动态塑性变形对镁和AZ31镁合金力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态塑性变形可以实现材料的高速变形,通过简单调节工艺参数就可方便控制形变试样的微观组织特征,从而达到控制相关性能的目的,目前,已经利用动态塑性变形技术制备出了多种面心立方金属合金纳米/超细晶结构材料。镁及镁合金在室温的变形能力较差,本文研究镁及其合金在动态塑性变形时的变形机理,和动态塑性变形后的力学性能,试图通过动态塑性变形制备细晶镁及镁合金,从而提高材料的力学性能。
     采用对比试验研究动态塑性变形前后纯镁及AZ31镁合金的力学性能变化,通过测试了拉伸性能和硬度,并借助金相显微镜、X射线衍射仪、扫描电子显微镜和背散射电子衍射技术研究材料力学性能变化的主要微观机制。纯镁动态塑性变形前的状态为热压退火态,室温动态塑性变形后不经过退火,为研究动态塑性变后纯镁力学性能的变化,本文引入了室温下的准静态压缩试验,补充研究动态塑性变形对纯镁力学性能的影响。纯镁的拉伸试验中采用了5种应变速率,热压退火态按拉伸轴与试样C轴之间的夹角,将试样分为0°、30°、60°和90°等4种角度的拉伸试样,动态塑性变形试验中,按加载力方向与试样C轴之间的夹角,也分为0°、30°、60°和90°试样,动态塑性变形后纯镁的拉伸方向均与试样在动态塑性变形时外力的加载方向垂直,室温准静态压缩试验与动态塑性变形相似,拉伸试验也一致。AZ31镁合金动态塑性变形前的状态是热轧退火态,试样内没有孪晶,有粗大的晶粒存在,并有较强的织构,所有拉伸试验均在0.01%/s、0.1%/s和1%/s等3种应变速率下进行,热轧退火态试样的拉伸实验与热压退火态纯镁相似,也按拉伸轴与试样C轴之间的夹角,将试样分为0°、30°、60°和90°等4种角度的拉伸试样,动态塑性变形时外力的加载方向与试样的C轴垂直,不同动态塑性变形应变后的AZ31镁合金拉伸试样按拉伸轴与动态塑性变形时外力的加载方向之间的夹角,分为0°、30°、60°和90°等4种角度。
     研究表明,纯镁发生8%的动态塑性变形后,各角度试样都具有基面织构特征,织构的C轴与动态塑性变形时外力的加载方向平行,90°纯镁试样形成了孪晶/基体的片层组织,片层厚度约5μm,晶粒尺寸略有减小,且分布较均匀,动态塑性变形后纯镁具有最高的抗拉强度和硬度值,延伸率降低,但90°纯镁试样动态塑性变形后壁室温压缩后的延伸率较大。AZ31镁合金发生不同应变量的动态塑性变形后,屈服强度和抗拉强度都升高,当动态塑性变形5%后90°试样的强度和延伸率都被提高,其它动态塑性变形应变量下的延伸率有不同程度的减小,同时,动态塑性变形变形量较小时,试样的断裂脆性得到改善。
     动态塑性变形后纯镁和AZ31镁合金强度的增加主要原因有3个,即动态塑性变形后晶粒内有较高密度的位错、高密度的孪晶界和粗大晶粒的细化,动态塑性变形对纯镁和AZ31镁合金延伸率的影响主要是通过高密度的位错滑移,和位错与孪晶之间的交互作用调节材料的塑性,另外,动态塑性变形使粗大的晶粒细化,有很好的细晶强化作用,也能够提高材料的塑性。
Dynamic plastic deformation can make a material deform with a huge strain rate,some mechanical properties could be achieved by sample adjustment of process witch can control microstructure characteristics of materials,at present,a variety of nano and super fine-grain face centered cubic metals and alloys has been developed using dynamic plastic deformation. The deformation ability of magnesium and its alloys under room temperature is poor,the deformation mechanism of dynamic plastic deformation and its influence on mechanical properties of pure magnesium and AZ31magnesium are discussed,dynamic plastic deformation method is used to get fine magnesium and its alloy so as to prove its mechanical properties.
