玉米(Zea mays L.)对铜胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是植物生长发育所必需的微量营养元素,但过量的铜也会对植物产生毒害作用。近年来,由于铜矿的开采,含铜农药的大量使用,以及生活污水的排放,造成土壤中铜的浓度大幅度增加,铜已成为土壤中主要重金属污染物之一,并已引起国内外研究者们的极大关注。然而,有关铜对植物的毒害机理和植物对铜的耐性机理还有待深入地研究。本论文采用水培试验,选择玉米(Zea mays L.,品种为苏玉19)作为供试材料,对铜胁迫条件下植物根系形态结构进行分析;通过透射电子显微镜技术观察了不同浓度铜对玉米细胞超微结构的影响及铜在玉米细胞中的分布位点;通过木质部汁液的搜集研究了铜胁迫条件下玉米体内各种养分及铜的转运情况;采用差速离心法和逐步梯度提取法研究了铜在玉米体内的存在形态及亚细胞水平分布情况;研究了不同铜水平下玉米生长及体内铜和养分吸收累积的差异。旨在阐明铜对植物的毒害机理及植物对铜的耐性机理,为铜污染土壤的植物修复提供理论基础。通过研究得到了以下结果:
     (1)研究不同铜水平对玉米幼苗生长和根系形态几种指标的影响表明,1μmol·L~(-1)Cu处理时,玉米的生长并不受影响,根系长度和根表面积明显增加,根体积和根平均直径与对照相比并未表现出显著的差异。随着铜浓度的增加,幼苗的生长受到不同程度的抑制,根系长度、根表面积、根体积和根平均直径均显著减小。在各类分级中,20μmol·L~(-1)Cu条件下, 0.4 mm<直径≤0.8mm时的根系长度、根表面积和根体积均未受到明显抑制,甚至在0.6mm<直径≤0.8mm时三者的值极显著地大于对照。
     (2)研究不同铜水平对玉米根尖细胞结构和细胞发育的影响表明,1μmol·L~(-1)Cu处理时,玉米根尖细胞结构及根尖伸长区单位长度细胞数和细胞长度与对照间均未表现出明显差异。随着铜浓度的增加,根冠细胞开始破碎脱落,根冠明显变短;皮层薄壁细胞和导管的破坏逐渐加重,至80μmol·L~(-1)Cu处理时,薄壁细胞发生崩溃,导管壁断裂破碎;根尖伸长区细胞的长度增加,单位长度的细胞个数逐渐减少,可见,过量的铜对根尖细胞伸长的影响并不明显,很可能抑制根尖细胞的分裂。
     (3)研究不同浓度铜对玉米根细胞超微结构的影响及铜在根细胞中的分布位点表明,1μmol·L~(-1) Cu处理时,玉米根皮层细胞胞质浓,质膜紧贴于细胞壁,含有丰富的细胞器,有较小的细胞核和核仁,核质均匀,核膜皱缩,根维管束细胞中质壁发生分离,原生质膜皱缩。随着外源铜浓度的增加,根皮层细胞中质壁分离和原生质膜破坏加重,细胞器从较少直至完全溶解,细胞核变得更小,核仁分散,核膜断裂,染色质凝集,直至核膜完全溶解,核质和游离的核仁分散在细胞质中,20μmol·L~(-1) Cu处理时液泡中有少量颗粒状物质,50μmol·L~(-1) Cu处理时,核膜上出现黑色沉积,80μmol·L~(-1) Cu处理时原生质膜上出现黑色沉积物;根维管束细胞中,原生质膜和细胞器结构破坏加重, 80μmol·L~(-1) Cu处理时细胞质、原生质膜及导管侧壁上均有有黑色沉积。
     (4)研究不同浓度铜对玉米叶细胞超微结构的影响及铜在叶细胞中的分布位点表明,1μmol·L~(-1) Cu处理时,叶表皮细胞中原生质膜模糊,叶肉细胞的超微结构无明显变化。随着外源铜浓度的增加,叶表皮细胞中原生质膜受损和质壁分离更加严重,细胞质和细胞壁中出现黑色沉积物;叶肉细胞中原生质膜破损,至80μmol·L~(-1) Cu处理时膜上出现黑色沉淀,叶绿体膜破损,片层结构紊乱,20μmol·L~(-1) Cu处理时形成了大的脂质颗粒,50μmol·L~(-1) Cu处理时叶绿体上有很多大小不同的空泡,线粒体脊突数目减少,被膜断裂,直至线粒体膜和脊突完全消失。
     (5)研究不同铜水平对玉米植株内铜积累和养分吸收的影响表明,1μmol·L~(-1)Cu处理时,玉米地上部中铜的含量和累积量与对照相比均未表现出显著差异,随着外源铜浓度的增加,地上部中的铜含量显著的高于对照,但玉米根系中铜的含量和累积量在4种铜浓度处理时均显著的高于对照,且二者最大值均出现在20μmol·L~(-1)Cu处理时;不同铜浓度处理对玉米吸收P素的影响很小,而在80μmol·L~(-1)Cu处理时玉米根部吸收N素及N素在地上部的分配明显受到抑制,在50和80μmol·L~(-1)Cu处理时玉米根部吸收K素及K在素在地上部的分配都明显受抑制;4种铜浓度处理均不利于Ca在玉米地上部的分配,而1μmol·L~(-1)Cu处理却有助于玉米根吸收Ca,在50μmol·L~(-1)Cu处理时玉米根对Mg的吸收及Mg在地上部的分配同时受到抑制;在80μmol·L~(-1)Cu处理时玉米根部吸收Zn及Zn在地上部的分配同时受到抑制,1μmol·L~(-1)Cu处理有利于Fe在地上部的分配,随着铜浓度的增加玉米根部对Fe和Mn的吸收及其在地上部的分配均受到抑制。
     (6)研究不同铜水平下玉米木质部汁液转运速率的差异及木质部伤流液中N、P、K和Cu的浓度和转运速率的差异表明,不同铜浓度处理对玉米木质部汁液转运速率的影响是不同的,与对照相比,1和20μmol·L~(-1)Cu处理时木质部伤流液的转运速率较快,而50和80μmol·L~(-1)Cu处理时转运速率减慢。20μmol·L~(-1)Cu处理时,玉米木质部汁液中Cu的浓度较高,转运速率也较快。对于木质部伤流液中不同形态氮而言,NH4+-N的运输对于铜胁迫最为敏感,仅在很低的铜浓度条件下就受到了抑制,有机氮的转运在铜胁迫条件下不受抑制,随着营养液中铜浓度的升高,其转运速率加快,有机氮/无机氮也逐渐升高。在几种铜浓度处理中,1μmol·L~(-1)Cu处理时有利于玉米木质部汁液中养分NO3--N、氨基酸、P和K的转运。
     (7)研究铜在玉米细胞内的分布和存在的主要化学形态表明,细胞壁和细胞溶质部分是铜在玉米细胞内分布的主要位点,细胞核、叶绿体及线粒体等细胞器中铜的含量较低。在对照和1μmol·L~(-1)Cu处理下根部铜主要分布在细胞壁部分,其次为细胞溶质部分,随着铜浓度的升高,铜向细胞壁部分的分配减少,而向细胞溶质部分的分配增加;茎中,在不同铜浓度处理中亚细胞组分中铜的含量均以细胞溶质部分中的值最高,其次为细胞壁部分;而叶中,其均以细胞壁部分中的值最高,其次为细胞溶质部分。在各种形态铜中,对照中根部主要以HCl提取态铜为主,茎和叶中铜以多种化学形态存在,1μmol·L~(-1)Cu处理时,根部仍主要以HCl提取态铜为主,而茎和叶中主要以NaCl提取态铜占优势,随着铜浓度的升高,根部和叶部主要以乙醇提取态铜占优势,而茎中20和50μmol·L~(-1)铜浓度时主要以NaCl提取态铜为主,在80μmol·L~(-1) Cu处理时主要以去离子水提取态铜和NaCl提取态铜为主。
