    [77]Sharp DA, Lawrence DA, AshkenaziA. Selective knockdown of the long variant of cellular FL ICE2inhibitory p rotein augments death receptor-mediated caspase-8 activation and apoptosis. J B iol. Chem,2005,280 (19) 19401-19409.
    [78]Esposti MD. The roles of Bid. Apoptosis,2002,7(5):433-40.
    [79]Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell,1998,94(4): 491-501.
    [80]Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell,1998,94(4):481-90.
    [81]Alimonti JB, Shi L, Baijal PK, et al. Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J Biol Chem.2001,276(10):6974-82.
    [82]Chen M, He H, Zhan S,et al. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem.2001, 276(33):30724-30728.
    [83]Veronika Stoka, Boris Turk, Sharon L. Schendel, et al. Lysosomal Protease Pathways to Apoptosis. cleavage of bid, not pro-caspases, is the most likely route. J. Biol. Chem.,2001,276(5):3149-3157.
    [84]Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 2002,111(3):331-42.
    [85]Epand RF, Martinou JC, Montessuit S, et al. Membrane perturbations induced by the apoptotic Bax protein. Biochem J,2002,367(Pt 3):849-55.
    [86]Grinberg M, Sarig R, ZaltsmanY, et al. tBID Homooligomerizes in the Mitochondrial Membrane to Induce Apoptosis. J. Biol. Chem.,2002,277 (14):12237-12245.
    [87]Lutter M, Fang M, Luo X, et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol,2000,2(10):754-61.
    [88]Henshall DC, Bonislawski BB, Skradski SL, et al. Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol Dis.2001,8(4):568-580.
    [89]Wang X. The expanding role of mitochondria in apoptosis. Genes& Dev., 2001,15:2922.
    [90]Kamer I, Sarig R, Zaltsman Y, et al. Proapoptotic BID is an ATM effector in the DNA-damage response. Cell,2005,122(4):593-603.
    [91]Zinkel SS, Hurov KE, Ong C, et al. A role for proapoptotic BID in the DNA-damage response. Cell,2005,122(4):579-91.
    [92]Fu GF, Lin XH, Han QW, et al. RNA interference remarkably suppresses bcl-2 gene expression in cancer cells in vitro and in vivo. Cancer Biol Ther, 2005,4(8):822-829.
    [93]Suzuki M, Youle RJ, and Tjandra N. Structure of Bax:coregulation of dimer formation and intracellular localization. Cell,2000,103(4):645-54.
    [94]Froesch BA, Aime-Sempe C, Leber B, et al. Inhibition of p53 Transcriptional Activity by Bcl-2 Requires Its Membrane-anchoring Domain. J. Biol. Chem.,1999,274(10):6469-75.
    [95]Wang NS, Unkila MT, Reineks EZ, et al. Transient Expression of Wild-type or Mitochondrially Targeted Bcl-2 Induces Apoptosis, whereas Transient Expression of Endoplasmic Reticulum-targeted Bcl-2 Is Protective against Bax-induced Cell Death. J. Biol. Chem.,2001,276(23):44117-44128.,
    [96]ZHuang. Bcl-2 family proteins as targets for anticancer drug design. Oncogene, 2000,19(56):6627-31)。
    [97]RR Rosato, JA Almenara, S Grant. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res,2003,63 (13):3637-3645.
    [98]张海涛,伍俊,汪亚君,郭黠,冯哲玲等.丁酸钠诱导Raji细胞基因表达变化的研究.肿瘤防治研究,2007,34(9):678-681.
    [1]Risch A, Plass C. Lung cancer epigenetics and genetics. Int J Cancer.2008, 123(1):1-7.
    [2]Jones PA, Baylin SBThe epigenomics of cancer. Cell, 2007,128: 683-692.