     The influence of dynamic plastic deformation on magnesium and AZ31 magnesium alloy is researched by contrast experiments,mainly tension properties and hardness tests,researching in the micro mechanism of tension deformation by means of a serial analysis with metallographic examination microscope,X-ray diffraction,scanning electron microscope (SEM) and backscatter electron diffraction (EBSD) technology. As initial samples,pure magnesium has been pressed under 450℃and then annealed,dynamic plastic deformation is achieved under room temperature without anneal process,strain is 8%,quasi-static deformation is added for study in pure magnesium,defines four kinds of tension samples according to the angle between tension and C axis,respectively 0°,30°,60°and 90°samples,there are five tension rates. There are four samples according the angle between C axis and loading direction(LD) during dynamic plastic deformation experiment,however,the tensile direction are both perpendicular to the LD after dynamic plastic deformation,other tension conditions are the same as the initial pure magnesium. AZ31 magnesium alloy is attended by means of hot rolled followed with annealing,there are no twins but some large grains,and has a strong texture,the tension rate includes 0.01%/s,0.1%/s and 1%/s,there are four kinds of tension samples like initial pure magnesium. AZ31magnesium alloy deformed with different strain in dynamic plastic deformation experiments,and then developed new C axis,so the tension samples are defined according angles between tensile direction and new C axis,including 0°,30°,60°and 90°samples.
     Research shows that the texture of pure magnesium are changed after 8% dynamic plastic deformation except 0°sample,and new C axis parallel to the loading direction, many twin/matrix lamellar abrupt appear in 90°sample,the mean thickness is about 5μm,and large grains disappear,grains are in a uniformly distribution,although pure magnesium has a largest strength after dynamic plastic deformation,the elongation are decreased,however,the elongation of 90°samples dynamic plastic deformed are better than pressed under room temperature. The yield strength and tensile strength of AZ31magnesium alloy are improved after dynamic plastic deformation,in witch the texture are changed. Both strength and elongation are increased after dynamic plastic deformed 5%,but are decreased in other strain samples. Brittleness of AZ31 magnesium alloy is improved if the strain is small in dynamic plastic deformation.
     There are three main reasons for increase in strength for dynamic plastic deformed AZ31 magnesium alloy,the high dense dislocations and twin boundaries,as well as finer grains,the influence of dynamic plastic deformation on the elongations of pure magnesium and AZ31 magnesium alloy is based on high dense dislocations and twins,and their interactions,besides these tow actions,dynamic plastic deformation can refine grains and then improve the plasticity of materials.
引文
[1] ZHAO W.S,TAO N.R,GUO J.Y,etal.High density nano-scale twins in Cu induced by dynamic plastic deformation[J].Scripta Materialia,2005,53(6):745-749.
    [2] XIAO G.H,TAO N.R,LU K.Microstructures and mechanical properties of a Cu–Zn alloy subjected to cryogenic dynamic plastic deformation[J].Materials Science and Engineering:a,2009,513-514:13-21.
    [3] L.Lu,L.B.Wang,B.Z.Ding,K.Lu,Comparison of the thermal stability between electro-deposited and cold-rolled nanocrystalline copper samples[J].Materials Science and Engineering:A,2000,286(1):125-129.
    [4] S.Vercammen,B.Blanpain,B.C.De Cooman,P.Wollants,Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel : the importance of deformation twinning[J].Acta Materialia,2004,52(7):2005-2012.
    [5] X.Wu,N.Tao,Y.Hong,J.Lu,K.L.γ→εmartensite transformation and twinning deformation in fcc cobalt during surface mechanical attrition treatment[J].Scripta Materialia,2005,52(7):547-551.
    [6] X.Y.Zhang,X.L.W.,Q.Liu,R.L.Zuo,A.W.Zhu,P.Jiang,and Q.M.Wei.Phase transformation accommodated plasticity in nanocrystalline nickel [J].Appl.Phys.Lett.,2008,93(3):1901-1903
    [7] SALEM H G,GOFORTH R E,HARTWIG K T.Influence of intense plastic straining on grain refinement , precipitation , and mechanical properties of Al-Cu-Li-based alloys[J].Metall Mater Trans A,2003,34(5):1153-1161.