Copper is an essential nutrient for the growth and development of plants. It is a constituent micronutrient of protein components of several enzymes, mainly of those participating in electron flow, catalyzing the redox reaction in mitochondria and chloroplasts in the cytoplasm of plant cells. When absorbed in excess amounts, copper can cause damage leading to total inhibition of plant growth. Recently, the increasing application of fertilizer and agrochemical, the mining and smelting of metal and the irrigation of wastewater result in the progressive accumulation of toxic copper in the soil. Copper, one of main toxic metals in the soil, has attracted considerable attention. However, the mechanisms of copper toxicity and tolerance need for the further investigation. In this paper, solution culture experiments were conducted using maize and rice as experimental materials. The effects of different copper levels on morphology and structure of maize roots were investigated. Transmission electron microscopy was used to observe effects of different copper concentrations on cell ultrastructure in maize roots and leaves as well as distribution of copper. Xylem sap was collected to study the effects of different copper concentrations on translocation of nutrients and copper in maize. The differential centrifugation technique and sequential chemical extraction method were used to study the subcellular distribution and the chemical forms of copper in the roots, leaves and stems of maize. Growth, copper accumulation and nutrient uptake of maize were studied. The main results were as follows:
     (1) Under the condition of 1μmol·L-1Cu treatment, growth, root length, root surface area, root volume and average diameter of maize seedlings were not inhibited. With elevation of copper concentration, growth of maize was inhibited. All the parameters of root morphology markedly decreased under high copper concentrations. According to classification, the growth of 0.6mm     (2) For root tip of maize, cell structure, cell number unit length and cell length in zone of elongation were no obvious difference between the 1μmol·L~(-1)Cu level and the control treatment. With the increase of copper concentration, calyptrogens became obviously short, cells of which began to destroy and shell; in root cortex the destruction of parenchymatous cells and vessels was more serious, and parenchymatous cells collapsed and vessels broke at 80μmol·L~(-1)Cu level; cell length increased, and cell number unit length decreased in zone of elongation. Excess copper may cause reduction in cell division instead of reduction in cell elongation.
