蛋白质吸附平衡和动力学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的离子交换平衡和动力学行为在生物分离过程的设计和优化中起着十分重要的作用。然而,离子交换色谱理论尚不完善,围绕蛋白质离子交换色谱理论,本文展开了以下的研究工作:
     1.采用统计热力学模型(ST模型)研究了蛋白质(BSA和Hb)在阴离子交换剂DEAE Spherodex M上的吸附平衡行为。结果表明,ST模型可以很好地描述不同离子强度条件下单组分和双组分蛋白质的吸附平衡行为。随着离子强度增高,吸附相伴离子对蛋白质与吸附剂之间和蛋白质分子间静电力的屏蔽作用增大。在相同的离子强度条件下,BSA与DEAE Spherodex M之间的静电引力较强;BSA分子之间的静电斥力大于Hb分子之间的静电斥力。在相同的离子强度条件下的Hb-BSA双组分吸附体系中,BSA与吸附界面静电吸引作用强,吸附竞争力强。由ST模型参数1/αi和k ii分别计算得到蛋白质的有效电荷数基本一致。
     2.采用ST模型进而研究了BSA和Hb在阳离子交换剂SP Sepharose FF的吸附平衡行为。研究结果表明,随着离子强度增高,吸附相伴离子对蛋白质与吸附剂之间和蛋白质分子间静电力的屏蔽作用增大;而溶液pH值的升高引起蛋白质与吸附界面间的静电引力及蛋白质分子间静电斥力减弱。在相同的离子强度和pH值条件下,Hb与SP Sepharose FF之间的静电引力较强;Hb分子之间的静电斥力大于BSA分子之间的静电斥力。此时,在Hb-BSA双组分吸附体系中,Hb与吸附界面静电吸引作用强,吸附竞争力强。
     3.建立了考虑吸附剂的粒径分布(PSD)的有效孔扩散模型(EPDM)、表面扩散模型(SDM)、Maxwell-Stefan模型(MSM)。通过蛋白质的间歇吸附动力学实验,研究了蛋白质(BSA)在阳离子交换剂(SP Sepharose FF)孔内的扩散。结果表明,这三种模型均能很好地拟合蛋白质的动态吸附曲线;但由于传质驱动力不同,各模型对孔内蛋白质沿吸附剂径向浓度分布图的预测存在较大差异。
     4.利用共聚焦激光扫描显微镜(CLSM)直接观测了蛋白质在吸附剂颗粒内部的径向浓度分布情况。通过观测结果与考虑吸附剂PSD的模型(EPDM, SDM和MSM)拟合吸附剂孔内蛋白质径向浓度分布结果的比较,可以看出在目前的研究体系中SDM能够比EPDM更好地预测孔内蛋白质浓度分布图,MSM模型对孔内蛋白质浓度分布的预测结果介于另外两种模型之间。
     5.由于在使用共聚焦显微镜观测吸附剂孔内蛋白质时,需要用荧光色素标
Ion-exchange equilibria and intraparticle mass transfer of protein in chromatography are of great importance for the design and optimization of bioseparation processes. Compared with the extensive application of ion-exchange chromatography in biotechnology, the mechanism and process analysis of ion-exchange system are still in the primary state. The details in this work are summarized as follows.
     1. The adsorption equilibria of bovine serum albumin (BSA) and hemoglobin (Hb) to anion exchanger, DEAE Spherodex M, were studied by using statistical thermodynamic model (ST model). The ST model can well describe single and two-component protein equilibrium on the anion exchanger at different ionic strengths. The shielding effect of the co-ions in adsorption phase on the electrostatic interaction among protein molecules and adsorbents increases with an increase of ionic strength. At the same ionic strength, the electrostatic attraction between BSA molecules and DEAE Spherodex M is stronger, and the electrostatic repulsion among BSA molecules is stronger than that among Hb molecules. In two-component adsorption system, the electrostatic attraction between BSA molecules and adsorbent is stronger, BSA is more competitive. The effective protein charge values calculated respectively from ST model parameters 1/αiand k ii are consistent.