    [8] Y.N.Wang,J.C.Huang.Texture analysis in hexagonal materials[J].Materials Chemistry and Physics,2003,81:11-26.
    [9] Effect of texture on fracture toughness in extruded AZ31 magnesium alloy [J].Scripta Materialia,2005,53(5):541-545.
    [10] H.Watanabe,M.Fukusumi,H.Somekawa,T.Mukai.Texture and mechanical properties of superplastically deformed magnesium alloy rod[J].Materials Science and Engineering:A, 2010,527(23):6350-6358.
    [11] W.Yuan,R.S.Mishra,B.Carlson,R.K.Mishra,R.Verma,R.Kubic.Effect of texture on the mechanical behavior of ultrafine grained magnesium alloy[J].Scripta Materialia,2011,64(6):580-583.
    [12] J.A.del Valle,F.Carre?o,O.A.Ruano.Influence of texture and grain size on workhardening and ductility in magnesium-based alloys processed by ECAP and rolling[J].Acta Materialia,2006,54(16)4247-4259.
    [13] Y.B.Chun,C.H.J.Davies.Texture effect on microyielding of wrought magnesium alloy AZ31[J].Materials Science and Engineering:A,2011,528(9):3489-3495.
    [14] M.R.Barnett.Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J].Journal of Light Metals,2001,1(3)167-177.
    [15] P.Echlin,C.E.Fiori,J.I.Goldstein,D.C.Lyman,E.Lifshin,D.E.Newbury, A.D.Romig.Scanning Electron Microscopy and X-ray Microanalysis[M],Plenum Press,London,1992.
    [16] C.Escher,G.Gottstein. Nucleation of recrystallization in boron doped Ni3Al[J].Acta Mater.1998,46(2):525-539.
    [17] I.C.Hsiao,S.W.Su,J.C.Huang. Evolution of texture and grain misorientation in an Al-Mg alloy exhibiting low-temperature superplasticity[J].Metall.Mater.Trans A.2000,31(9):2169-2180.
    [18] T.R.McNelley,D.L.Swisher,M.T.Perez-Prado. Deformation bands and the formation of grain boundaries in a superplastic aluminum alloy[J].Metall.Mater.Trans A.2002,33(2)279-290.
    [19] Tsuyoshi Mayama,Masafumi Noda,Ryoichi Chiba,Mitsutoshi Kuroda,Crystal plasticity analysis of texture development in magnesium alloy during extrusion[J].International Journal of Plasticity,In Press,Corrected Proof,Available online 25 February 2011.
    [20] Kun YU,Shou-tai RUI,Xiao-yan WANG,Ri-chu WANG,Wen-xian LI,Texture evolution of extruded AZ31 magnesium alloy sheets[J].Transactions of Nonferrous Metals Society of China,2009,19(3):511-516.
    [21] Robert Gehrmann,Matthias M.Frommert,Günter Gottstein,Texture effects on plastic deformation of magnesium[J].Materials Science and Engineering A,2005,395(1-2):338-349.
    [22] Beno?t Beausir,Satyam Suwas,LászlóS.Tóth,Kenneth W.Neale,Jean-Jacques Fundenberger,Analysis of texture evolution in magnesium during equal channel angular extrusion[J].Acta Materialia,2008,56(2):200-214.
    [23] Kouadri,L.Barrallier .Texture characterisation of hexagonal metals:Magnesium AZ91 alloy,welded by laser processing[J].Materials Science and Engineering:A,2006,429(1-2):11-17.
    [24] X . Huang . Grain Orientation Effect on Microstructure in Tensile Strained Copper[J].Scr.Mater.1998,38(11):1697-1703.
    [25] K.Sztwertnia,F.Haessner.Mater.Sci.Forum.1994,157–162:1291.
    [26] G.I.Taylor.J.Inst.Met..1938,62:307.
    [27] R.von Mises,z.Angew.Math.Mech..1928,6:85.
    [28] U.F.Kocks and D.G.Westlake.Trans.TMS-AIME,1969,239:1107-1109.
    [29] A.Akhtar. Pyramidal slip in cobalt[J],Scripta Metall.,1976,10(4):365-366.
