钙钛矿结构锰氧化物基态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿结构锰氧化物有丰富的相图,优异的电子极化特性,应用潜力极大的CMR效应,自从90年代初以来,钙钛矿结构锰氧化物一直是凝聚态物理中的一个热门领域。
     对钙钛矿结构锰氧化物的电子结构,晶格结构的深入了解,可以帮助我们更好的理解其复杂的电磁相图,输运等特性,以方便现在和将来这类材料在人们的日常生活或工农业生产等多方面的应用。100%的电子自旋极化率使得该材料可以作为理想的自旋从无机注入无机或有机半导体的注入源;CMR特性使该类材料能够制成潜力巨大且性能优异的p-n结,还可以作为场效应器件。
     钙钛矿结构锰氧化物这一复杂体系中包含各种复杂的相互作用:最近邻格点e_g电子之间的跃迁,同一格点上e_g电子自旋和局域t_(2g)电子自旋间强的Hund耦合作用,最近邻t_(2g)电子间的反铁磁耦合作用,e_g电子间的库仑作用项,e_g电子和声子的耦合互作用。
     活跃在钙钛矿结构锰氧化物这一领域的许多小组为了对该类材料进行详细的研究,他们提出了许多不同的合理方法和模型,如单轨道模型,双轨道模型等等。基于现有的模型并融合我们对钙钛矿结构锰氧化物这一复杂体系在z轴方向的各种性质的深刻理解,我们提出了简单的一维单轨道模型,文中我们详细介绍了哈密顿量的各部分物理含义和二次量子化下的表达式,并给出了本征方程的求解过程。
     在我们简单的一维单轨道模型下,选取合适的参数,我们给出了许多研究成果,低掺杂浓度下的反铁磁—铁磁相变,体系在反铁磁态时的两相共存,以及无序对体系自旋分布的影响等等,尤其是体系在反铁磁态时的两相共存,这非常符合许多实验和理论预言。
     人们对钙钛矿结构锰氧化物的研究已经取得了巨大进步,大量的理论和实验使得人们认识到,单纯的双交换模型不能给出钙钛矿结构锰氧化物复杂的相图,更不能给出体系电荷,轨道,自旋,及晶格的相互作用的本质。在该领域仍然有许多问题等待我们去解决,例如,在相图中,FM态的本质是什么;在一些钙钛矿结构锰氧化物中出现的玻璃态是一种标准的自旋玻璃还是一种所谓的相分离的玻璃;钙钛矿结构锰氧化物中直流电阻的温度依赖特性还没有被充分的为人们所理解,等等。我们相信,随着人们对钙钛矿结构锰氧化物这一复杂体系的认识的不断深入,许多问题会迎刃而解,但同时会有不少新的问题出现,但人们的认识会有日新月异的进步;随着人们对这类材料的认识的不断深入,这类材料的应用也将会越来越广泛,这必将极大的推动人类社会的进步!
Perovskite-based Mn oxides have abundant phase diagrams, excellent electron polarization properties, and great application potential in CMR effect. They have been one of the forefront fields in Condensed Matter Physics since 1990s.
     Our deep understanding in electronic and lattice structure of perovskite-based Mn oxides can help us better understand their complexity in electronic and magnetic phase diagrams as well as transportation properties, wich will benefit their application in agriculture, industry or people's everyday life at present and in the future. They are ideal spin injection sources where spin can be injected from inorganic materials to organic or inorganic semiconductors as well as other materials because of their 100% spin polarization. CMR property makes it possible that they can be made into potential p-n junction with excellent function, and they can also be usde in filed-effect devices.
     Perovskite-based Mn oxides contain many kindes of complex interactions: hopping between the nearest-neighbour e_g electrons, strong Hunder's coupling between the localized core spin of t_(2g) electrons and the spin of itinerant e_g electon, the nearest-neighbour antiferromagnetic coupling between t_(2g) electrons, coulomb interaction between e_g electrons, and coupling between e_g electrons and phonons. Many research groups active in this field have done lots of investigations, and they have proposed many different methods and models for perovskite-based Mn oxides, such as the famous one-orbital model and two-orbital model. Based on models available and our deep understanding in complexity of perovskite-based Mn oxides along the z axis, we proposed a new one dimensional single-orbital model. We give the physical meanings of all parts in the hamiltonian and their expressions under the second quantization in detail, and we also give the solution procedure for eigenequations of the system.
     Using our simple one dimensional model, we choose appropriate parameters for the La_(1-x)Sr_xMnO_3 system, and our computing results can give the AFI-FI transition in slightly doped system, the two phase coexistence in AFI state, and the effect of quenched disorder on spin distribution of the system. Especially, the two phase coexistence in AFI state agrees well with many experimental results and theoretical predictions.
     People have made much progress in the investigation to perovskite-based Mn oxides. Quantities of theories and experiments reveal that pure double exchage interaction can not describe the complex phase diagrams of the system, nor can it reveal the nature of the complex interaction between charge, orbital, spin and lattice. There are a lot of questions unsolved in this field, such as what is the naure of FM state in the complex phase diagram for this system; the spin glass state in some perovskite-based Mn oxides is the standard spin glass or a phase-separated glass; the dependency between dc resistivity and temperature in perovskite-based Mn oxides, etc. We believe that, with people's deep understanding in this system, more questions will be solved, but some new questions will appear at the same time. In general, with people's rapid progress in understanding this system, the application of perovskite-based Mn oxides will be more and more widely used, wich will be great promotion to the development of our human society!
引文
[1] Prinz G A. Science, 1998 , 282, 1660
    