     (3) As for the ultrastructure of maize root cells, dense cytoplasm, plasmalemma sticking cell walls, abundance of cell organelles, small nuclei and nucleolus, homogenous nucleoplasm and folded nuclei membrane were observed in cortical cells of 1μmol·L~(-1)Cu-treated roots; plasmolysis and folded plasmalemma were found in vascular bundle cells. With the increase of copper concentration, in cells of root cortex plasmolysis and the destruction of plasmalemma became more serious, cell organelles disintegrated completely, nucleus with disintegrated nucleolus became smaller, nucleus membrane bursted, chromatin agglomerated, nucleus membrane finally disappeared leading to nucleolus and nucleoplasm distributing in cytoplasm, and dense and compact materials deposited in vacuole at 20μmol·L~(-1) Cu level, in nuclei membrane at 50μmol·L~(-1) Cu level and in plasmalemma at 80μmol·L~(-1) Cu level; in vascular bundle cells plasmalemma and structure of cell organells were badly destroyed, and dark sediment distributed in cytoplasm, plasmalemma and vessel walls.
     (4) Compared with the control treatment, blurred plasmalemma was found in epidermal cells of maize leaves while no obvious significance was appeared in mesophyllic cells cells under 1μmol·L~(-1) Cu treatment. With the increase of copper concentration, the damage of plasmalemma and plasmolysis became more serious in epidermal cells of maize leaves, and dark granular materials deposited in cytoplasm and cell walls; damaged plasmalemma and disintegrated membrane and disorderly lamella of chloroplasts were detected in mesophyllic cells; dark materials deposited in plasmalemma under 80μmol·L~(-1) Cu-treated condition; under 20μmol·L~(-1) Cu and 50μmol·L~(-1) Cu treatments large lipids and many variform vesicles were formed in chloroplasts; the decrease number of cristae and disintegrated membrane were found in mitochondria, and finally cristae and membrane of mitochondria disappeared.
     (5) The content and accumulation of copper in maize shoots had no obvious difference between 1μmol·L~(-1) Cu treatment and the control. With the elevation of copper supply, compared with the control, the copper content in shoots markedly increased. The content and accumulation of copper in maize roots increased, which in the 20μmol·L~(-1)Cu-treated roots were the largest among the five Cu levels. Excess copper had little influence on the uptake of P by maize. Both N uptake by maize roots and N allotment in shoots were inhibited under the 80μmol·L~(-1)Cu treatment. K uptake by maize roots and K distribution in shoots were obviously retarded. All 4 copper levels inhibited Ca allotment in maize shoots, whereas 1μmol·L~(-1)Cu treatmentimproved Ca uptake by roots. Mg uptake by roots and Mg allotment in maize shoots were limited under 50μmol·L~(-1)Cu treatment. Zn uptake by roots and Zn allotment in maize shoots were limited under 80μmol·L~(-1)Cu treatment. Fe distribution in maize shoots was accelerated at 1μmol·L~(-1)Cu level, while uptake and allotment of Fe and Mn in maize plants were obviously inhibited with the elevation of copper supply.
     (6) The effects of different copper levels on translocation rates of maize xylem sap were different. Compared with the control, transport rates of xylem sap increased in 1 and 20μmol·L~(-1)Cu-treated maize whereas just the contrary in 50 and 80μmol·L~(-1) Cu-treated plants. Under 20μmol·L~(-1)Cu treatment, copper concentration in maize xylem sap was higher, and copper transport rates increased. For different forms N in xylem sap, NH4+-N was sensitive to copper stress, translocation of which was retarded simply under the low copper concentration. Excess copper had no inhibition on transport of organic nitrogen. Its translocation rates and organic N/inorganic N increased with the elevation of copper supply. Among 5 copper levels, 1μmol·L~(-1)Cu treatment stimulated the translocation of NO3--N, organic N, P and K synchronously.
