花鲈肌肉生长抑素基因(MSTN)克隆、表达及其基因打靶载体的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用同源克隆和染色体步移的策略首次分离、克隆了5396 bp的花鲈MSTN基因组序列。花鲈MSTN基因具有3个外显子,2个内含子,整个开放阅读框编码着374个氨基酸,具有9个保守的半胱氨基酸及一个RVRR的蛋白酶解加工位点。通过RT-PCR分析表明MSTN基因在花鲈肌肉、脑、眼睛中表达量最高,其次是小肠,鳃、脾脏、肝脏和心脏中只有极少量表达;在早期的胚胎发育中,直到孵化后15天的仔鱼才检测到MSTN的表达;在不同细胞系中,MSTN在花鲈胚胎干细胞(LJES1)中表达,但在其它几个花鲈体细胞系(上皮、成纤维、淋巴样细胞)中都没有检测到表达。此外,我们用1125 bp MSTN的5’启动子区域与GFP基因连接,构建了pMSTN-GFP质粒。将pMSTN-GFP转化LJES1细胞,获得了表达;通过显微注射,将pMSTN-GFP质粒转入斑马鱼1细胞期的胚胎,在孵化后10天左右的仔鱼躯干部检测到了绿色荧光的表达。
     为了提高外源基因转化胚胎干细胞的效率,通过三种脂质体分别介导花鲈胚胎干细胞(LJES1)转化效率的比较,建立了一种简单而有效的基因转移方法。优化了影响外源基因转化效率的因素,如细胞接种时间、初始接种密度、DNA和脂质体用量以及它们之间的比例等。以GFP为报告基因,用Genejammer介导LJES1细胞的基因转移,转化效率最高可达27.3%。
     经过药物筛选,建立了表达GFP基因的阳性克隆细胞株,经PCR检测证实了GFP基因已经整合到LJES1细胞的基因组中,并获得了正常表达。通过体外诱导,GFP阳性细胞能够分化为肌肉细胞、成纤维细胞、神经细胞等。进一步通过悬滴法培养,GFP阳性细胞形成了拟胚体,证实了经过长期的药物筛选后,LJES1细胞仍然保持着发育的多能性。
     根据克隆的MSTN基因序列,用长PCR方法扩增了3.2kb和1.5kb同源片段。3.2kb的长同源臂包括MSTN基因的5’区域、外显子1、内含子1、外显子2、内含子2和部分的外显子3;1.5kb的短同源臂包括MSTN基因的部分外显子3和3’区域。质粒骨架为细菌克隆载体pBluescript II KS,neo基因为正选择基因,tk基因为负选择基因。neo基因被插入到长、短同源臂之间,tk基因插入到长同源臂外侧。通过正
In this study, MSTN gene was cloned from sea perch by homology cloning and genomic walking. In the 5396 bp genomic sequences, three exons, two introns, 5’and 3’flanking sequences were identified. The sea perch MSTN gene encodes a 374 amino acid protein, including a signal peptide, conserved cysteine residues and a RXXR proteolytic cleavage domain. Expression analysis of MSTN revealed that MSTN was expressed highly in muscle, brain and eyes, intermediately in intestine, and weakly in gill, spleen, liver, and heart. In early embryonic stages, the transcript was undetectable till 15 days larvae after hatching by RT-PCR. It was demonstrated that MSTN mRNA was highly expressed in embryonic stem cell line (LJES1), but it was undetectable in several types of somatic cell lines from sea perch, including fibroblast-like cell, epithelioid cells, lymphocyte-like cells. Furthermore, a pMSTN-GFP plasmid driven by the 1125 bp MSTN 5’-UTR was constructed, which could express green fluorescent protein (GFP) in LJES1 cells. By microinjection, pMSTN-GFP plasmids were transferred into one-cell embryo of zebrafish, and green fluorescent signals were detected in trunk of 15 d fry.
     For improving the transformation efficiency of exogenous gene into ES cells, a simple and effective method of gene transfer was established with several lipsomes-mediated. Transformation efficiencies of three lipsomes-mediated
引文
[1] 陈松林. 鱼类胚胎干细胞研究进展. 中国水产科学, 2000(4): 95-97.