     2. The adsorption equilibria of BSA and Hb to cation exchanger, SP Sepharose FF, were also studied by using ST model. The shielding effect of the co-ions in adsorption phase on the electrostatic interaction among protein molecules and adsorbents increases with increasing ionic strength. Moreover, the electrostatic interaction among protein molecules and adsorbents decreases with increasing pH. At the same pH values and ionic strengths, the electrostatic attraction between Hb molecules and SP Sepharose FF is stronger, and the electrostatic repulsion among Hb molecules is stronger than that among BSA molecules. In two-component adsorption system, the electrostatic attraction between Hb molecules and adsorbents is stronger, so Hb is more competitive.
     3. The ion-exchange adsorption kinetics of BSA to the cation exchanger, SP Sepharose FF, was studied by batch adsorption experiments. Three diffusion models
引文
[1] 刘国诠,生物工程下游技术,北京:化学工业出版社,1993,141~142
    [2] 孙彦,生物分离工程,北京:化学工业出版社,1998, 1~2
    [3] 师治贤,王俊德,生物大分子的液相色谱分离和制备,北京:科学出版社,1996,2~8
    [4] 秦启宗,毛家骏,金忠浩,化学分离法,北京:原子能出版社,1984, 126~138
    [5] Afeyan N B, Regnier F E, Dean R C. Noval perfusive chromatography for high resolution and productivity separation of proteins, US PCT Int. Appl. WO 91 00762(CL.B01D15108), 24 Jan 1991
    [6] Chase H A. Purification of proteins by adsorption chromatography in expended bed. Trends in Biotech., 1994, 12: 296~303
    [7] Gailliot F P, Gleason C, Wilson J J, Zwarick J. Fluidized bed adsorption for whole broth extraction. Biotechnol. Prog., 1990, 6: 370~375
    [8] Th?mmes J, Weiher M, Karau A, et al. Hydrodynamics and performance in fluidized bed adsorption. Biotechnol. Bioeng., 1995, 48 (4): 367~374
    [9] Karau A, Benken C, Th?mmes J, et al. The influence of particle size distribution and operating conditions on the adsorption performance in fluidized beds. Biotechnol. Bioeng., 1997, 55: 54~64
    [10] Bartels C R, Kleimann G, Korzun J, et al. A novel ion-exchange method for the isolation of streptomycin. Chem. Eng. Prog., 1958, 54: 49~51
    [11] Chang Y K, Chase H A. Development of operating conditions for protein purification using expanded bed techniques: the effect of the degree of bed expansion on adsorption performance. Biotechnol. Bioeng., 1996, 49 (5): 512~526
    [12] Chang Y K, McCreath G E, Draeger N M, et al. Novel technologies for direct extraction of proteins. Trans. IchemE., 1993, 71 (b): 299~303
    [13] Chase H A, Draeger N M. Expanded-bed adsorption of proteins using ion-exchangers. Sep. Sci. Technol., 1992, 27 (14): 2021~2039
    [14] Chase H A, Draeger N M. Affinity purification of proteins using expandedbeds. J. Chromatogr. A, 1992, 597: 129~145
    [15] Kunii D, Levenspiel O. Fluidizing engineering. 1st edition. New York: Wiley, 1969
    [16] Barnfield Frej A K, Johansson H J, Johansson S, et al. Expanded bed adsorption at production scale: Scale-up verification, process example and sanitization of column and adsorbent. Bioprocess Engineering, 1997, 16: 57~63
    [17] Barnfield Frej A K, Hjorth R, Hammarstrom A. Pilot scale recovery of recombinant annexin V from unclarified Escherichia coli homogenate using expanded bed adsorption. Biotechnol. Bioeng., 1994, 44 (8): 922~929
    [18] Batt B C, Yabannavar V M, Singh V. Expanded bed adsorption process for protein recovery from whole mammalian cell culture broth. Bioseparation, 1995, 5: 41~52
    [19] Noppe W, Hanssens I, De Cuyper M. Simple two-step procedure for the preparation of highly active pure equine milk lysozyme. J. Chromatogr. A, 1996, 719: 327~331
    [20] Th?mmes J, Bader A, Halfer M, et al. Isolation of monoclonal antibodies from cell containing hybridoma broth using a protein A coated adsorbent in expanded beds. J. Chromatogr. A, 1996, 752: 111~122
