离子液体表面/界面性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是一类在室温或近于室温情况下呈液态的,由有机阳离子和无机或有机阴离子构成的有机盐,也叫室温离子液体。离子液体具有液态温度范围宽;蒸汽压几乎为零,几乎不挥发;对很多无机和有机物质都具有良好的溶解能力,且具有溶剂和催化剂的双重功效;可设计性强等优点,这些优异的特性是离子液体特有的、传统的有机溶剂无法比拟的。由于离子液体的这些特殊性质和表现,近年来离子液体的研究受到各国科技工作者的重视和关注。
     表面张力是液体(包括固体)表面的基本物理化学性质之一。了解离子液体的表面界面性质(包括界面张力)对于进一步深入研究和揭示离子液体在各个领域相互作用的内在本质,对认识界面结构、界面分子的相互作用是非常必要的,对各种与离子液体有关的工业过程的开发、设计和模拟以及工业生产都具有重要意义。
     本文对系列N-烷基-N-烷基-咪唑类离子液体的表面张力、混合离子液体的表面张力以及离子液体与烷烃的界面张力进行了研究。将硬球模型理论应用于离子液体表面张力的计算,主要研究内容如下:
     1.采用表面张力测定仪对28个纯离子液体体系的表面张力进行了研究,研究结果表明,纯离子液体的表面张力随温度的升高呈下降趋势;将Reiss的分子硬球模型应用于纯离子液体表面张力的计算,得到相应的关联参数,其模型值与实验测试值表面张力的平均偏差为0.51%。
     2.对混合离子液体的表面张力进行了研究,结果表明,混合离子液体的表面张力变化情况随温度的上升呈下降的趋势。在相同的温度下,固定两种物质中的一种,另一种为含有相同阴离子系列离子液体随着阳离子咪唑环1位氮上取代基碳链的增加,混合物的表面张力减小。这与纯离子液体的变化趋势是一致的,并在纯离子液体模型内引入混合规则,建立了混合离子液体的体系表面张力的计算模型,对16种离子液体体系进行了预测和关联,计算结果非常成功,说明此模型是成功的。
     3.对离子液体与正烷烃的界面张力进行了研究,结果表明:随着温度的升高,离子液体与正烷烃的界面张力呈现下降趋势,其表面能、表面熵随1为氮上取代基碳链的增长而增长。将离子液体与有机溶液的界面张力看成是纯离子液体与有机溶剂表面张力的函数,引入了校正参数,其结果符合非极性/极性体系校正参数φ值小于1的规律。
Ionic liquids or room temperature ionic liquids (RTILs)are a class of organic salts that remain liquid at room temperature or near room temperature, usually composed of organic cations and organic or inorganic anions. Compared with traditional organic solvents, RTILs have tremendous advantages, such as negligible vapor pressure, good solvation ability for organic or inorganic materials, and have the function of both solvent and catalyst. Furthermore, through different combinations of cations and anions, there is a tremendous variety of "designer" solvents. Their status as "green" or "designer" solvents explains the large amount of studies concerning their possible industrial use as reaction or extraction media. These special properties of ILs are in close connection with their microscopic structures, but how the microscopic structures affect their properties has not yet been understood completely.
     Surface tension is one of the basic physical and chemical properties of a liquid (including solid). It is very important to study the property of ionic liquid surface and interface (including the interfacial tension), because it is useful to further study and reveal the interaction of ionic liquids in various fields, and it is helpful to study the interaction between interface structure and interface elements. And it is necessary to study the process development, design, simulation, as well as industrial production about the ionic liquid.
     In this paper, the surface tensions of N-alkyl-N-alkyl -imidazolium ionic liquid and mixture of ionic liquid, the interface tension between ionic liquids and Alkanes were experimentally studued. The hard-sphere model theory is proposed to calculate the surface tension of ionic liquid. The following results were obtained.
     The first, with the temperature increasing, the surface tension of pure ionic liquid decreased. Reiss molecular hard-sphere model was applied to calculate the surface tension of 28 pure ionic liquids, the corresponding correlation parameters were obtained, and the average deviation of surface tension between calculation value and experimental one is 0.51%.
     The second, surface tensions of two mixture of ionic liquids were also studied, and the results showed that with the temperature increasing, the surface tension of ionic liquids mixture decreased. At the same temperature, fixed in one of two substances, another to contain the same anion series of ionic liquids with cations of nitrogen on the imidazole ring a substituent carbon chain increases, the surface tension of the mixture decreased. It is same with the trend of pure ionic liquids . After introducing the mixing rule into the model of pure ionic liquid, the calculation surface tension of ionic liquid mixture was established. Then 16 pairs of ionic liquid systems were predicted, and the calculation results are very successful.