    [2] 陈松林,Hong Y, Schartl M. 青鳉p53基因克隆、结构分析及同源重组载体构建. 动物学报,2002,48(4):519-526.
    [3] 胡志远,邢桂春,贺福初. 用脂质体法转染 COS-7 细胞条件的优化. 军事医学科学院院刊,1997, 21(2):1625-1627.
    [4] 姜运良,李宁,赵兴波,胡晓湘,刘兆良,邓学梅,吴常信,杜立新,曹积生. 猪肌肉生长抑制素基因侧翼区新微卫星标记的鉴定及分析. 遗传学报,2004, 31(05): 480-484.
    [5] 李绍华,熊远著,郑嵘,李爱云,邓昌彦,蒋思文,雷明刚,文雅芹,曹国春. 猪 MSTN基因多态性及其 SNPs 的研究. 遗传学报,2002, 29(4): 326-331.
    [6] 李华,刘维全,王太一,等. 基因导入的脂质体转染法和磷酸钙转染法之比较. 中国实验动物学杂志,2000,10(2):65-68.
    [7] 李扬,吴凯峰,郭旭东. 脂质体介导外源基因体外转化牛胎儿成纤维细胞条件的优化. 遗传,2002,24(6):653-655.
    [8] 梁旭方. 肌肉抑制素基因及在食用肉类生产中的应用前景. 生物化学和生物物理进展,1999,26(1):7-8.
    [9] 刘云海,钟英丽,任凯群,等. 细胞转化条件的优化. 湖南师范大学自然科学学报,2004,27(2):84-88.
    [10] 刘志国,屈伸. DNA高效转化CHO细胞的研究. 武汉工业学院学报,2002,4-6.
    [11] 刘洋, 沙珍霞, 陈松林, 隋少飞, 徐美瑜. 绿色荧光蛋白基因向花鲈胚胎的转移及其表达. 中国水产科学, 2004(5),
    [12] 刘洋, 陈松林, 沙珍霞, 叶寒青. 以花鲈胚胎干细胞为供体的斑马鱼嵌合体的构建. 高技术通讯, 待发表.
    [13] 吕文发,赵静,卢广林,欧阳红生. 猪肌生成抑制素 C 端 88 氨基酸肽抗体制备. 吉林农业大学学报,2003, 25 (3): 332-334.
    [14] 马现永,曹永长,马静云,毕英佐. 肌肉生成抑制因子多克隆抗体的制备与鉴定. 华南农业大学学报(自然科学版),2005 , 26(03): 89-92.
    [15] 钱锋,肖成祖. 影响非洲猴肾细胞脂质体转化效率的因素[J]. 生物技术通报,1998,5:31-36.
    [16] 钱锋,肖成祖. 脂质体法和电穿孔法转染哺乳动物细胞研究. 生物化学与生物物理进展,1999,26(3):289-291.
    [17] 沙珍霞, 刘洋, 陈松林, 叶寒青, 田永胜, 孟亮, 唐启升. 花鲈胚胎干细胞移植及嵌合体的构建. 高技术通讯,2006, 16(2):186-190.
    [18] 汪亚平,朱作言. 基因靶位操作的原理与策略. 遗传,1999,21(3):46-50.
    [19] 王海,陆泉枝,连正兴等. 电穿孔导入绿色荧光蛋白基因于绵羊胎儿成纤维细胞研究. 中国畜牧杂志,2004,40(2):5-8.
    [20] 杨兴元,侯健,安晓荣,关宏,苟克勉,杨树洪,陈立栋,陈永福. 肌抑素(Myostatin)基因突变体活性区的克隆、表达及活性的研究. 生物工程学报,2003, 4(19): 480-483.
    [21] 杨静平,孔玉英,林其谁. SA脂质体介导DNA转化细胞的进一步研究. 生物化学与生物物理学报,1994,26(2):123-127.
    [22] 叶寒青, 陈松林, 2006. 真鲷肌肉生长抑素(MSTN)基因克隆及表达分析. 高技术通讯. 出版中.
    [23] 叶寒青,陈松林,沙珍霞. 不同因子对花鲈胚胎干细胞增殖的影响. 水产学报,2004,28(5):493-498.