    [21] Bruce L J, Ghose S, Chase H A. The effect of column verticality on separation efficiency in expanded bed adsorption. Bioseparation, 1999, 8: 69~75
    [22] Tong X D, Sun Y. Nd-Fe-B alloy-densified agarose gel for expanded bed adsorption of proteins. J. Chromatogr. A, 2002, 943: 63~75
    [23] Hjorth R, Kampe S, Carlsson M. Analysis of some operating parameters of novel adsorbents for recovery of proteins in expanded beds. Bioseparation, 1995, 5: 217~223
    [24] Hjorth R. Expanded bed adsorption: elution in expanded bed mode. Bioseparation, 1999, 8: 1~9
    [25] Lihme A, Zafirakos E, Hansen M, et al. Simplified and more robust EBA process by elution in expanded bed mode. Bioseparation, 1999, 8: 93~97
    [26] Tong X D, Yang Z, Dong X Y, et al. Single-step purification of Molecular Chaperone GroEL by expanded bed chromatography. Chinese J. Chem. Eng., 2003, 11 (4): 460~463
    [27] Amersham Pharmacia Biotech. Expanded bed adsorption-principles and methods. Handbook, Uppsala, Swede: Pharmacia Biotech
    [28] 刘坐镇,陈士安,邬行彦,扩张床吸附技术,离子交换与吸附,1999,15 (3): 279~288
    [29] 金业涛,冯小黎,苏志国,扩张床吸附技术及其在生物化工中的应用,化工进展,1998,4: 45~50
    [30] 陈卫东,离子交换制备色谱过程的理论研究:[博士论文],天津;天津大学,2002
    [31] LeVan M D, Vermeulen. Binary Langmuir and Freundlich isotherms for ideal adsorbed solutions. J. Phys. Chem., 1981, 85: 3247~3250
    [32] Li Y, Pinto N G. Model for ion-exchange equilibria of macromolecules in preparative chromatography. J. Chromatogr., 1995, 702: 113~123
    [33] Antia F D, Horvath C. Gradient elution in non-linear preparative liquid chromatography. J. Chromatogr., 1989, 484: 1~27
    [34] Cysewki P, Jaulmes A, Lemque R, et al. Multivalent ion-exchange model of biopolymer chromatography for mass overloaded conditions. J. Chromatogr., 1991, 548: 61~79
    [35] Bellot J C, Condoret J S. Modelling of liquid chromatography equilibria. Process Biochem., 1993, 28: 365~376
    [36] Boardman N K, Partridge S M. Separation of neutral proteins on ion-exchange resins. Biochem. J., 1955, 59: 543~552
    [37] Kopaciewicz W, Rounds M A, Fausnaugh J, et al. Retention model for high-performance ion-exchange chromatography. J. Chromatogr., 1983, 266: 3~21
    [38] Rounds M A, Regnier F E. Evaluation of a retention model for high-performance ion-exchange chromatography using two different displacing salts. J. Chromatogr., 1984, 283: 37~45
    [39] Bellot J C, Condoret J S. Theoretical study of the ion-exchange preparative chromatography of a two-protein mixture. J. Chromatogr., 1993, 635: 1~17
    [40] Roth C M, Unger K K, Lenhoff A M. Mechanistic model of retention in protein ion-exchange chromatography. J. Chromatogr. A, 1996, 726 (1-2): 45~56
    [41] Velayudhan A. Studies in Non-linear Chromatography. Doctoral Dissertation, Yale University, New Haven, CT, 1990
    [42] Brooks C A, Cramer S M. Steric mass-action ion exchange: displacement profiles and induced salt gradients. AIChE J., 1992, 38 (12): 1969~1978
    [43] Valayudhan A, Horvath C. Preparative chromatography of proteins: Analysis of the multivariant ion-exchange formalism. J. Chromatogr., 1988, 443: 13~29
    [44] Bosma J C, Wesselingh J A. Available area isotherm. AIChE J., 2004, 50 (4): 848~853
    [45] 苏雪丽,蛋白质静电吸附平衡与动力学的研究:[博士论文],天津;天津大学,2005
    [46] Hill T L. An introduction to Statistical Thermodynamics. Addison-Wesley Pub Co, Reading, Mass, 1960. 382~388
    [47] St?hlberg J. Electrostatic retention model for ion-exchange chromatography. Anal. Chem., 1994, 66 (4): 440~449
    [48] Li Y L, Pinto N G. Influence of lateral interactions on preparative protein chromatography. J. Chromatogr., 1994, 658: 445~457