    [3]Kanai Y, Ushijima S, Kondo Y. et al. DNA methyltransferase expression and DNA methylation of CpG island and pericentromeric satelliteregion in human colorectal and stomach cancers. Int J Cancer.2001,91(2):205-212
    [4]Robertson KD. DNA methylation and human disease. Nat. Rev. Genet 2005,6:597-610
    [5]Schrump DS, Nguyen DM. Targeting the epigenome for the treatment and prevention of lung cancer. Semin.Oncol.2005,32:488-502.
    [6]Kerr KM, Galler JS, Hagen JA, et al.The role of DNA methylation in the development and progression of lung adenocarcinoma Dis Markers.2007, 23(1-2):5-30.
    [7]Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer.2004,4(2):143-53.
    [8]Esteller M. Epigenetics in cancer. Engl J Med.2008,358(11):1148-59.
    [9]Anisowicz A, Huang H, Braunschweiger KI, et. al. A high-throughput and sensitive method to measure Global DNA Methylation:Application in Lung Cancer. BMC Cancer.2008,8(1):222.
    [10]Wilson IM, Davies JJ, Weber M, et. al. Epigenomics:mapping the methylome. Cell Cycle.2006,5(2):155-8.
    [11]Hutt JA, Vuillemenot BR, Barr EB, et. al. Life-span inhalation exposure to mainstream cigarette smoke induces lung cancer in B6C3F1 mice through genetic and epigenetic pathways. Carcinogenesis.2005 Nov,26(11): 1999-2009.
    [12]Belinsky SA. Silencing of genes by promoter hypermethylation:key event in rodent and human lung cancer. Carcinogenesis 2005,26(9):1481-1487,
    [13]Wang Y, Zhang D, Zheng W, et. al Multiple gene methylation of nonsmall cell lung cancers evaluated with 3-dimensional microarray. Cancer.2008, 112(6):1325-36.
    [14]Tsujiuchi T, Masaoka T, Sugata E, et. al. Hypermethylation of the Dal-1 gene in lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine in rats. Mol Carcinog.2007,46(10):819-23.
    [15]Kikuchi S, Yamada D, Fukami T,et.al. Promoter methylation of DAL-1/4. IB predicts poor prognosis in non-small cell lung cancer. Clin Cancer Res.2005,11(8):2954-61.
    [16]Wen Yue, Sanja Dacic, Quanhong Sun, et. al. Frequent Inactivation of RAMP2, EFEMP1 and Duttl in Lung Cancer by Promoter Hypermethylation, Clin.l Cancer Res.2007,13(5),4336-4344.
    [17]Hsu HS, Chen TP, Wen CK, et. al. Multiple genetic and epigenetic biomarkers for lung cancer detection in cytologically negative sputum and a nested case-control study for risk assessment. J Pathol.2007,213(4):412-9.
    [18]Hsu HS, Chen TP, Hung CH, et. al. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer.2007,110(9):2019-26.
    [19]Kim H, Kwon YM, Kim JS, et. al. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol.2004 Jun 15,22(12):2363-70.
    [20]Katayama H, Hiraki A, Aoe K, Fujiwara K, et. al. Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer.2007,120(10):2191-5.
    [21]Miyamoto K, Ushijima T. Diagnostic and therapeutic applications of epigenetics. Jpn J Clin Oncol.2005,35(6):293-301.
    [22]Belinsky SA, Nikula KJ, Palmisano WA. et. al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A.1998,95(20):11891-6.
    [23]Brock MV, Hooker CM, Ota-Machida E, et. al. DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med.2008,13, 358(11):1118-28.
    [24]Yanagawa N, Tamura G, Oizumi H, et. al. Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer.2007,58(1): 131-8.
    [25]Ramirez JL, Salazar MF, Gupta J, et. al. Methylation patterns and chemosensitivity in NSCLC. Adv Exp Med Biol.2006,587:195-209.
    [26]Niklinska W, Naumnik W, Sulewska A, et al. Prognostic significance of DAPK and RASSF1A promoter hypermethylation in non-small cell lung cancer (NSCLC). Folia Histochem Cytobiol.2009,47(2):275-80.