     (7) Copper was mainly bound to cell walls and soluble fraction, and little was found in the cell organelle fraction in maize cells. Copper content in cell walls was more than in the soluble fraction in the control and 1μmol·L~(-1)Cu-treatment roots. With the elevation of copper concentration in solution, distribution of copper was reduced in cell wall fraction and increased in the soluble fraction. Copper content in soluble fraction was highest in subcellular parts of maize stems, whereas that in cell wall fraction came next under different copper concentrations. On the contrary, copper mainly distributed in cell wall fraction in leaves under different copper concentrations. Chemical forms of copper in roots, stems and leaves of maize were significantly different at different copper levels. HCl extractable copper was the main form in roots while several copper forms were observed in shoots under the control condition. HCl extractable copper was still superior to other forms in roots and NaCl extractable copper was advantage in shoots under 1μmol·L~(-1)Cu concentration condition. Ethanol extractable copper became dominant in roots and leaves with the increase of copper supply. In stems, NaCl extractable copper was mainly existed in the 20 and 50μmol·L~(-1) Cu treatments while water and NaCl extractable copper most in 80μmol·L~(-1) Cu treatment.
引文
[1]Clijsters H, Van Assche F. Inhibition of photosynthesis by heavy metals. Photosynth. Res., 1985, 7: 31-40.
    [2]Lolkema P C, Voijs R. Copper tolerance in Silene cucubalus: subcellular distribution of copper and its effects on chloroplasts and plastocyanin synthesis. Planta, 1986, 167: 30-36.
    [3]Ouzounidou G. Changes of photosynthetic activities in leaves as a result of Cu-treatment: Dose-response relations in Silene and Thlaspi. Photosynthetica, 1993, 29: 455-462.
    [4]Reboredo F, Henriques F. Some observations on the leaf ultrastructure of Halimione portulacaides (L.) Aellen grown in a medium containing copper. J. Plant Physiol., 1991, 137: 717-722.
    [5]Eleftheriou E P, Karataglis S. Ultra-structural and morphological characteristics of cultivated wheat growing on copper-polluted fields. Bot. Acta, 1989, 102: 134-140.
    [6]Karataglis S, Babalonas D. The toxic effect of copper on the growth of Solanum lycopersicum L. collected from Zn- and Pb-soil. Angex. Bot., 1985, 59: 45-52.
    [7]Besnard E, Chenu C, Robert M. Influence of organic amendments on copper distribution among particle-size and density fraction in champagne vineyard soils. Environ. Pollut., 2001, 112: 329-337.
    [8]Brun L A, Maillet J, Hinsinger P, et al. Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ. Pollut., 2001, 111:293-302.
    [9]Schramel O, Michalke B, Kettrup A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Sci. Total Environ., 2000, 263: 11-22.
    [10]Nriagu J O, Pacyna J M. Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature, 1988, 333: 134-139.
    [11]Brooks R R, Morrison R S, Reeves R D. Aeolanthus biformifolius, a hyperaccumulator of copper from Zaire. Science, 1978, 199: 887-888.
    [12]Robson A D, Reuter D J. Diagnosis of copper deficiency and toxicity. In: Copper in Soils and Plants. Sydney: Academic Press, 1981, 287-312.
    [13]王镜岩,朱圣庚,徐长法. 生物化学. 北京: 高等教育出版社, 2002, 465-466.
    [14]Ouzounidou G. Copper-induced changes on growth, methal content and photosynthetic function of Alyssum montanum Plants. Environ. Experi. Bot., 1994, 34(2): 165-172.
    [15] Ralph P J, Burchett M D. Photosynthetic response of Halophila ovalis to heavy metal stress. Envionmcntal Pollution, 1998, 130: 91-101.
    [16]Karataglis S, Symeonidis L, Moustakas M. Effect of toxic metals on the multiple forms of esterases of Triticum aestivum cv. Vergina. J. Agr. Crop. Sci., 1988, 160:106-112.
    [17]Lidon F C, Henriques F S. Effects of copper toxicity on growth and the uptake and translocation of metals in rice plants. J. Plant Nutr., 1993, 16:1449-1464.
    [18]Ouzounidou G, Clamporová M, Moustakas M, Karataglis S. Responses of maize (Zea mays L.) plants to copper stress.Ⅰ .Growth, mineral content and ultrastructure of roots. Environ. Exp. Bot., 1995, 35:167-176
    [19]聂湘平, 蓝崇钰, 张志权, 等. 铜对大叶相思一根瘤菌共生固氮体系的影响. 应用生态学报, 2002, 13(2): 137-140.
    [20]Adalsteinsson S. Compensatory root growth in winter wheat: effects of copper exposure on root geometry and nutrient distribution. J. Plant Nutr., 1994, 17(9): 1501-1512.
    [21]Ouzounidou G. Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper. J. Plant Nutr., 1994,17(6): 933-943.
    [22]Nieminen T, Helmisaari H S. Nutrient translocation in the foliage of Pinus sylvestris L. along a heavy metal pollution gradient. Tree Physiol., 1996, 16: 825-831.
    [23]Panou-Filotheou H, Bosabalidis A M. Root structural aspects associated with copper toxicity in oregano. Plant Science, 2004, 166: 1497-1504.
    [24]倪才英, 李华, 骆永明, 陈英旭. 铜、镉及其交互作用对泡泡草细胞超微结构的影响. 环境科学学报, 2004, 24(2): 343-348.