    [49] St?hlberg J, J?nsson B, Horvath C. Theory for electrostatic interaction chromatography of proteins. Anal. Chem., 1991, 63 (17): 1867~1874
    [50] J?nsson B, St?hlberg J. The electrostatic interaction between a charged aphere and an oppositely charged planar surface and its application to protein adsorption. J. Colloids Surf. B: Biointerfaces, 1999, 14: 67~75
    [51] St?hlberg J. Review: Retention models for ions in chromatography. J. Chromatogr. A, 1999, 855: 3~55
    [52] Roth C M, Lenhoff A M. Electrostatic and Vander Walls contributions to protein adsorption: computation of equilibrium constants. Langmuir, 1993, 9: 962~972
    [53] Horstmann B J, Chase H A. Modeling the affinity adsorption of immunoglobin G to protein A immobilized to agarose matrices. Chem. Eng. Res. Des., 1989, 67: 243~254
    [54] Skidmore G L, Horstmann B J, Chase H A. Modeling single-component protein adsorption to the cation exchanger Sepharose FF. J. Chromatogr., 1990, 498 (1): 113~128
    [55] Liapis A I. Modeling Affinity Chromatography. Sep. and Purif. Methods, 1990, 19: 133~141
    [56] Maekawa M, Murakami K, Yoshida H. Parallel Diffusion of a Sulfonated Dye in Cellulose Membrane. J. Colloid and Interface Sci., 1993, 155: 79~84
    [57] Yoshida H, Yoshikawa M, Kataoka T. Parallel Transport of BSA by Surface and PoreDiffusion in Strongly Basic Chitosan. AIChE J., 1994, 40: 2034~2043
    [58] Suzuki M. Adsorption engineering, Elsevier, Amsterdam, 1990
    [59] Wright P R, Muzzio F J, Glasser B J. Batch uptake of lysozyme: effect of solution viscosity and mass transfer on adsorption. Biotechnol. Prog., 1998, 14: 913~922
    [60] Weaver L E, Carta G. Protein adsorption on cation exchangers: comparison of macroporous and gel-composite media. Biotechnol. Prog., 1996, 12 (3): 342~355
    [61] Xue B, Sun Y. Protein adsorption equilibria and kinetics to a poly (vinyl alcohol)-based magnetic affinity support. J. Chromatogr. A, 2001, 921 (2): 109~119
    [62] Tilton R D, Robertson C R, Gast A P, et al. Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface. J. Colloid and Interface Sci., 1990, 137: 192~203
    [63] Yoshida H, Maekawa M, Nango M. Parallel transport by surface and pore diffusion in a porous membrane. Chem. Eng. Sci., 1991, 46 (2): 429~438
    [64] Maekawa M, Kasai K, Nango M. Transport phenomena of sulfonated dyes into cellulose membranes: parallel diffusion of a sulfonated dye with a high affinity onto cellulose. Colloids and Surfaces A, 1998, 132: 173~179
    [65] Pedersen H, Furler L, Stuker E. Enzyme adsorption in porous supports:local thermodynamic equilibrium model. Biotechnol. Bioeng., 1985, 27: 961~971
    [66] Kaczmarski K, Gubernak M, Zhou D M, Guiochon G. Application of the general rate model with the Maxwell-Stefan equations for the prediction of the band profiles of the 1-indanol enantiomers. Chem. Eng. Sci., 2003, 58: 2325~2338
    [67] M. 佩塞兹(M. Pesez),J. 巴托斯(J. Bartos)著,夏锦尧编译,有机化合物及药物的比色法和荧光分析法,北京:中国人民公安大学出版社,1989
    [68] Linden T, Ljungl?f A, Hagel L, et al. Visualizing patterns of protein uptake to porous media using confocal scanning laser microscopy. Sep. Sci. Technol., 2002, 37 (1): 1~32
    [69] 赵华,梁婉琪,杨永华,张大兵,绿色荧光蛋白及其在植物分子生物学研究中的应用,植物生理学通讯,2003,39 (2):171~178
    [70] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of Aequoria, a bioluminescent protein from the luminous Hydromedusan. Aequorea. J. Cell Physiol., 1962, 59: 223~229
    [71] 周盛梅,孟凡国,黄大年,黄纯农,绿色荧光蛋白及其应用,生物工程进展,1999, 19 (2): 56~59
    [72] Prasher D C. Using GFP to see the light. Trends Genet., 1995, 11 (8): 320~323
    [73] Delagrave S, Hawtin R E, Silva C, et al. Red-shifted excitation mutants of the green fluorescent protein. Bio/Technol, 1995, 13: 151~154