    [24] 叶寒青,陈松林,刘洋,沙珍霞. 表达绿色荧光蛋白基因的花鲈胚胎干细胞株的建立及其体外分化. 高技术通讯,2006(1):61-67.
    [25] 赵浩斌,陈尚萍,孙永华,等. 外源基因在鱼类胚胎中表达与整合的时序。科学通报,1999,44(22): 2414-2419.
    [26] 赵浩斌,朱作言. 脂质体介导的鲫CAB细胞转化及转化细胞的核移植. 水产学报,2001,25(5):402-404.
    [27] 周雪雁,关伟军,马月辉,等. 脂质体介导转染法原理及其研究进展. 上海畜牧兽医通讯,2004,4:5-6.
    [28] Acosta J, Carpio Y, Borroto I, Gonzalez O, Estrada MP. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J Biotechnol, 2005,10: 119 (4): 324-31.
    [29] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, E.W. Basic local aligment search tool. J. Mol. Biol. 1990, 215, 403-410.
    [30] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic. Acids. Res. 1997, 25, 3389-3402.
    [31] Amsterdan A, Lin S, Hoplins N. The Aquorea Victoria green fluorescent protein can be use as a reporter in live zebra fish embryos. Dev Biol, 1995, 171:123-129.
    [32] Amali, A.A., Lin, C.J.F., Chen, Y.H., Wang, W.L., Gong, H.Y., Lee, C.Y., Ko, Y.L., Lu, J.K., Her, G.M., Chen, T.T., Wu, J.L., 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Development Dynamics, 229: 847-856.
    [33] Argos P, Landy A, Abremski K, Egan JB, Haggard-Ljungquist E, Hoess RH, Kahn ML, Kalionis B, Narayana SV, Pierson LS 3rd, et al. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb; 5(2): 433-40.
    [34] Askew GR, Doetschman T, Lingrel JB. Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol Cell Biol. 1993 Jul;13(7): 4115-24.
    [35] Babinet C, Cohen-Tannoudji M. Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. An Acad Bras Cienc, 2001, 73(4): 577-580.
    [36] Bass, J., Oldham, J., Sharma, M., Kambadur, R., 1999. Growth factors controlling muscle development. Domest Anim Endocrinol. 17, 191-197.
    [37] Bejar J, Hong Y, Alvarez MC. Towards obtaining ES cells in the marine fish species Sparus aurata; multipassage maintenance, characterization and transfection. Genet Anal. 1999 Nov;15(3-5):125-9.
    [38] Bejar J, Hong Y, Alvarez MC. An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera production. Transgenic Res. 2002 Jun;11(3):279-89.
    [39] Bell CE. Structure and mechanism of Escherichia coli RecA ATPase. Mol Microbiol. 2005 Oct;58(2):358-66. Review.
    [40] Bensheng J, Yanfei X, Jiangyan H, Ji L,et al. Faithful expression of green fluorescent protein(GFP) in Transgenic zebrafish embryos under control of zebrafish gene promoters. Developmental Genetics,1999,25:158-167.
    [41] Biga, P.R., Roberts, S.B., Lliev, D.B., McCauley, L.A.R., Moon, J.S., Collodi, P., Goetz, F.W., 2005. The isolation, characterization, and expression of a novel GDF11gene and a second myostatin form in zebrafish, Danio rerio. Comparative Biochemistry and Physiology, Part B. 141, 218-230.
    [42] Bradley A, Zheng B, Liu P. Thirteen years of manipulating the mouse genome: a personal history. Int J Dev Biol. 1998, 42(7): 943-50. Review.
    [43] Buckingham, M., 2001. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 11, 440-448.
    [44] Capecchi MR. Altering the genome by homologous recombination. Science. 1989 Jun 16;244(4910):1288-92. Review.
    [45] Charron J, Malynn BA, Robertson EJ, Goff SP, Alt FW. High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol Cell Biol. 1990 Apr;10(4):1799-1804.
    [46] Chen, S.L., Hong, Y., Schartl, M., 2001. Lack of ultraviolet-light inducibility of the medakafish (Oryzias latipes) tumor suppressor gene p53. Gene 264, 197-203.
    [47] Chen, S.L., Hong, Y., Schartl, M., 2002. Development of a positive-negative selection procedure for gene targeting in fish cells. Aquaculture 214, 67-79.