    [30] J.Beuers,S.J?nsson,and G.Petzow. TEM-in situ deformation of beryllium single crystals—a new explanation for the anomalous temperature dependence of the critical resolved shear stress for prismatic slip[J],Acta Metall.,1987,35(9):2277-2287.
    [31] R.C.BlishandT.Vreeland.Jr..J.Appl.Phys.,1969,40:884-890.
    [32] H.TondaandT.Kawasaki.J.Jpn.Inst.Met..1983, 47:284-293.
    [33] P.B.Price.Electron Microscopy and Strength of Crystals[M].Interscience Publishers.1963:66.
    [34] H.Tonda,S.Ando,K.Takashima,and T.Vreeland,Jr.Anomalous temperature dependence of the yield stress by secondary pyramidal slip in cadmium crystals—I. Experiments[J].Acta Metall.Mater.,NewYork,NY,1994,42(8):2845-2851.
    [35] J.F.Stohr and J.P.Poirier.Phil.Mag.,1972,25:1313-1329.
    [36] S.Ando,K.Nakamura,K.Takashima,and H.Tonda.J.Jpn.Inst.Light Met.,1992,42:765-771.
    [37] S.Ando and H.Tonda.Mater.Trans.JIM,2000,41:1188-1191
    [38] Shinji Ando,Takushi Gotoh,and Hideki Tonda.Molecular Dynamics Simulation of Dislocation Core Structure in Hexagonal-Close-Packed Metals[J] . Metallurgical and Materials Transactions A,2002,33(3):823-829.
    [39] K.Máthis,K.Nyilas,A.Axt,I.Dragomir-Cernatescu,T.Ungár,P.Luká?,The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction[J].Acta Materialia,2004,52(10):2889-2894.
    [40] M . H . Yoo . Slip , twinning , and fracture in hexagonal close-packed metals [J].Metall.Trans.A,1981,12(3):409-418.
    [41] M.H.Yoo,Interaction of Slip Dislocation with Twins in HCP Metals[J].Transactions of the metallurgical society of AIME,1969,245:2051-2060.
    [42] U.F.Kocks,and D.G..Westlake.Trans.TMS-AIME,1967,239:1107-1109.
    [43] M.H.Yoo,J.R.Morris,K.M.Ho,and S.R.Angew,Nonbasal Deformation Modes of HCP Metals and Alloys:Role of Dislocation Source and Mobility[J].Metallurgical and Materials Transactions A,2002,33(3):813-822.
    [44] M.H.Yoo,S.R.Agnew,J.R.Morris,K.M.Ho,Non-basal slip system in HCPmetals and alloys:source mechanisms[J].Materials Science and Engineering A,2011,319-321:87-92.
    [45] R.C.Pond. Dislocations in Solids[M].F.R.N.Nabarro,ed.,North Holland,Amesterdam,1989,B:1
    [46] M.R.Barnett,Twinning and the ductility of magnesium alloys PartⅠ:“Tension”Twins [J].Materials Science and Engineering A,2007,464:1-7.
    [47] R.E.Reed-Hill,TMS-AIME Conference.Deformation Twinning[M],American Institute of Mining,Metallurgical and Petroleum Engineers,Inc.,Great Britain,Gainesville,Florida,1964.
    [48] R.E.Reed-Hill,The Inhomogeneity of Plastic Deformation[M],ASM,Metals Park,Ohio,1973 (Chapter11).
    [49] M.R.Barnett,Twinning and the ductility of magnesium alloys PartⅡ:“Contraction”Twins [J].Materials Science and Engineering A.2007,464:8-16.
    [50] W.Kelley,J.W.F.Hosford.Trans.Metall.Soc.AIME,1968,242(1):5–13.
    [51] A.SERRA,D.J.BACON,and R.C.POND,Twins as Barriers to Basal Slip in Hexagonal-Close-Packed Metals[J].Metallurgical and Materials Transactions A,2002,33(3):809-812.
    [52] Z.S.Basinski,etal..La Revue de Metallurgie ,1997,1037–1043.