    [74] Yang F, Moss LG, Jr Philips G N. The molecular structure of green fluorescent protein. Nat. Biotechnol., 1996, 14 (10): 1246~1251
    [75] Orm? M, Cubit A B, Kallio K, et al. Crytal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273 (5280): 1392~1395
    [76] Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea Victoria green-fluorescent protein. Gene, 1992, 111: 229~233
    [77] 张峰,任燕,陆长德,绿色荧光蛋白及其应用,生命科学,1999,11 (2): 61~65
    [78] Chalfie M, Kain S. GFP: Green fluorescent protein strategies and applications. New York: Wiley &Sons, 1998. 11~80
    [79] Zobel H P, Junghans M, Maienschein V, et al. Enhanced antisense efficacy of oligonucleotides adsorbed to monomethylaminothylmethacrylate methylmethacrylate copolymer nanoparticles. European Journal of Pharmaceutics Biopharmaceutics, 2000, 49: 203~210
    [80] Nopharatana M, Mitchell D A, Howes T. Use of confocal microscopy to follow the development of penetrative hyphae during growth of Rhizopus Oligosporus in an artificial solid-state fermentation system. Biotechnol. Bioeng., 2003, 81: 438~437
    [81] Li L P, Li Y J, Lim T M, et al. GFP-aided confocal laser scanning microscopy can monitor Agrobacterium Tumefaciens cell morphology and gene expression associated with infection. FEMS Microbio. Letter, 1999, 179: 141~146
    [82] Girija V, Stephen H C. Characterization of lipid in mature enamel using confocal laser scanning microscopy. J. Dentistry., 2003, 31: 303~311
    [83] Ljungl?f A, Hjorth R. Confocal microscopy as a tool for studying proteinadsorption to chromatographic matrices. J. Chromatogr. A, 1996, 743: 75~83
    [84] Ljungl?f A, Th?mmes J. Visualising intraparticle protein transport in porous adsorbents by confocal microscopy. J. Chromatogr., 1998, 813: 387~395
    [85] Linden T, Ljungl?f A, Kula M-R, et al. Visualizing two-component protein diffusion in porous adsorbents by confocal scanning laser microscopy. Biotechnol. Bioeng., 1999, 65 (6): 622~630
    [86] Hubbuch J, Linden T, Knieps E, et al. Dynamics of protein uptake within the adsorbent particle during packed bed chromatography. Biotechnol. Bioeng., 2002, 80: 359~368
    [87] Dziennik S R, Belcher E B, Barker G A, et al. Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles. Engineering Biophysics, 2002, 100 (2): 420~425
    [88] Ljungl?f A, Larsson M, Knuuttila K-G, et al. Measurement of ligand distribution in individual adsorbent particles using confocal scanning laser microscopy and confocal micro-Raman spectroscopy. J. Chromatogr. A, 2000, 893: 235~244
    [89] Ljungl?f A, Bergvall P, Bhikhabhai R, et al. Direct visualization of plasmid DNA in individual chromatography adsorbent particles by confocal scanning laser microscopy. J. Chromatogr. A, 1999, 844: 129~135
    [90] Lan Q D, Bassi A S, Margaritis A, et al. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. Chemical Engineering Journal, 2001, 81: 179~186
    [91] Conder J R, Hayek B O. Adsorption kinetics and equilibria of bovine serum albumin on rigid ion-exchange and hydrophobic interaction chromatography matrices in a stirred cell. Biochem. Eng. J., 2000, 6: 225~232
    [92] Bellot J C, Condoret J S. Modelling of liquid chromatography equilibria. Process Biochem., 1993, 28: 365~376
    [93] Bosma J C, Wesselingh J A. pH dependence of ion-exchange equilibrium of proteins. AIChE J., 1998, 44 (11): 2399~2408
    [94] Lewus R K, Carta G. Binary protein adsorption on gel-composite ion-exchange media. AIChE J., 1999, 45 (3): 512~522
    [95] Felinger A, Guiochon G. Multicomponent interferences in overloaded gradient elution chromatography. J. Chromatogr. A, 1996, 724: 27~37
    [96] Shi Q H, Zhou Y, Sun Y. Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein. Biotechnology Progress, 2005, 21: 516~523.