    [48] Chen, S.L., Sha, Z.X., Ye, H.Q., 2003. Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) blastula embryo. Aquaculture, 218: 141-151.
    [49] Chen S L, Ye H Q, Sha Z X, et al. Development of a pluripotent embryonic cell line from red sea bream (Chrysophrys major) blastula [J]. J Fish Biol, 2003, 63:1-11.
    [50] Clark AJ, Burl S, Denning C, Dickinson P. Gene targeting in livestock: a preview. Transgenic Res. 2000;9(4-5):263-75. Review.
    [51] Collodi P, Kamei Y, Ernst T, Miranda C, Buhler DR, Barnes DW. Culture of cells from zebrafish (Brachydanio rerio) embryo and adult tissues. Cell Biol Toxicol. 1992a Jan-Mar;8(1): 43-61.
    [52] Collodi P, Kamei Y, Sharps A, Weber D, Barnes D. Fish embryo cell cultures for derivation of stem cells and transgenic chimeras. Mol Mar Biol Biotechnol. 1992b Aug-Oct;1(4-5): 257-65.
    [53] Colman A. Somatic cell nuclear transfer in mammals: progress and applications. Cloning. 1999-2000;1(4):185-200. Review.
    [54] Denning C, Priddle H. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction. 2003 Jul; 126(1):1-11. Review.
    [55] Evans M J, Kanfman M H. Establishment in culture of pluripotential cell from mouse embryos. Nature, 1981, 292(9): 154-159.
    [56] Fan L, Alestrom A, Alestrom P, Collodi P. Production of zebrafish germline chimeras from cultured cells. Methods Mol Biol. 2004a; 254: 289-300.
    [57] Fan L, Alestrom A, Alestrom P, Collodi P. Development of cell cultures with competency for contributing to the zebrafish germ line. Crit Rev Eukaryot Gene Expr. 2004b;14(1-2):43-51. Review.
    [58] Fan L, Crodian J, Collodi P. Culture of embryonic stem cell lines from zebrafish. Methods Cell Biol. 2004c;76:151-60.
    [59] Fan L, Crodian J, Collodi P. Production of zebrafish germline chimeras by using cultured embryonic stem (ES) cells. Methods Cell Biol. 2004d;77:113-9.
    [60] Fan L, Crodian J, Liu X, et al. Zebrafish ES cells remain pluripotent and germ-line competent for multiple passages in culture. Zebrafish, 2004b, 1: 21-26.
    [61] Fan L, Moon J, Crodian J, Collodi P. Homologous Recombination in Zebrafish ES Cells. Transgenic Res. 2006 Feb;15(1):21-30.
    [62] Friedel RH, Plump A, Lu X, Spilker K, Jolicoeur C, Wong K, Venkatesh TR, Yaron A, Hynes M, Chen B, Okada A, McConnell SK, Rayburn H, Tessier-Lavigne M. Gene targeting using a promoterless gene trap vector ("targeted trapping") is an efficient method to mutate a large fraction of genes. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13188-93. Epub 2005, Aug 29.
    [63] Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12): 5547-51.
    [64] Gregory, D.J., Waldbieser, G.C., Bosworth, B.G., 2004. Cloning and characterization of myogenic regulatory genes in three Ictalurid species. Animal Genetics 35, 425-430.
    [65] Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R.,Georges, M., 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 17(1), 71-4.
    [66] Grobet, L., Pirottin, D., Farnir, F., Poncelet, D., Royo, L.J., Brouwers, B., Christians, E., Desmecht, D., Coignoul, F., Kahn, R., Georges, M., 2003. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35, 227-238.
    [67] Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell. 1993 Jun 18;73(6):1155-64.
    [68] Gu, Z., Zhang, Y., Shi, P., Zhang, Y.P., Zhu, D., Li, H., 2004. Comparison of avian myostatin genes. Anim Genet. 35 (6), 470-472.
    [69] Hasty P, Ramirez-Solis R, Krumlauf R, Bradley A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature. 1991 Mar 21;350(6315):243-6. Erratum in: Nature 1991 Sep 5; 353(6339): 94.