    [53] S.R.Kalidindi,A.A.Salem,R.D.Doherty,Adv.Eng.Mater,2003,5(4):229–232.
    [54] A.A.Salem,etal.Effect of the size distribution of alpha particles on microstructure evolution during heat treatment of an alpha/beta titanium alloy[J]. Metall.Mater.Trans.A,2006,37A(1):259–268.
    [55] C.N.Tomé,etal.Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis[J].Acta Mater.2001,49(15):3085–3096.
    [56] A.A Salem,S.R.Kalidindi,R.D.Doherty,and S.L.Semiatin,Strain Harding Due to Deformation Twinning inα-Titanium:Mechanisms[J].2006,37:259-268.
    [57] Kalidindi,S.R..Advances in Twinning,ed.S.Ankem and C.S.Pande.TMS/AIME,Warrendale,PA,1999,83.
    [58] Kalidindi,S.R.. Incorporation of deformation twinning in crystal plasticity models [J],J.Mech.Phys.Sol.,1998,46(2):267-271.
    [59] Staroselsky,A.and Anand,L.. Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning[J].J.Mech.Phys.Sol.,1998,46(4):671-673.
    [60] Karaman,I.,Sehitiglu,H.,Beaudoin,A.J.,Chumlyaka,Y.I.,Maier,H.J.and Tomé,C.N.. Modeling the deformation behavior of Hadfield steel single and polycrystalsdue to twinning and slip[J].Acta mater.,2000,48(9):2031-2047.
    [61] Chichili,D.R.,Ramesh,K.T.and Hemker,K.J.The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling[J],Acta Mater.,1998,46(4):1025-1043.
    [62] Venables,J.A.,Phil.Mag.,1961,6:379.
    [63] Venables,J.A.,in Deformation Twinning,ed.R.E.ReedHill,J.P.Hirth and H.C.Rogers.Gordon & Breach,New York,1964,pp.77–116.
    [64] Gray,G.T.III,Kaschner,G.C.,Mason,T.A.,Maudlin,P.J.and Chen,S.R.. Advances in Twinning,ed.S.Ankem and C.S.Pande.TMS/AIME,Warrandale,PA,1999,157.
    [65] M.A.Meyers,O.V?hringer and V.A.Lubarda,The Onset of Twinning in Metals:A Constitutive Description[J].Acta Mater,2001,49(1):4025-4039.
    [66] Barnett MR,Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J],Jour.Light Met.2001,1:167.
    [67] S.R.AGNEW,J.A.HORTON,and M.H.YOO,Transmission Electron Microscopy Investigation of Dislocations in Mg and a–Solid Solution Mg-Li Alloys [J].METALLURGICAL AND MATERIALS TRANSACTIONS A,2002,33(3):851-858
    [68] A.E.Smith,Surface,interface and stacking fault energies of magnesium from first principles calculations[J].Surface Science,2007,601:5762-5765.
    [69] Y.Wang,L.Q.Chen,Z.-K.Liu and S.N.Mathaudhu,First-principles calculations of twin-boundary and stacking-fault energies in magnesium[J].Scripta Materialia,2010,62:646-649.
    [70] Choong Do Lee,Effect of grain size on the tensile properties of magnesium alloy [J].Materials Science and Engineering A,2007,459:355-360.
    [71] M.Mabuchi,K.Hubota,K.Higashi.Mater.Trans.JIM .1995,36:1249–1254.
    [72] G.Nussbaum,P.Sainfort,G.Regazzoni.Scripta Metall.1989,23:1079–1084.
    [73] Y.Chino,M.Mabuchi.Adv.Eng.Mater.2001,3:981–983.
    [74] G.Nussbaum,P.Bridot,T.J.Warner,J.Charbonnier,G.Regazzon,in:B.L.Mordike,F.Hehmann(Eds.).Magnesium Alloys and Their Applications,DGM,1992,pp.351–358
    [75] D.Lahaie,J.D.Embury,M.M.Chadwich,G.T.Gray. A note on the deformation of fine grained magnesium alloys[J].Scripta Metall.1992,27(2)139–142.
    [76] JingTao Wang,DeLiang Yin,JinQiang Liu,JunTao,YanLing Sua and Xiang Zhao,Effect of grain size on mechanical property of Mg–3Al–1Zn alloy[J].Scripta Materialia 2008,59:63–66.