    [27]Scott SA, Lakshimikuttysamma A, Sheridan DP, et. al. Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp Hematol.2007,35(2): 263-73.
    [28]Stresemann C, Brueckner B, Musch T, et. al. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res.2006, 66(5):2794-800.
    [29]Brueckner B, Boy RG, Siedlecki P, er. al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res.2005,65(14):6305-11.
    [30]Fukuda H, Sano N, Muto S, et al. Simple histone acetylation plays a complex role in the regulation of gene expression. Brief Funct Genomic Proteomic.2006,5(3):190-208.
    [31]Nan X, Ng HH, Johnson CA, et. al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature.1998,393(6683):386-9.
    [32]Miremadi A, Oestergaard MZ, Pharoah PD, et. al. Cancer genetics of epigenetic genes. Hum Mol Genet.2007,16:R28-R49.
    [33]Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG, et. al. Roles of CREB-binding protein (CBP)/p300 in respiratory epithelium tumorigenesis. Cell Res.2007,17(4):324-32.
    [34]Kishimoto M, Kohno T, Okudela K., et. al. Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res.2005,11 (2 Pt 1):512-9.
    [35]Gao L, Cueto MA, Asselbergs F, et. al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem.2002,12,277(28):25748-55.
    [36]Mariadason JM. HDACs and HDAC inhibitors in colon cancer. Epigenetics.2008,3(1):28-37.
    [37]Dokmanovic M, Perez G, Xu W, et. al. Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol Cancer Ther.2007,6(9): 2525-34.
    [38]osada H, Tatematsu Y, Saito H, et. al. Reduced expression of class Ⅱ histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer.2004,112(1):26-32.
    [39]Bartling B, Hofmann HS, Boettger T, et. al. Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer.2005,49(2):145-54.
    [40]Park JM, Lee GY, Choi JE, et. al. No association between polymorphisms in the histone deacetylase genes and the risk of lung cancer. Cancer Epidemiol Biomarkers Prev.2005,14(7):1841-3
    [41]Kim TY, Bang YJ, Robertson KD. et. al. Histone deacetylase inhibitors for cancer therapy. Epigenetics.2006,1(1):14-23.
    [42]Bartova E, Pachernik J, Harnicarova A, Kovarik A, et. al. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci.2005,118(Pt 21):5035-46.
    [43]El-Khoury V, Gomez D, Liautaud-Roger F, et. al. Effects of the histone deacetylase inhibitor trichostatin A on nuclear texture and c-jun gene expression in drug-sensitive and drug-resistant human H69 lung carcinoma cells. Cytometry A.2004,62(2):109-17.
    [44]Kim HR, Kim EJ, Yang SH, et. al. Trichostatin A induces apoptosis in lung cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway? Exp Mol Med.2006,38(6):616-24.
    [45]Yu XD, Wang SY, Chen GA, et. al. Apoptosis induced by depsipeptide FK228 coincides with inhibition of survival signaling in lung cancer cells. Cancer J.2007,13(2):105-13.
    [46]Platta CS, Greenblatt DY, Kunnimalaiyaan M, et. al. Valproic acid induces Notchl signaling in small cell lung cancer cells. J Surg Res.2008,148(1): 31-7.
    [47]Miyanaga A, Gemma A, Noro R, Kataoka K, et. al. Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model. Mol Cancer Ther.2008,7(7): 1923-30.
    [48]Ramalingam SS, Parise RA, Ramanathan RK. et. al. Phase Ⅰ and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res.2007,13(12):3605-10.
    [49]Reid T, Valone F, Lipera W, Irwin D, et, al. Phase Ⅱ trial of the histone deacetylase inhibitor pivaloyloxymethyl butyrate (Pivanex, AN-9) in advanced non-small cell lung cancer. Lung Cancer.2004,45(3):381-6.
    [50]Schrump DS, Fischette MR, Nguyen DM, et, al. Clinical and molecular responses in lung cancer patients receiving Romidepsin. Clin Cancer Res.2008,14(1):188-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700