    [97] Tugcu N, Cramer S M. The effect of multi-component adsorption on selectivity in ion exchange displacement systems. J. Chromatogr. A, 2005, 1063: 15~23
    [98] Norde W, Lyklema J. The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces IV. The charge distribution in the adsorbed state. J. Colloid Interface Sci., 1978, 66: 285~294
    [99] Norde W, Lyklema J. Thermodynamics of protein adsorption theory with special reference to the adsorption of human plasma albumin and bovine pancreas ribonuclease at polystyrene surfaces. J. Colloid Interface Sci., 1979, 71: 350~366
    [100] St?hlberg J, J?nsson B. Influence of charge regulation in electrostatic interaction chromatography of proteins. Anal. Chem., 1996, 68: 1536~1544
    [101] Li W, Zhang S P, Sun Y. Modeling of the linear-gradient dye-ligand affinity chromatography with a binary adsorption isotherm. Biochem. Eng. J., 2004, 22: 63~70
    [102] Skidmore G L, Chase H A. Two-component protein adsorption to the cation exchanger S Sepharose FF. J. Chromatogr., 1990, 505: 329~347
    [103] Zhang S P, Sun Y. A predictive model for salt effects on the dye-ligand affinity adsorption equilibrium of protein. Industrial and Engineering Chemistry Research, 2003, 42: 1235~1242
    [104] Martin C, Iberer G, Ubiera A, Carta G. Two-component protein adsorption kinetics in porous ion exchange media. J. Chromatogr. A, 2005, 1079: 105~115
    [105] 张松平,蛋白质色素亲和色谱理论研究:[博士论文],天津;天津大学,2002
    [106] Yoon J Y, Lee J H, Kim J H, Kim W S. Separation of serum proteins with uncoupled microsphere particles in a stirred cell. Colloids and Surface B: Biointerfaces, 1998, 10: 365~377
    [107] Boyer P M, Hsu J T. Experimental studies of restricted protein diffusion in an agarose matrix. AIChE J., 1992, 38 (2): 259~272
    [108] Tyn M T, Gusek T W. Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng., 1990, 35: 327~338
    [109] Lehninger A L. Principles of biochemistry, New York: Worth Publishers, 1982, pp128
    [110] Li Y L, Pinto N G. Influence of lateral interactions on preparative protein chromatography. J. Chromatogr., 1994, 658: 445~457
    [111] Raje P, Pinto N G. Combination of the steric mass action and non-ideal surface solution models for overloaded protein ion-exchange chromatography. J. Chromatogr., 1997, 760: 89~103
    [112] St?hlberg J, J?nsson B, Horváth C. Combined coulombic and van der Waals inter-action in the chromatography of proteins. Anal. Chem., 1992, 64, 3118~3124
    [113] Tanford C, Swanson S A, Shore W S. Hydrogen ion equilibria of bovine serum albumin. J. Amer. Chem. Soc., 1955a, 77: 6414~6421
    [114] Scatchard G., Scheinberg I H, Armstrong S H Jr. Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. J. Amer. Chem. Soc., 1950, 77: 535~540
    [115] Johnson C A, Wu P, Lenhoff A M. Electrostatic and van der Waals Contributions to Protein Adsorption: 2. Modeling of Ordered Arrays. Langmuir, 1994, 10 (10): 3705~3713
    [116] Teske C A, Blanch H W, Prausnitz J M. Chromatographic measurement of interactions between unlike proteins. Fluid Phase Equilibria, 2004, 219: 139–148
    [117] Oberholzer M R, Stankovich J M, Carnie S L, et al. 2-D and 3-D interactions in Random Sequential Adsorption of charged particles. J. Colloid Interface Sci., 1997, 194: 138~153