     The third, interface tensions between ionic liquids and n-alkanes were studied. The results showed that, with the temperature increasing, the interface tension between ionic liquids and n-alkanes decreased, and with the growth of a nitrogen substituent carbon chain,its surface energy and surface entropy increased. If we consider the interface tension of pure ionic liquids and organic solvents as a function of the surface tension of pure ionic liquids and organic solvents, a correction parameter is given,and the results inosculate with the rule that correction parameter of non-polar / polar systems is lower than one.
引文
[1] K. R. Seddon, Ionic Liquids for Clean Technology. Chem. Biotechnol, 1997, 2: 351-356
    [2] J. D. Holbery, K. R. Seddon, The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc. Dalton Trans, 1999, 13: 2133-2139
    [3] B. Pierre, D. Ana-Paula, P. Nicholas, et al. Highly conductive ambient temperature molten salts. Inorg. Chem, 1996, 35: 1168-1178
    [4] J. S. Wilkes. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A: Chem. 2004, 214: 11-17
    [5] R. D. Rogers, K. S. Seddon, Ionic Liquids Industrial Applications for Green Chemistry. ACS Symposium Series 818, ACS, Washington DC, 2002
    [6] F. Endres, Ionic liquids: solvents for the electrodeposition of metals and semiconductors. Chem. Phys. Chem, 2002, 3: 144
    [7] J. Dupout, R. F. de Souza, P. A. Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev., 2002, 102: 3667
    [8]张锁江,孙宁,吕兴梅,等.离子液体的周期性变化规律及导向图,中国科学B辑化学, 2006, 36 (1): 23
    [9]李汝雄.绿色溶剂-离子液体的合成与应用.第2版.北京:化学工业出版社, 2005: 7
    [10] P. Bonhote, A. P. Dias, N. Papageorgiou, Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35: 1168-1178
    [11] D. R. Macfarlane, J. Golding, P. Meakin, et al. High conductivity molten salts based on the imide ion. Electrochimica Acta, 2000, 45: 1271-1278
    [12] A. E. Visser, J. D. Holbrey, R. D. Rogers, Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid–liquid separations. Chem. Commun., 2001: 2484-2485
    [13]杨雅立王晓化寇元等.不断壮大的离子液体家族.化学进展, 2003,15(6):471-476
    [14] D. J. Fraga, J. P. Bazureau, Grafted ionic liquid-phase-supported synthesis of small organic molecules. Tetrahedron Letters, 2001, 42: 6097-6100
    [15]张保芳,蒲敏,陈标华,刘坤辉.一类新型绿色环保的介质材料—咪唑类离子液体.材料科学与工程学报, 2006, 24(1): 165~168
    [16]孙华雨.烷基咪唑类离子液体的合成及其构效关系. [兰州理工大学硕士论文]. 2009: 3-4
    [17]刘英锋,李长江,包富山.等.离子液体的分类、合成与应用.化学教育, 2005, (2): 7-12
    [18]张彦红,刘植昌,黄崇品,等.离子液体的离子存在形式和物性研究.化学世界, 2003, 12: 665-669
    [19] J. L. Anthony, E. J. aginn, J. F. Brennecke. Solution thermodynamics imidazolium based ionic liquids and water. Journal of Physical Chemistry B, 2001, (105): 1092-1094
    [20]王建英.离子液体中分子筛催化环己烷氧化反应研究. [北京化工大学博士论文]. 2008: 10-13
    [21]李汝雄,王建基.离子液体的热物理性质研究进展.北京石油化工学院学报,2005,13(3):20-23
    [22] D. J. Fraga, J. P. Bazureau, Grafted ionic liquid-phase-supported synthesis of small organic molecules. Tetrahedron Letters, 2001, 42: 6097-6100
    [23]陈钟秀,顾飞燕,胡望明.化工热力学.第二版北京:化学工业出版社. 2003:217
    [24] G. Para, E. Jarek. Effect of electrolytes on surface tension of ionic surfactant solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2003 (222): 213-222
    [25] Liu H. Duan Y. Y. Surface Tension of Difluoromethane (R-32)+1,1,2,3,3,3- Hepta- fluorop- ropane (R-227ea)+from (253 to 333)K. J. Chem. Eng. Data, 2005, 50(1): 182-186
    [26]谭兴文.液体表面张力系数与温度的关系的实验研究.西南师范大学学报, 2007, 32(4): 115-118
    [27]程传煊.表面物理化学.北京:科技文献社, 1995. 377
    [28]尹东霞,马沛生.液体表面张力测定方法的研究进展.科技通报, 2007, 23(3): 424-429
    [29] George L, Philip R W. Surface tension measurements of N-Alkylimidazolium ionic liquids. Langmuir. 2001,17: 6138-6142