    [25]Maksymiec W, Russa R, Urbanik-Sypniewska T, Baszyński T. Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiol Plant, 1994, 91:715-721.
    [26]Maksymiec W, Bednara J, Baszyński T. Responses of runner bean plants to excess copper as a function of plant growth stages: effects on morphology and structure of primary leaves and their chloroplast ultrastructure. Photosynthetica, 1995, 31:427-435.
    [27]刘永厚, 黄细花, 赵振纪, 等. 铜对紫云英固氮作用及养分吸收的影响. 土壤肥料, 1993, 5: 23-27.
    [28]于海彬, 蔡葆, 孙丽英. 甜菜对铜和锰营养的吸收及积累动态的初步分析. 中国甜菜, 1995, (2): 30-34.
    [29]黎耿碧, 陈二钦, Alva1 A K. 外界铜离子对柑桔小苗常量元素吸收特性的影响. 广西农业大学学报, 1996, (15)3: 195-201.
    [30]Reuther W, Smith P F. Iron chlorosis in Florida citrus groves in relation to certain soil constituents. Fla. State Hort. Sco., 1952, 65:62-69.
    [31]Dokiya Y, Owa N, Mitsui S. Manganese and copper adsorption by plants Ⅲ : Interaction between Fe, Mn and Cu on the absorption of elements by rice and barley seedlings. Soil Sci., 1968, 14:169-174.
    [32]Alva A K, Chen E Q. Effects of external copper concent rations on uptake of trace elements by citrus seedlings. Soil Sci., 1995, 159:5 9-64.
    [33]王卫红, 游植磷, 廖宗文, 等. 赤红壤施用 Cu、Zn 对菜心生长和吸收 Cu、Zn 的影响. 华南农业大学学报, 1997, 18(2): 66-71.
    [34]Graham J H, Timmerand L W, Farddmann D. Toxicity of fungicidal copper in soil to citrus seedlings and vesicular-arbuscular mycorrhizal fungi. Phytopathology, 1986, 76: 66- 70.
    [35]Hsu B, Lee J. Toxic effects of copper on photosystem of spinach chloroplasts. Plant Physiol.,1988, 87:116-119.
    [36]Alva A K, Graham J H. Role of Calcium in amelioration of copper phytotoxicity for citrus. Soil Sci., 1993, 155: 211-218.
    [37]Shainber O, Rubin B, Rabinowitch H D, et al. Loading beans with sublethal levels of copper enchances conditioning to oxidative stress. Journal of Plant Physiology, 2001, 158:1415-1421.
    [38]Demidchik V, Sokolik A, Yurin V. The effect of Cu2+ ion transport systems of the plant cell plasmalemma. Plant Physiol., 1997, 114: 1313-1325.
    [39]De Vos C H R, Schat H, De Waal M A M, et al. Increased resistance to copper-induced damage of the root cell plasmalemma in copper-tolerant Silene cucubalus. Physiol. Plant, 1991, 82: 523-528.
    [40]Murphy A, Taiz L. Correlation between potassium efflux and copper sensitivity in 10 Arabidopsis ecotypes. New Phytol., 1997, 136: 211-222.
    [41]Trebst A. Energy conservation in photosynthetic transport of chloroplasts Annu. Rev. Physiol., 1974, 25:423-458.
    [42] Lanaras T, Moustakas M, Symenoides L, et al. Plant metal content, growth responses and some photosynthetic measurements on field-cultivated growing on ore bodies enriched in Cu. Physiol. Plant, 1993, 88: 307-314.
    [43]Sickevitz P. Power house of the cell. Sci. Am(Jul), 1957, 197:131-149.
    [44]潘瑞智, 董愚得. 植物生理学. 北京: 人民教育出版社, 1980, 139-142.
    [45]王友保, 刘登义. Cu、 As 及其复合污染对小麦生理生态指标的影响. 应用生态学报,2001, 12(5): 773-776.
    [46]朱云集, 王晨阳, 马元喜, 等. 铜胁迫对小麦根系生长发育及生理特性的影响. 麦类作物, 1997, 17(5): 49-51.
    [47]Mc Bride M B. Toxic metal accumulation from agricultural use of sludge: are USEPA regulations protective? J. Environ. Qual., 1995, 24: 5-18.
    [48]雷虎兰, 高发奎, 杨晓辉, 等. 灰钙土重金属污染对农作物生理生化作用的影响,农业环境保护, 1994, 13(1): 12-17.
    [49]罗立新, 靳月华. 镉胁迫下小麦叶中超氧阴离子自由基的积累. 环境科学学报, 1998,18( 5): 495- 499.
    [50]邱栋梁, 黄水菊, 李丽萍, 等. CuSO4 对枇杷生长的影响. 福建农林大学学报(自然科学版),2006, 35( 1): 111-112.