    [70] Hauser H, Spitzer D, Verhoeyen E, Unsinger J, Wirth D. New approaches towards ex vivo and in vivo gene therapy. Cells Tissues Organs. 2000;167(2-3):75-80. Review.
    [71] Higashijima S-I,Okamoto H,Ueno N,Hotta Y, Eguchi G. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol,1997,192:289-299.
    [72] Holen E. and Hamre K. Towards obtaining long term embryonic stem cell like cultures from a marine flatfish, Scophtalmus maximus. Fish Physiology and Biochemistry, 2003, 29(3): 245-252.
    [73] Holliday R. The induction of mitotic recombination by mitomycin c in ustilago and saccharomyces. Genetics. 1964 Sep; 50:323-35.
    [74] Hong Y, Winkler C, Schartl M. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev. 1996 Nov;60(1):33-44.
    [75] Hong Y, Winkler C, Schartl M. Production of medakafish chimeras from a stable embryonic stem cell line. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3679-84.
    [76] Hong Y, Winkler C, Schartl M. Efficiency of cell culture derivation from blastula embryos and of chimera formation in the medaka (Oryzias latipes) depends on donorgenotype and passage number. Dev Genes Evol. 1998 Dec;208(10):595-602.
    [77] Hong Y, Chen S, Gui J, Schartl M. Retention of the developmental pluripotency in medaka embryonic stem cells after gene transfer and long-term drug selection for gene targeting in fish. Transgenic Res. 2004 Feb;13(1):41-50.
    [78] Hong Y, Winkler C, Liu T, Chai G, Schartl M. Activation of the mouse Oct4 promoter in medaka embryonic stem cells and its use for ablation of spontaneous differentiation. Mech Dev. 2004 Jul;121(7-8):933-43.
    [79] Horie K.S., Nishiguchi, S., Maeda S., and Shimada K. Structure of replacement vectors for efficient gene targeting. J Biochem. 1994, 115: 447-485.
    [80] Ji S., Losinski R.L., Cornelius S.G., Frank G.R., Willis G.M., Gerrard D.E., Depreux F.F., Spurlock M.E., 1998. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am. J. Physiol. 275, 1265-1273.
    [81] Johnson RS, Sheng M, Greenberg ME, Kolodner RD, Papaioannou VE, Spiegelman BM. Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science. 1989 Sep 15; 245(4923):1234-1236.
    [82] Joyner A L. Gene targeting and gene trap screens using embryonic stem cells. New approuchs to mammalian development [J]. Bio Essays,1991,13: 649-656.
    [83] Joyner A L. Gene targeting and gene trap screens using embryonicstem cells: new approachs to mammalian development. [J] Bio Essays, 1991, 13: 649-656.
    [84] Jung S, Rajewsky K, Radbruch A. Shutdown of class switch recombination by deletion of a switch region control element. Science. 1993 Feb 12; 259(5097):984-7.
    [85] Kambadur, R., Sharma, M., Smith, T.P., Bass, J.J., 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7(9), 910-916.
    [86] Kerr T, Roalson EH, Rodgers BD, 2005. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev, 7(5): 390-400.Kilby NJ, Snaith MR, Murray JA. Site-specific recombinases: tools for genome engineering. Trends Genet. 1993 Dec; 9(12): 413-21. Review.
    [87] Kilby NJ, Davies GJ, Snaith MR. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones inArabidopsis.
    [88] Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol. 1987 Oct; 7(10): 3438-3445.
    [89] Kocabas, A.M., Kucuktas, H., Dunham, R.A., Liu, Z., 2002. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochim Biophys Acta. 1575(1-3), 99-107.
    [90] Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995 Sep 8;269(5229):1427-1429.
    [91] Kumar, S.K., Tamura, I.B., Jakobsen, M.N., 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-1245.
    [92] Liew CG, Moore H, Ruban L, Shah N, Cosgrove K, Dunne M, Andrews P. Human embryonic stem cells: possibilities for human cell transplantation. Ann Med. 2005;37(7):521-532. Review.
    [93] Li, S.H., Xiong, Y.Z., Zheng, R., Li, A.Y., Deng, C.Y., Jiang, S.W., Lei, M.G., Wen, Y.Q., Cao, G.C., 2002. Polymorphism of porcine myostatin gene. Yi Chuan Xue Bao 29(4), 326-331.