    [30] GeorgeLaw, PhilipR.Watson, AdrianJ.Carmichael Molecular composition and orientation at the surface of room-temperature ionicliquids:Eeect of molecular structure. Phys. Chem. Chem. Phys. 2001,3: 2879-2885
    [31] Jonathan G. Huddleston, Ann E. Visser, W. Matthew Reichert, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 2001, 3: 156–164
    [32] V.Halka,R.TsekovandW.Freyland Peculiarity of the liquid/vapour interface of an ionic liquid: study of surface tension and viscoelasticity of liquid BMImPF6 at various temperatures. Phys. Chem. Chem. Phys., 2005, 7 : 2038–2043
    [33] Ana B. Pereiro,? Francisco Santamarta,? Emilia Tojo, Temperature Dependence of Physical Properties of Ionic Liquid 1,3-Dimethylimidazolium Methyl Sulate. J. Chem. Eng. Data. 2006,51, (3): 952-954
    [34] Yang J. Z., Lu X. M., Gui J S, Xu W G. A new theory for ionic liquids—the Interstice Model Part 1. The density and surface tension of ionic liquid EMISE. Green Chem., 2004, 6: 541-543
    [35] Qing-GuoZhanga ,Jia-ZhenYangb, Xing-MeiLua, ,Jin-SongGui ,MingHuang Studies on anionic liquid based on FeCl3 and its properties. Fluid Phase Equilibria ,226(2004): 207–211
    [36] Shu-GuangSuna, YingWei, Da-WeiFang,etl. Estimation of properties of the ionic liquid BMIZn3Cl7 . Fluid Phase Equilibria, 273(2008): 27–30
    [37] Tianying Yan, Shu Li, Wei Jiang, et al. Structure of the Liquid?Vacuum Interface of Room-Temperature Ionic Liquids: A Molecular Dynamics Study. J. Phys. Chem. B, 2006, 110 (4): 1800–1806
    [38] R.M.Lynden-Bell ,M.Del Popolob .Simulation of the surface structure of butylmethylimidazolium ionic liquids. Phys.Chem.Chem.Phys.,2006, 8: 949–954
    [39] R. M. Lynden-Bell, J. Kohanoff, M.G. Del. Popolob Simulation of Interfaces between Room Temperature Ionic Liquids and Other Liquids. Mol. Phys , 2003, 101(16): 2625-2638
    [40] Bhargava B. L., Balasubramanian S., Layering at an Ionic Liquid--Vapor Interface: A Molecular Dynamics Simulation Study of [bmim][PF6]. J. Am. Chem. Soc., 2006, 128: 10073-10079
    [41]吴晓萍,刘志平,汪文川.分子模拟研究气体在室温离子液体中的溶解度.物理化学学报, 2005, 21(10): 1138-1142
    [42]高金森,王鹏,董坤,等.氯化烷基咪唑离子液体分子结构和红外光谱的模拟计算.石油学报, 2006, 22(1): 72-76
    [43]蒲敏,刘坤辉,李会英. DFT法研究离子液中EMIM催化丁烯双键异构反应机理.物理化学学报, 2004, 20(8): 826-830
    [44] Yong Wang, Haoran Li, Shijun Han. A Theoretical Investigation of the Interactions between Water Molecules and Ionic Liquids. J. Phys. Chem. B,2006, 110(48): 24646–24651
    [45] John D H, Kenneth R S. The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates: ionic liquids and ionic liquid crystals. J. Chem.Soc. Dalton Trans., 1999: 2133-2139
    [46] Law, G, Watson, P. R. Surface orientation in ionic liquids. Chem. Phys. Lett. 2001, 345: 1-4
    [47] Ma H, Wan X, Chen X, Zhou Q. Reverse atom transfer radical polymerization of methyl methacrylate in imidazolium ionic liquids. Polymer, 2003, 44(18): 5311-5316
    [48] Cuo C C, Huang G, Zhang X B, Guo D C. Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductants and solvents. Appl.Catal. A: Gen., 2003, 247: 261-267
    [49]杨家镇,桂劲松,吕兴梅,等.离子液体BMIBF4性质的研究.化学学报. 2005,63(7):577-580
    [50] Kahl H, Wadewitz T, Winkelmann J. Surface tension of pure liquids and binary liquid mixtures. J. Chem. Eng. Data, 2003, 48: 580-586 51] Azizian S, Bashavard N. Surface properties of pure liquids and binary liquid mixtures of ethylene glycol+ methylcyclohexanols. J. Chem. Eng. Data, 2004, 49: 1059-1063
    [52] Yadollah Maham, A. Chevillard, Alan E. Mather. Surface thermodynamics of aqueous solutions of morpholine and methylmorpholine. J. Chem. Eng. Data, 2004, 49: 411-415
    [53]谢端绶,璩定一,苏元复.常用物料物性数据.化学工业出版社,北京, 1979: 390-392.