    [51]Deiana S, Gessa C, Palma A, et al. Influence of organic acids exuded by plants on the interaction of copper with the polysaccharidic components of the root mucilages. Organic Geochem, 2003, 34: 651-660.
    [52]Kunito T, Saeki K, Nagaoka K. Characterization of copper-resistant bacterial community on rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol., 2001, 37: 95-102.
    [53]Hill K L, Hassett R,Kosman D,et al. Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol., 1996, 112: 697-704.
    [54]Dancis A, Yuan D S, Haile D, et al. Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell, 1994, 76: 393-402.
    [55]Kampfenkel K, Van Montagu M V, Inze D. Effects of iron excess on Nicotiana plumbaginifolia plants. Plant Physiol., 1995, 107: 725-735.
    [56]Sancenon V, Puig S, Mira H, et al. Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol. Boil., 2003, 51:577-587.
    [57]Welch R M, Norvell W A, Schaefer S C et al. Induction of iron (Ⅲ) and copper (Ⅱ) reduction in pea roots by Fe and Cu status: dose the root-cell plasmalemma Fe(Ⅲ)-chelate reductase perform a general role in regulation cation uptake. Planta, 1993, 190:555-561.
    [58]Rodecap K D, Tingey D T, Lee E H. Iron nutrition influence on cadmium accumulation by Arabidopis thaliana (L.) Heynh. J. Environ. Qual., 1994, 23:239-246.
    [59]Meagher R B. Phytoremediation of toxic elemental and organic pollutants. Current Opinion inPlant Biology, 2000, 3: 153-162.
    [60]Hall J L, Williams L E. Transition metal transporters in plants. J. Exp. Bot., 2003, 54: 2601-2613.
    [61]Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Plants, 2001, 212: 475-86.
    [62]Pich A, Schoiz I. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J. Exp. Bot., 1996, 47: 41-47.
    [63]Liao M, Hedley M, Wooley D J, et al. Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport. Plant Soil, 2000, 223: 243-252.
    [64] Pich A, Scholz G, Stephan U W. Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudates of two tomato genotypes. Plant Soil, 1994, 165: 189-194.
    [65]Himelblau E, Mira H, Lin S J, et al. Identification of a functional homolog of the yeast copper homeostasis gene ATX 1 from Arabidopsis. Plant Physiol., 1998, 117: 1227-1234.
    [66]Mira H, Martinez-Garcia F, Pe?arrubia L. Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J., 2001, 25: 521-525.
    [67]Lin S J, Pufahl R, Dancis A, et al. A role for the saccharomyces cerevisiae ATX1 Gene in copper trafficking and iron transport. J. Biol. Chem., 1997, 272: 9215-9220.
    [68]Harrison M D, Jones C E, Solioz M, et al. Intracellular copper routing: the role of copper chaperones. Trends Biochem. Sci., 2000, 25: 29-32.
    [69]Woeste K E, Kieber J J. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell, 2000, 12: 443-455.
    [70]Balandin T, Castresana C. AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiol., 2002, 129: 1852-1857.
    [71]Shingles R, Wimmers L E, McCarty R E. Copper transport across pea thylakoid membranes. Plant Physiol., 2004, 135: 145-151.
    [72]Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 2002, 53: 1-11.
    [73]Baker A J M, McGrath S P, Sidoli C M D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Res. Cons. Rec., 1994, 11: 41-49.
    [74]Jung C, Maeder V, Funk F, et al. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant soil, 2003, 252: 301-312.
    [75]Meharg A A. The role of the plasmalemma in metal tolerance in angiosperms. Physiol. Pl., 1993, 88: 191-198.
    [76]Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat II: Oxalic acid detoxifies aluminum internally. Plant Physiol, 1998, 117: 753-759.
    [77]Fuente J M, Ramirez-Rodriguez V, Cabrera-Ponce J L, et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 1997, 276: 1566-1568.
    [78]Zheng S J, Ma J F, Matsumoto H. High aluminum resistance in buckwheat I: Al-induced specific secretion of oxalic acid from root tips. Plant Physiol., 1998, 117: 745-751.
    [79]Zheng S J, Ma J F, Matsumoto H. Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress. Physiol. Plant, 1998, 103: 209-214.
    [80]Aangus S. Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol., 1999, 121: 1375-1382.
    [81]张玉秀, 柴团耀. 植物耐重金属研究进展. 植物学报. 1999, 41(5):11-17.
    [82]Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils. Trends Biotechnol., 1995, 13: 393-397.
    [83]Zhang Y W, Tam N F Y, Wong Y S. Cloning and characterization of type Ⅱ metallothionein-like gene from a wetland plant , Typha latifolia. Plant Sci., 2004, 167: 869-877.
    [84]Whitelaw C A, Le Huquer J A, Thurman D A, Tomsett A B. The isolation and characterization of type Ⅱ metallothionein-like genes from tomato (Lycopersicim esculemtum L.). Plant Mol. Biol., 1997, 33: 503-511.