    [94] Li M, Li YH, Hou Y, Sun XF, Sun Q, Wang WH. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote. 2004 Feb;12(1):43-48.
    [95] Loo DT, Fuquay JI, Rawson CL, Barnes DW. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science. 1987 Apr 10;236(4798):200-202.
    [96] MA Xianyong, CAO Yongchang, SHU Dingming, BI Yingzuo. Cloning and expression of swine myostatin gene and its application in animal immunization trial. Science in China,Ser.C, 2005, 48(04): 368-374.
    [97] Ma C, Fan L, Ganassin R, et al. Production of zebrafish germ-line chimeras from embryo cell cultures. PNAS, 2001, 98: 2461-2466
    [98] Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F., Patarnello, T., 2001a. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar Biotechnol. 3(3), 224-30.
    [99] Maccatrozzo, L., Bargelloni, L., Cardazzo, B., Rizzo, G., Patarnello, T., 2001b. A novel second myostatin gene is present in teleost fish. FEBS Lett. 509 (1), 36-40.
    [100] Maccatrozzo, L., Bargelloni, L., Patarnello, P., Radaelli, G., Mascarello, F., Patarnello, T., 2002. Characterization of the myostatin gene and a linked microsatellite marker in shi drum (Umbrina cirrosa, Sciaenidae). Aquaculture, 205 (1-2), 49-60.
    [101] Maclean N. & R.J. Laight, 2000. Transgenic fish: an evaluation of benefits and risks. Fish and Fisheries, 1(2): 146.
    [102] Mansour S L,Tomas K R,Capecchi MR. Disruption of the protooncogene int-2 in mouse embryoderived stem cells: a general strategy for targeting mutatuions to non-selectable genes.Nature,1988,336:348-352.
    [103] Martin G R. Isolation of a pluripotent cell line from mouse embryo cultures in medium conditioned by teratocarcinoma stem cell. Proc Natl Acad Sci USA, 1981,78:7634-7638.
    [104] Mayer B, Christoph S. The SMAS (subcutaneous musculo-aponeurosis system) flap: a possibility for filling out soft tissue defects after parotidectomy. Laryngorhinootologie. 1996 Sep; 75(9): 548-50. German.
    [105] McPherron, A.C., Lawler, A.M., Lee, S.J., 1997a. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387, 83–90.
    [106] McPherron, A.C., and Lee, S.J., 1997b. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci. USA 94, 12457-12461.
    [107] Meselson MS, Radding CM. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1): 358-361.
    [108] Misra RP, Duncan SA. Gene targeting in the mouse: advances in introduction of transgenes into the genome by homologous recombination. Endocrine. 2002 Dec;19(3):229-38. Review.
    [109] Mitalipova M, Beyhan Z, First NL. Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning. 2001; 3(2):59-67.
    [110] Mohn A , Koller BH. Genetic manipulation of embryonic stem cells. In: DNA cloning 4: A practical Approachmammalian systems. Oxford: Oxford University Press, 1995. 143-184.
    [111] Mummery C L, Van D E, Raaij A J, et al. Type beta transforming growth factors and activins in differentiating embryonal carcinoma cells, embryonic stem cells and earlyembryonic development. Int J Dev Biol. 1993, Mar; 37(1): 169-182.
    [112] Nakatsuji N. Establishment and manipulation of monkey and human embryonic stem cell lines for biomedical research. Ernst Schering Res Found Workshop. 2005; (54): 15-26.
    [113] Nichols J, Evans EP, Smith AG. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development. 1990 Dec; 110(4):1341-1348.
    [114] Ostbye, T.K., Galloway, T.F., Nielsen, C., Gabestad, I., Bardal, T., Andersen, O., 2001. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem. 268(20), 5249-5257.
    [115] Pascoe W, Kemler R , Wood S A. Gene and functions : trapping and targeting in embryonic stem cells[J ] . Biochim Biophys Acta, 1992, 114 :209-222.
    [116] Pease S, Braghetta P, Gearing D, Grail D, Williams RL. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol. 1990 Oct; 141(2): 344-352.