    [54] Matsuda, T.; Mishima, Y.; Azizian, S.etal. Interfacial tension and wetting behavior of air/oil/ionic liquid systems. Colloid Polym. Sci. 2007, 285 (14): 1601–1605.
    [55] Azita Ahosseini, Brent Sensenich, Laurence R. Weatherley. Phase Equilibrium,Volumetric,and Interfacial Properties of the Ionic Liquid, 1-Hexyl-3-methylimidazolium Bis(tri?uoromethylsulfonyl)amide and1-Octene. J.Chem.Eng.Data. 2009,2: A-G
    [56] van Oss, C. J. Interface Forces in Aqueous Media; Marcel Dekker:New York, 1994.
    [57] Davis H.T., Scriven L·E·A Simple Theory of Surface Tension at Low Vapor Pressure.·J.·Phys·Chem., 1976, 80: 2805-2806
    [58] Sanchez I.C.Liquids: Surface Tension, Compressibility and Invariants.J.Chem.Phys., 1983, 79 (1): 405-415
    [59]胡永琪,李志宝,陆九芳,等.有PR状态方程计算液体混合物表面张力.化学工程, 1997,25(3): 42-45.
    [60] Gomez M.A., Chacon E.. Structure and Surface Tension of the Liquid-Vapor Interface of Simple Metals: A Theoretical approach·Physical Review B, 1992, 46 (2): 723-732
    [61] Reiss H., Mayer S.W. Katz J.Law of Corresponding States for Fused Salts. J.Chem Phys , 1961, 35: 820-826
    [62] Reiss H., Mayer S.W.. Theory of the Surface Tension of Molten Salts. J.Chem.Phys., 1961, 34: 2001-3003
    [63] Tada Y., Hiraokas S., Katsumura Y.. Effects of Ionic Size Difference on Thermodynamic and Transport Properties of Uni-univalent Molten Salt Mixtures. Ind.Eng.Chem.Res., 1992, 31: 2010-2023
    [64] Tada Y., Hiraokas S., Katsumura Y.. Simple Equations for Mixing Properties of Alkali Halides Based on the Law of Corresponding States. Ind.Eng.Chem.Res, 1993, 32: 2873-2880
    [65]李志宝,胡永琪,李以圭等.熔盐体系表面张力的分子关联模型.化工冶金, 1997(18): 342-348
    [66] Reiss H. Scaled Particle Methods in the Statistical Thermodynamics of Liquids. Adv inChem.Phys.Ed.by Prigogine I, 1965,9: 1-84
    [67] Economou I·G·, Peters C·J·, Arons J·S.Water-Salt Phase Equilibria at Elevated Temperatures and Pressures: Model Devel-opment and Mixture Predictions·J·Phys.Chem, 1995, 99: 6182-6193
    [68] Ramesh L.Gardas,Joao A.P.Coutinho. applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilibria , 2008(265): 57–65
    [69] Jia-ZhenYang ,Qing-GuoZhang, FengXue. Studies on the properties of EMIGaCl4, Journal of Molecular Liquids, 2006(128): 81–84
    [70] Jing Tong,,Mei Hong,,WeiGuan . Studies on the thermodynamic properties of new ionic liquids:1-Methyl-3-pentylimidazolium salts containing metal of group III. J.Chem. Thermodynamics 2006,38: 1416–1421
    [71] Jing Tong, Qing-Shan Liu,Wei Guan. Estimation of Physicochemical Properties of Ionic Liquid C6MIGaCl4 Using Surface Tension and Density. J.Phys. Chem. B 2007,111: 3197-3200
    [72] Jaroslav Klomfar,Monika Soucková,Jaroslav Pátek. Surface tension measurements with validated accuracy for four 1-alkyl-3-methylimidazolium based ionic liquids. J.Chem. Thermodynamics, 2010(42): 323–329
    [73] Mara G. Freire ,Pedro J. Carvalho ,Ana M.Fernandes,etal. Surface tensions of imidazolium based ionic liquids:Anion,cation, temperature and water effect Journal of Colloid and Interface Science 2007(314): 621–630
    [74] Ana B.Pereiro, PedroVerd, EmiliaTojo,etal. Physical Properties of 1-Butyl-3-methylimidazolium Methyl Sulfate as a Function of Temperature. J.Chem.Eng.Data 2007, 52: 377-380
    [75] Qing-GuoZhang ,YingWei. Study on properties of ionic liquid based on ZnCl2 with 1-butyl-3-methylimidazolium chloride. J.Chem.Thermodynamics. 2008,40: 640–644
    [76] JingTong, Qing-ShanLiu, PengZhang,etal. Surface Tension and Density of 1-Methyl-3-hexylimidazolium Chloroindium. J.Chem.Eng.Data. 2007, 52,: 1497-1500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700