    [85]Rauser W E. Structure and function of metal chelators produced by plants. Cell Biochem. Biophys., 1999, 31: 19-48.
    [86]Salt D E, Prince R C, Pickering I J, Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard, Plant Physiol., 1995a, 109:1427-1433.
    [87]Koricheva J, Roy S, Vranjic J A, et al. Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ. Pollut., 1997, 95: 249-258.
    [88]Nagalakshmi N, Prasad M N V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stess on Scenedesmus bujugatus. Plant Sci., 2001, 160: 291-299.
    [89]Celina M L, Claudio A G, Victorio S T. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol., 1994, 35: 11-15.
    [90]陈同斌, 韦朝阳, 黄泽春, 等. 砷超富集植物蜈蚣草及其对砷的富集特性. 科学通报, 2002, 47(3): 207-286.
    [91]杨肖娥, 龙新宪, 倪吾钟, 傅承新. 东南景天(Sedum alfredii H )—一种新的锌超积累植物. 科学通报, 2002, 47(13): 1003-1006.
    [92]Yang X E, Long X X, Ye H B, et al. Cadmium tolerance and hyperaccumulation in a Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil, 2004, 259 (2): 181-189.
    [93]薛生国, 陈英旭, 林琦. 中国首次发现的锰超积累植物一商陆. 生态学报, 2003, 23(5):935.
    [94]薛生国, 陈英旭, 骆永明. 商陆(Phytolacca acinosa Roxb.)的锰耐性和超积累. 土壤学报, 2004, 41(6): 889
    [95]Yang X E, Shi W Y, Fu C X, Yang M J. Copper- hyperaccumulators of Chinese native plants: characteristics and possible use for phyto-remediation. Bassam N E L (Eds), Sustainable Agriculture for Food, Energy and Industry. London: James and James Publishers Ltd, 1998, 484-489.
    [96]Song J, Zhao F J, Luo Y M, McGrath S P, Zhang H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ. Pollut., 2004, 128, 307-315.
    [97]束文圣, 杨开颜, 张志权, 等. 湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究. 应用与环境生物学报, 2001, 7(1): 7-12.
    [98]刘杰, 熊治廷, 李天煜. 两个不同来源的齿果酸模种群对铜吸收与抗性差异. 农业环境科学学报, 2003, 22(3): 271-273.
    [99]Jiang L Y, Yang X E, Ye Z Q, Shi W Y. Uptake, distribution and accumulation of copper in two ecotypes of Elsholtzia. Pedosphere, 2003, 13(4): 359-366.
    [100]Jiang L Y, Yang X E, Shi W Y, et al. Copper uptake and tolerance in two contrasting ecotypes of Edsholtzia argyi. J. Plant Nutr., 2004, 27(12):2067-2083.
    [101]Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution ecology and phytochemistry. Biorecovery, 1989, 1: 81-97.
    [102]Brooks R R, Baker A J M, Malaisse F. Copper flowers. National Geographic Research and Exploration, 1992, 8(3): 338-351.
    [103]Brooks R R, Radford C C. An elevation of background and anomalous copper and zinc concentrations in the ‘copper flower’ Polycarpaea spirostylis and other Australian species of the genus. Proceedings of the Australasian Institution of Mining and Metallurgy, 1978, 268: 33-37.
    [104]Tang S R, Wilke B M, Brooks R R. Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Commun. Soil Sci. PIant Anal., 2001,32(6): 895-906.
    [105]Tang S R, Wilke B M, Huang C Y. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil, 1999, 209: 225-232.
    [106]Lou L Q, Shen Z G, Li X D. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ. Experi. Botany, 2004, 51: 111-120.
    [107]柯文山, 席红安, 杨毅, 等. 大治铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析. 生态学报, 2001, 21(6): 907-912.
    [108]Jiang L Y, Shi W Y, Yang X E, et al. Copper hyperaccumulators in mining area. Chin. J. Appl. Ecolo., 2002, 13(7): 906-908. 65.
    [109]Jiang L Y, Yang X E, He Z L. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere, 2004, 55: 1179-1187.
    [110]Yang M J, Yang X E, Roemheld V. Growth and nutrient composition of Elsholtzia splendens nakai under copper toxicity. J. Plant Nutri., 2002, 25(7):1 359-1375.
    [111]Ni CY, Chen Y X, Lin Q, et al. Subcellular localization of copper in tolerant and non-tolerant plant. J. Environ. SCI-China, 2005, 17 (3): 452-456.
    [112]施积炎, 陈英旭, 袁小凤, 等. 同步辐射 X 荧光分析海州香薷根中铜结合蛋白的微量元素核技术, 2004, 10: 736-739.
    [113]YANG Xiao-e, PENG Hong-yun, TIAN Sheng-ke. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity. J. Zhejiang Univ SCI., 2005, 6B(2): 96-99.