    [117] Peggy R. Biga, Steven B. Roberts, Dimitar B. Iliev, Linda A.R. McCauley, Je Sung Moon, Paul Collodi, Frederick W. Goetz, 2005. The isolation, characterization, and expression of a novel GDF11 gene and a second myostatin form in zebrafish, Danio rerio. Comparative Biochemistry and Physiology, Part B. 141, 218-230.
    [118] Potter H, Dressler D. On the mechanism of genetic recombination: electron microscopic observation of recombination intermediates. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3000-3004.
    [119] Prelle K, Vassiliev IM, Vassilieva SG, Wolf E, Wobus AM. Establishment of pluripotent cell lines from vertebrate species-present status and future prospects. Cells Tissues Organs. 1999; 165(3-4): 220-36. Review.
    [120] Rajewsky K, Gu H, Kuhn R, Betz UA, Muller W, Roes J, Schwenk F. Conditional gene targeting. J Clin Invest. 1996 Aug 1; 98(3): 600-3. Review.
    [121] Rao BJ, Jwang B, Dutreix M. Production of triple-stranded recombination intermediates by RecA protein, in vitro. Biochimie. 1991 Apr; 73(4): 363-370.
    [122] Rescan, P.Y., Jutel, I., Ralliere, C., 2001a. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J. Exp. Biol. 204 (20), 3523-3529.
    [123] Rescan, P.Y., 2001b. Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol. 130, 1-12. Review.
    [124] Roberts SB, McCauley LA, Devlin RH, Goetz FW. 2004. Transgenic salmon overexpressing growth hormone exhibit decreased myostatin transcript and protein expression. J Exp Biol, 207 (Pt 21): 3741-3748.
    [125] Roberts, S.B. and Goetz, F.W., 2001. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett. 491(3), 212-216.
    [126] Roberts, S.B. and Goetz, F.W., 2003. Myostatin protein and RNA transcript levels in adult and developing brook trout. Mol and cell Endocri. 210, 9-20.
    [127] Rodgers, B.D., Weber, G.M., Sullivan, C.V., Levine, M.A., 2001a. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology 142(4), 1412-1418.
    [128] Rodgers, B.D. and Weber, G.M., 2001b. Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone americana. Comp Biochem Physiol B Biochem Mol Biol. 129(2-3), 597-603.
    [129] Sakai Y, Rawson C, Lindburg K, Barnes D. Serum and transforming growth factor beta regulate glial fibrillary acidic protein in serum-free-derived mouse embryo cells. Proc Natl Acad Sci U S A. 1990 Nov; 87(21): 8378-8382.
    [130] Saito S, Liu B, Yokoyama K. Animal embryonic stem (ES) cells: self-renewal, pluripotency, transgenesis and nuclear transfer. Hum Cell. 2004 Sep; 17(3):107-115. Review.
    [131] Saitou, N. and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 4, 406-425.
    [132] Sathananthan AH, Trounson A. Human embryonic stem cells and their spontaneousdifferentiation. Ital J Anat Embryol. 2005; 110 (2 Suppl 1): 151-157. Review.
    [133] Sauer B, Henderson N. Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 1989 Jan 11; 17(1):147-161.
    [134] Sauer B, Henderson N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 1990 May; 2(5): 441-449.
    [135] Schwartzberg PL, Robertson EJ, Goff SP. Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein. Proc Natl Acad Sci U S A. 1990 Apr; 87(8): 3210-3214.
    [136] Schoonjans L, Albright GM, Li JL, Collen D, Moreadith RW. Pluripotential rabbit embryonic stem (ES) cells are capable of forming overt coat color chimeras following injection into blastocysts. Mol Reprod Dev. 1996 Dec; 45(4): 439-443.
    [137] Sharma, M., Kambadur, R., Matthews, K.G., Somers, W.G., Devlin, G.P., Conaglen, J.V., Fowke, P.J., Bass, J.J., 1999. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell Physiol. 180, 1-9.
    [138] Suemori H. Establishment of human embryonic stem cell lines and their therapeutic application. Rinsho Byori. 2004 Mar; 52(3): 254-8. Review. Japanese.