    [118] Kuehner D E, Blanch H W. Prausnitz J M. Salt-induced protein precipitation: phase equilibria from an equation of state. Fluid Phase Equilibria, 1996, 116: 140~147
    [119] Finette G M S, Mao Q M, Hearn M T W. Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal ion affinity and ion exchange matrices with different ionic strength and temperature conditions. J. Chromatogr. A, 1997, 763: 71~90
    [120] Oscarsson S, K?rsn?s P. Salt-promoted adsorptionof proteins onto amphilic agarose-based adsorbents Ⅱ .Effects of salt and salt concentration. J.Chromatogr. A, 1998, 803: 83~93
    [121] Scopes R K. Strategies for enzyme isolation using dye-ligand and related adsorbents. J. Chromatogr., 1986, 76: 131~140
    [122] Gutenwik J, Nilsson B, Axelsson A. Effect of hindered diffusion on the adsorption of proteins in agarose gel using a pore model. J. Chromatogr. A, 2004, 1048: 161~172
    [123] Dephillips P, Lenhoff A M. Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. J. Chromatogr. A, 2000, 883: 39~54
    [124] Dephillips P, Lenhoff A M. Determinants of protein retention characteristics on cation-exchange adsorbents. J. Chromatogr. A, 2001, 933: 57~72
    [125] Haggerty L, Lenhoff A M. Relation of protein electrostatics computations to ion-exchange and electrophoretic behavior. Journal of Physical Chemistry, 1991, 95, 1472~1477
    [126] Yamamoto S, Nakanish K, Matsuno R. Ion-exchange Chromatography of proteins, New York:Marcel Dekker, 1988, 193~198
    [127] Karlsson E, Ryden L, Brewer J. In: J. Janson, L. Ryden, eds. Protein Purification, 2nd ed., Wiley-VSH, New York: 1998, Section 4
    [128] Lightfoot E N. Speeding the design of bioseparations:A Heuristic Approach to Engineering Design. Ind. Eng. Chem. Res., 1999, 38: 3628~3634
    [129] Farnan D, Frey D D, Horváth Cs. Surface and pore diffusion in macroporous and gel-filled gigaporous stationary phases for protein chromatography. J. Chromatogr. A, 2002, 959: 65~73
    [130] Chen W D, Dong X Y, Sun Y. Analysis of diffusion models for protein adsorption to porous anion-exchange adsorbent. J. Chromatogr. A, 2002, 962: 29~40
    [131] Wesselingh J A, Bosma J C. Protein ion-exchange adsorption kinetics. AIChE J., 2001, 47: 1571~1580
    [132] Ma Z, Whitley R D, Wang N-H L. Pore and surface diffusion in multicomponent adsorption and liquid chromatography systems. AIChE J., 1996, 42: 1244~1262
    [133] Carta G, Ubiera A. Particle-size distribution effects in batch adsorption. AIChE J., 2003, 49: 3066~3073
    [134] Liapis A I, Grimes B A, Lacki K, Neretnieks I. Modeling and analysis of thedynamic behavior of mechanisms that result in the development of inner radial humps in the concentration of a single adsorbate in the adsorbed phase of porous adsorbent particles observed in confocal scanning laser microscopy experiments: diffusional mass transfer and adsorption in the presence of an electrical double layer. J. Chromatogr. A, 2001, 921: 135~145
    [135] He L Z, Dong X Y, Sun Y. A diffusion model of protein and eluant for affinity filtration. Biochem. Eng. J., 1998, 2: 53~62
    [136] 周笑鹏,蛋白质离子交换平衡及动力学理论研究:[硕士论文],天津;天津大学,2003
    [137] Zhang S P, Sun Y. Study on protein adsorption kinetics to a dye–ligand adsorbent by the pore diffusion model. J. Chromatogr. A, 2002, 964: 35~46
    [138] Bosma J C, Wesselingh J A. Partitioning and diffusion of large molecules in fibrous structures. J. Chromatogr. B, 2000, 743: 169~180