    [77] Robert Gehrmann,Matthias M.Frommert,Günter Gottstein,Texture effects on plastic deformation of magnesium [J].Materials Science and Engineering A .2005,395:338–349
    [78] M.J.Philippe,in:H.J.Bunge(Ed.).Proceedings of the 10th International Conference on Textures of Materials[J]. Material Sci.Forum,1994, 157–162:1337.
    [79] M.J.Philippe,M.Seghat,P.Van Houtte,C.Esling. Modelling of texture evolution for materials of hexagonal symmetry—II. application to zirconium and titaniumαor nearαalloys[J],Acta Metall.Mater.1995,43(3):1619-1630.
    [80] M.J.Philippe,E.Bouzy,J.J.Fundenberger.Mater.Sci.Forum, 1998,273–275 :511.
    [81] H.P.Lee,C.Esling,H.J.Bunge,Textures Microstruct.1988,7:317.
    [82] A.A.Pochettino,N.Gannio,C.VialEdwards,R.Penelle. Texture and pyramidal slip in Ti, Zr and their alloys[J].Scripta Metall.Mater.1992,27(12):1859-1863.
    [83] M.J.Philippe,F.Wagner,F.E.Mellab,C.Esling,J.Wegria. Modelling of texture evolution for materials of hexagonal symmetry—I.Application to zinc alloys[J].Acta Metall.Mater.1994,42(1):239-250.
    [84] Marko Knezevic,Amanda Levinson,Ryan Harris,Raja K.Mishra,ROGER D.Doherty,Surya R.Kalidindi,Deformation twinning in AZ31:Influece on strain hardening and texture evolution[J].Acta Materialia,2010,58(19):6230-6242.
    [85] Stphane Garff,Wolfgang Brovks,Dirk Steglish.Yielding of magnesium:From single crystal to polycrystalline aggregates[J].International Journal of Plasticity,2007,23(12):1957-1978.
    [86]刘俊伟,陈振华,陈鼎.镁合金轧制板材低温变形行为与微观机制[J].中国有色金属学报,2008,18(9):1577-1583.
    [87]刘楚明,刘子娟,朱秀荣,周海涛,镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12。
    [88] H.Mirzadeh,A.Najafizadeh.Prediction of the critical conditions for initiation of dynamic recrystallization[J].Materials and Design,2010,31(4):1174-1179.
    [89] Koichi Ishikawa,Hiroyuki Watanabe,Toshiji Mukai.High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures[J].Materials Letters,2005,59(12):1511-1515.
    [90]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992.231.
    [91]闫富华,张喜燕,动态塑性变形组织演变研究进展[J].材料导报,2011,25(1):116-122.
    [92] Yang Yongbiao,Wang Fuchi,Tan Cheng wen,Wu Yuanyuan,Cai Hongnian.Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression [J].Trans.Nonferrous Met.Soc.China,2008,18(5):1043-1046.
    [93] Marc A.Meyers.Dynamic behavior of materials [M].New York:John Wiley & Sons,Inc,1994.298-299.
    [94] Zhao W S,Tao N R.,Guo J Y,Lu Q H,Lu K.High density nano-scale twins in Cu induced by dynamic plastic deformation[J].Scr Mater,2005,53(6):745.
    [95] G.H.Xiao,N.R.Tao,K.Lu.Microstructures and mechanical properties of a Cu–Zn alloy subjected to cryogenic dynamic plastic deformation[J] . Materials Science and Engineering A.,2009,513-514:13-21.
    [96] W.S.Zhao,N.R.Tao,J.Y.Guo,Q.H.Lu,K.Lu.High density nano-scale twins in Cu induced by dynamic plastic deformation[J].Scripta Materialis,2005,53:745-749.
    [97] B . K . Kad , J . -M . Gebert , M . T . Pérez-Prado , M . E . Kassner ,M.A.Meyers.Ultrafine-grain-sized zirconium by dynamic plastic deformation[J].Acta Materialia.,2006,54:4111-118.