    [139] Sun L, Bradford CS, Ghosh C, Collodi P, Barnes DW. ES-like cell cultures derived from early zebrafish embryos. Mol Mar Biol Biotechnol. 1995 Sep; 4(3): 193-199.
    [140] Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983 May; 33(1): 25-35. Review.
    [141] Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680.
    [142] Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., Kambadur, R., 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem. 275(51), 40235-40243.
    [143] Urike M. Ten years of gene targeting: targeted mouse mutants, from vector design tophenotype analysis. Mech Dev, 1999, 82:3-21.
    [144] Valancius V, Smithies O. Testing an "in-out" targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol Cell Biol. 1991 Mar;11(3):1402-1408.
    [145] Vianello, S., Brazzoduro, L., Dalla, V. L., Belvedere, P., Colombo, L., 2003. Myostatin expression during development and chronic stress in zebrafish (Danio rerio). J Endocrinol. 176 (1), 47-59.
    [146] Villalobos P, Rojas V, Conejeros P, et al. Lipopolyamine-mediated transfection of reporter plasmids into a fish cell line. Elec J Biotechnol, 1999, 2(2): 88-98.
    [147] Villalobos P, Rojas V, Conejeros P, et al. Lipopolyamine-mediated transfection of reporter plasmids into a fish cell line. EJB Electronic Journal of Biotechnology, 1999, 2 (2): 88-98.
    [148] Virginie E, Marie C, Florence B, et al. Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer. The J Gene Medi, 2001, 3 (2): 179-187.
    [149] Volodin AA, Voloshin ON, Camerini-Otero RD. Homologous recombination and RecA protein: towards a new generation of tools for genome manipulations. Trends Biotechnol. 2005 Feb; 23(2): 97-102. Review.
    [150] Wakamatsu Y, Ozato K, Sasado T. Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryo. Mol. Mar. Biol. Biotechnol. 1994, 3: 185-191.
    [151] Wakamatsu Y, Pristyazhnyuk S, Kinoshita M, Tanaka M, Ozato K. The see-through medaka: a fish model that is transparent throughout life. Proc Natl Acad Sci U S A. 2001 Aug 28; 98(18): 10046-10050.
    [152] Wakamatsu Y, Ju B, Pristyaznhyuk I, Niwa K, Ladygina T, Kinoshita M, Araki K, Ozato K. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1071-1076.
    [153] Wang J, Sarov M, Rientjes J, Fu J, Hollak H, Kranz H, Xie W, Stewart AF, Zhang Y. An improved recombineering approach by adding RecA to lambda Red recombination.Mol Biotechnol. 2006 Jan; 32(1): 43-53.
    [154] Ward W W, Cody C W and Hart R C. Spectruphometric identity of the emergy-transfer chromo-phores in Renilla and Aequorea green-fluorescent proteins. Photochem Photobiol, 1980,31:611-615.
    [155] Wheeler MB. Development and validation of swine embryonic stem cells: a review. Reprod Fertil Dev. 1994; 6(5): 563-568. Review.
    [156] Willnow TE, Herz J. Homologous recombination for gene replacement in mouse cell lines. Methods Cell Biol. 1994; 43 Pt A: 305-34. Review.
    [157] Wu Gang, Sun Yonghua and Zhu Zuoyan,2003. Growth hormone gene transfer in common carp Aquat. Living Resour. 16: 416-420.
    [158] Xu, C., Wu, G., Zohar, Y., Du, S.J., 2003. Analysis of myostatin gene structure, expression and function in zebrafish. J Exp Biol. 206 (Pt 22), 4067-4079.
    [159] Yang, W., Wang, H.X., Chen, Y., Zhang, Y., Zhu, D.H., 2001. Cloning, expression and purification of the chicken growth and differentiation factor-8. Sheng Wu Gong Cheng Xue Bao 17(4), 460-462. Chinese.
    [160] Ye, H.Q. and Chen, S.L., 2006. Molecular cloning and expression analysis of the myostatin gene in sea perch (Lateolabrax japonicus). General and Comparative Endocrinology, (In submission).
    [161] Zhu, Z., Li, G., He, L., Chen, S. (1985) Novel gene transfer into the fertilized eggs of goldfish (Carassius Auratus L. 1758). Journal of Applied Ichthyology, 1; 31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700