    [2] de Groot R A, Mueller F M, van Engen P G, et al. Phys. Rev. Lett. 1983 , 50, 2024
    
    [3] Schwardz K. J. Phys. F : Met. Phys. 1986,16, 211
    [4] Korotin M, Anisimov V, Khomskii D I, et al. Phys. Rev. Lett. 1998 , 80, 4305
    
    [5] Park J H , Vescovo E , Kim H J, et al. Nature, 1998 , 392, 794
    [6] Jonker G, Santen van J. Physica, 1950,16,337
    [7] Searle C W, Wang S T. Can. J. Phys. 1969 ,47 ,2023
    [8] Jin S , Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H. Science 1994,264,413
    
    [9 ] Jahn H A, teller E. Proc. Roy. Soc. A1937 ,161, 220
    [10] Janker G H, Van Santen J H. Physica 1950, 16, 337
    
    [11] H. A. Jahn and E. Teller, Proc. Roy. Soc. A, 1937, 166,220
    [12] E. O. Wollan and W. C. Koehler Phys.Rev, 1955, 100, 545
    
    [13] A.Urushibara, Y. Moritomo, G Kido, and Y. Tokura Phys. Rev. B, 1995, 51, 14103
    [14] Y. Moritomo, T. Akimoto, A. Nakamura, K. Ohoyama, and M. Ohashi, Phys. Rev. B, 1998, 58, 5544
    
    [15] A. H. Thompson, Phys. Rev. Lett. 1975 , 35,1786
    [16] M. Jaime, P. Lin, M. B. Salamon, and P. D. Han, Phys. Rev. B, 1998, 58, 5901
    [17] N. Furukawa, Y Shimomura, T. Akimoto and Y. Moritomo, J. Magn. Magn. Mater., 2001, 782,226
    [18] P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 1995 , 75, 3336
    
    [19] Li Pi, Lei Zheng, and Yuheng Zhang, Phys. Rev. B, 2000, 61, 8917
    [20] J. M. D Coey, Adv. Phys., 1999,48, 167
    [21] Despina Louca, T. Egami, E. L. Brosha, H. Ro'der, and A. R. Bishop, Phys. Rev.B, 1997, 56, 8475
    [22] P. Dai, Jiandi Zhang, H. A. Mook, S.-H. Liou, P. A. Dowben, and E. W. Plummer, Phys. Rev. B, 1996, 54, 3694
    [23] S. G Kaplan, M. Quijada, H. D. Drew, D. B. Tanner, G C. Xiong, R. Ramesh, C. Kwon, and T. Venkatesan, Phys. Rev. Lett. 1996 , 7,2081
    [24] V. Dediu, M. Murgia, F. C. Matacotta, S. Barbanera, Solid State Commun., 2002, 122, 181
    [25] S. J. Xie, K. H. Ahn, D. L. Smith, A. R. Bishop, and A. Saxena Phys. Rev. B, 2003, 67, 125202
    [26] Sugiura M, Uragou K, Noda M, achiki M, Kobayashi T., Jpn. J . Appl. Phys. 1999,38,2675
    