    [98]卢秋红,赵伟松,隋曼龄,李斗星.液氮温度下动态塑性形变法制备的纳米孪晶铜结构的研究[J].金属学报,2006,42(9):909-913.
    [99] Z.L.Liu,X.C.You,Z.Zhuang.A mesoscale investigation of strain rate effect on dynamic deformation of single-crystal copper[J].International Journal of Solids and Sructures,2008,45(13):3674-3687.
    [100] Su-Tang,Chiou,Wei-Chun,Cheng,Woei-Shyan,Lee.The analysis of the microstructure changes of a Fe–Mn–Al alloy under dynamic impact tests[J].Materials Science and Engineering A.,2004,386(1-2):460-467.
    [101] A.Uenishi,C.Teodosiu,E.V.Nesterova.Microstructural evolution at high strain rates in solution-hardened interstitial free steels [J].Materials Science and Engineering A.2005,400 -401(25):499-503.
    [102] Y.S.Li,N.R.Tao,K.Lu.Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures[J].Acta Materialia,2008,56:230-241.
    [103] B.K.Kad,J.-M.Gebert,M.T.Pérez-Prado,M.E.Kassner,M.A.Meyers.Ultrafine-grain- sized zirconium by dynamic plastic deformation[J].Acta Materialia,2006,54(16):4111-4127.
    [104] P.Yang,Q.Xie,L.Meng,H.Ding,Z.Tang.Dependence of deformation twinning on grain orientation in a high manganese steel [J].Scripta Materialia,2006,55(7):629-631.
    [105] L.Meng,P.Yang,Q.Xie,H.Ding,Z.Tang.Dependence of deformation twinning on grain orientation in compressed high manganese steels[J].Scripta Materialia,2007,56(11):931-934.
    [106] R.Ueji,N.Tsuchida,D.Terada,N.Tsuji,Y.Tanaka,A.Takemura,K.Kunishige.Tensile properties and twinning behavior of high manganese austenitic steel with fine- grained structure[J].Scripta Mater.,2008,59(9):963-966.
    [107] C.S.Hongoing,N.R.Tao,K.Lu and X.Huang.Grain orientation dependence of deformation twinning in pure Cu subjected to dynamic plastic deformation[J].Scripta Materialia,2009,61:289-292.
    [108] I.Gutierrez-Urrutia,S.Zaefferer,D.Raabe.The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel[J].Materials Science and Engineering:A,Article in press.2010.Article in press.
    [109] Y.Zhang,N.R.Tao,K.Lu.Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys[J].Scripta Materialis,2009,60:211-213
    [110] I.Karaman,H.Sehitoglu,K.Gall,Y.I.Chumlyakov and H.J.Maier.Deformation of single crystal Hadfield steel by twinning and slip[J].Acta Materialia,2000,48(6):1345- 1359.
    [111] G.H.Xiao,N.R.Tao,K.Lu.Effects of strain,strain rate and temperature on deformation twinning in a Cu–Zn alloy [J].Scripta Materialia,2008,59:975-978.
    [112] C.S.Hong,N.R.Tao,X.Huang,K.Lu.Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu–Al alloy processed by dynamic plastic deformation[J].Acta Materialia,2010,1-14.
    [113] Hines,J.A.,Vecchio,K.S.,Ahzi,S..A Model for microstructure evolution in adiabatic shear bands[J].Metall.Mater.Trans.A,1998,29(1):191-203.
    [114] Sergey N.Medyanik,Wing Kam Liu,Shaofan Li.On criteria for dynamic adiabatic shear band propagation[J].Journal of the Mechanics and Physics of Solids.2007,55(7):1439-1461.
    [115] Hines,J.A.,Vecchio,K.S..Recrystallization kinetics within adiabatic shear bands [J].Acta Materialia,1997,45(2):635-649.
    [116] G.M.Owolabi,A.G.Odeshi,M.N.K.Singh,M.N.Bassim.Dynamic shear band formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 composites [J].Mater.Sci.Eng.A,2007,457(1-2):114-119.
    [117] S.V.Harren,H.E.Deve,R.J.Asaro.Shear band formation in plane strain compression [J].Acta Metall.,1988,36(9):2435-2480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700