    [139] Gutenwik J, Nilsson B, Axelsson A. Coupled diffusion and adsorption effects for multiple proteins in agarose gel. AIChE J., 2004, 50: 3006~3018
    [140] 周汝麟,沈关心,现代免疫学实验技术,湖北科学技术出版社,1998
    [141] Malmsten M, Xing K Z, Ljungl?f A. Confocal Microscopy Studies of Trypsin Immobilization on Porous Glycidyl Methacrylate Beads. J. Collid Interface Sci., 1999, 220: 436~442
    [142] 倪培华,温惠萍,王丹艺,绿色荧光蛋白及其应用,Chin. J. Lab Diagn, 2001, 5 (5): 280~281
    [143] Morise H, Shimomura O, Johnson F H, Winant J. Intermolecular Energy Transfer in the Bioluminescent System. Biochemistry, 1974, 13: 2656~2662
    [144] Deschamps J R, Miller C E, Ward K B. Rapid purification of recombinant green fluorescent protein using the hydrophobic properties of an HPLC size-exclusion column. Protein Expr. Purif., 1995, 6: 555~558
    [145] Gonzalez D G, Ward W W. Large-scale purification of recombinant green fluorescent protein from Escherichia coli. Methods Enzymol., 2000, 305: 212~223
    [146] Yakhnin A V, Vinokurov L M, Surin A K, Alakhov Y B. Green fluorescent protein purification by organic extraction. Protein Expr. Purif., 1998, 14: 382~386
    [147] Jain S, Singh R, Gupta M N. Purification of recombinant green fluorescent protein by three-phase partitioning. J. Chromatogr. A, 2004, 1035: 83~86
    [148] Jain S, Teotia S, Gupta M N. Purification of green fluorescent protein overexpressed by a mutant recombinant Escherichia coli. Protein Expr. Purif., 2004, 36: 76~81
    [149] Dieryck W, Noubhani A M, Coulon D, Santarelli X. Cloning, expression and two-step purification of recombinant His-tag enhanced green fluorescent protein over-expressed in Escherichia coli. J. Chromatogr. B, 2003, 786: 153~159
    [150] Noubhani A M, Dieryack W, Chevalier S, Santarelli X. On-line purification of His-tag enhanced green fluorescent protein taken directly from a bioreactor by continuous ultrasonic homogenization coupled with immobilized metal affinity expanded bed adsorption. J. Chromatogr. A, 2002, 968: 113~120
    [151] 高艳,陈雪梅,吴爱群,增强型绿色荧光蛋白原核表达纯化与多克隆抗体的制备,Journal of Zhengzhou University (Medical Sciences), 2003, 38 (3): 345~348
    [152] 佟晓冬,流化床吸附分离蛋白质的基础研究:[博士学位论文],天津;天津大学,2002
    [153] 李津,生物制药设备和分离纯化技术,北京:化学工业出版社,2003
    [154] 汪家政,范明,蛋白质技术手册(第一版),北京:科学出版社,2001
    [155] Laemmli U K. Cleavage of structure proteins during the assembly of the head of bacteriophage. Nature, 1970, 227: 680~685
    [156] Hjorth R. Expanded-bed adsorption in industrial bioprocessing: recent developments. Trends in Biotech., 1997, 15 (6): 230~235
    [157] Thelen T V, Ramirez W F. Bed-height dynamics of expanded beds. Chem. Eng. Sci., 1997, 52 (19): 3333~3344
    [158] Robey R B, Ruiz O, Santos A V P, Ma J, Kear F, Wang L, Li C, Bernardo A A, Arruda J A L. pH-dependent fluorescence of a heterologously expressed Aequoria green fluorescent protein mutant: in situ spectral characteristics and applicability to intracellular pH estimation. Biochemistry, 1998, 37: 9894~9901
    [159] Llopis J, Mccaffery J M, Miyawaki A, et al. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA, 1998, 95: 6803~6808
    [160] Kneen M, Farinas J, Li Y X, Verkman A S. Green Fluorescent Protein as a noninvasive intracellular pH indicator. Biophysical Journal, 1998, 74: 1591~1599

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700