    [27] Tanaka H, Zhang J, Kawai T. Phys. Rev. Lett. 2002 , 88 , 027204
    [28] Zhang J, Tanaka H, Kawai T. Appl. Phys. Lett. 2002 , 80,4378
    [1]Dagotto E,HottaT,MoreoA.Phys.Rep.,2001,344,1
    [2]JahnHA,teller E.Proc.Roy.Soc.A,1937,161,220
    [3]Kanamori J.J.Appl.Phys.1960,31,14S
    [4]Zener C.Phys.Rev.1951,82,403
    [5]Yunoki S,Hu J,Malvezzi A L,Moreo A,Furukawa N,Dagotto E,Phys.Rev.Lett.1998,80,845
    [6]SanJeev Kumar and Pinaki Majumdar,Phys.Rev.Lett.2006,96,016602
    [7]Vijay B.Shenoy,Tribikram Gupta,H.R.Krishnamurthy,and T.V.Ramakrishna,Phys.Rev.Lett.2007,98,097201
    [8]Cengiz Sen,Gonzalo Alvarez,Horacio Aliaga,and Elbio Dagotto,Phys.Rev.B,2006,73,224441
    [9]Danilo R.Neuber,Mafia Daghofer,Hans Gerd Evertz,and Wolfgang von der Linden,Rev.B,2006,73,014401
    [10]S.J.Xie,K.H.Ahn,D.L.Smith,A.R.Bishop,andA.Saxena,Phys.Rev.B,2003,67,125202
    [1]A.Urushibara,Y.Moritomo,G.Kido,and Y.Yokura Phys.Rev.B,1995,51,14103
    [2]Y.Moritomo,Y.Akimoto,A.Nakamura,and M.Ohashi 1998 Phys.Rev.B 58,5544
    [3]P.Schiffer,A.P.Ramirez,W.Bao,and S.-W.Cheong,Phys.Rev.Lett.1995,75,3336
    [4]Tokura Y and Tomioka Y,J.Magn.Magn.Mater,1999,200,1
    [5]Elbio DAGOTTO,Takashi HOTTA,Adriana MOREO,Phys.Rep,2001,344,1
    [6]刘俊明,王克锋,物理学进展,2005,Vol.25,No.1
    [7]Lide M.Rodriguez-Martinez and J.Paul Attfield,Phys.Rev.B,1998,54,15622
    [8]J.Paul Attfield,Chem.Mater,1998,10,3239
    [9]D.Akahoshi,M.Uchida,Y.Tomioka,T.Arima,Y.Matsui,and Y.Tokura,2003,Phys.Rev.Lett,90,177203
    [10]A.Bocquet,T.Mizokawa,T.Saitoh,H.Namatame,A.Fujimori,Phys.Rev.B,1992,46,3771.
    [11]T.Arima,Y.Tokura,J.B.Torrance,Phys.Rev.B,1993,48,17006.
    [12]T.Saitoh,A.Bocquet,T.Mizokawa,H.Namatame,A.Fujimori,M.Abbate,Y.Takeda,M.Takano,Phys.Rev.B,1995,51,13942
    [13]D.S.Dessau,Z.-X.,Shen,1999.In:Tokura,Y.(Ed.),Contribution to Colossal Magnetoresistance Oxides,Monographs in Condensed Matter Science.Gordon & Breach,London.
    [14]A.J.Millis,Shraiman,B.I.Mueller,R.,Phys.Rev.Lett.,1996,77,175
    [15]V.Perebeinos,P.B.Allen,2000,Phys.Rev.Lett.,85,5178
    [16]S.J.Xie,K.H.Ahn,D.L.Smith,A.R.Bishop,andA.Saxena,Phys.Rev.B,2003,67 125202
    [17]Y.Okimoto,T.Katsufuji,T.Ishikawa,A.Urushibara,T.Arima,Y.Tokura, Phys. Rev. Lett., 1995, 75, 109
    
    [18] S. Yunoki, A. Moreo, and E. Dagotto, Phys. Rev. Lett., 1998, 81, 5612
    [19] K. H. Ahn, and A. J. Millis, Phys. Rev. B, 2000,61 13545
    [20] Y. Tokura, Rep. Prog. Phys, 2006, 69, 797
    [21] A. Asamitsu, Y. Moritomo, R. Kumai, and Y. Tomioka, Phys. Rev. B, 1996, 54, 1716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700