    [114]廖斌, 邓冬梅, 杨兵, 等. 鸭跖草(Commelina communis)对铜的耐性和积累研究. 环境科学学报, 2003, 23(6): 797-801.
    [115]廖斌, 邓冬梅, 杨兵, 等. 铜在鸭跖草细胞内的分布和化学形态研究. 中山大学学报(自然科学版), 2004, 43(2): 72-80.
    [116]廖斌, 邓冬梅, 杨兵, 等. 鸭跖草 Commelina communis 中差异表达 cDNA 片段的克隆与分析. 中山大学学报(自然科学版), 2004, 43(1): 76-78.
    [117]施积炎, 陈英旭, 田光明, 等. ATP 酶抑制剂对鸭跖草 (Commelina communis)铜吸收的影响. 土壤学报, 2004, 41(4): 553-557.
    [118]Tang S R, Fang Y H. Copper accumulation by Polygonum microcephalum D. Don and Rumex hastatus D. Don from copper mining spoils in Yunnan Province, P.R. China. Environ. Geology, 2001, (40):902-907.
    [119]Kelepertsis A E, Andrulakis J. Geobotany biogeochemistry for mineral exploration of sulphide deposits in Northern Greece-heavy metal accumulating by Rumex acetosella L. and Minuarita verna (L.) Hien. J. Geo. Explo., 1983, 18: 267-274..
    [120]Jiang L Y, Yang X E. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens. Journal of Zhejiang University SCIENCE, 2003, 5(4): 450-456.
    [121]Grěman H, Velikonja-Bolta ?, Vodnik D, et al. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil, 2001, 235, 105-114.
    [122]Yang X E, Peng H Y, Jiang L Y, et al. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost. Inter. J. Phytoremediation, 2005, 7 (1): 69-83.
    [123]Meers E, Hopgood M, Lesage E, et al. Enhanced phytoextraction: in search of EDTA alternatives. Inter. J. Phytoremediation, 2004, 6(2): 95-109.
    [124]Kaplan M. Accumulation of copper in soils and leaves of tomato plant in greenhouses in Turkey. Journal of Plant Nutrition, 1999, 22(2):237-244.
    [125]田生科, 李廷轩, 彭红云, 等. 铜胁迫对海州香薷和紫花香薷根系形态及铜富集的影响. 水土保持学报, 2005, 19(3):97-100.
    [126]Agarwal K., Sharma A., Talukder G. Copper toxicity in plant cellular systems. Nucleus, 1987, 30:131-158.
    [127]Van Assche F, Clijsters H. Enzyme analusis in plants as a tool for assessing phytotoxicity ofheavy metal polluted soils. Med. Fac. Landbouww, Rijksuniv. Gent., 1987, 52: 1819-1824.
    [128]Ager F J, Ynsa M D, Dominguez-Solis J R, et al. Cadmium localization and quatification in the plant Arbidopsis thaliana using micro-PIXE. Nuclear Instr. Methods Phys. Res., 2002, 189: 494-498.
    [129]High K A, Barthet V J, Mclaren J W, et al. Characterization of metal lothionein like proteins from Zebra mussels. Environ. Toxicol. Chem., 1997, 16(6): 1111-1118.
    [130]汪金舫, 朱其清, 刘铮. 小麦和油菜中Cu和Zn的化学结合形态初步研究. 应用生态学报, 2000, 11(4): 629-630.
    [131]杨居荣, 查燕, 刘虹,等. 污染作物籽实中Cu的分布、结合形态及其毒性. 农业环境保护, 2001, 20(4): 199-201.
    [132]Kumar P B A N, Sushenkov V, Motto H, et al. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol., 1995, 29: 1272~12386.
    [133]韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展. 生态学报, 2001, 21(7): 1196-1202.
    [134]杨居荣, 黄翌. 植物对重金属的耐性机理. 生态学杂志, 1994, 13 (6): 20-26.
    [135]Panou-Filotheo H, Bosabalidis A M, Karataglis S. Effects of copper toxicity on leaves of oregano. Ann. Bot., 2001, 88: 207-214.
    [136]Ouzounidou G, Moustakas M, Lannoxe R. Chlorophyll fluorescence and photoacoustic characteristics in relationship to changes in chlorophyll and Ca2+ content of a Cu-tolerant Silene compacta ecotype under Cu treatment. Physiol. Plant, 1995, 93:551-557.
    [137]李扬汉主编. 植物学. 上海: 上海科学技术出版社, 1984, 89-90.
    [138]赵菲佚, 翟禄新, 陈荃, 等. Cd、Pb 复合处理下对植物膜的伤害初探. 兰州大学学报(自然科学版), 2002, 38(2): 115-120.
    [139]徐秋曼, 陈宏, 程景胜, 等. 镉对油菜叶细胞膜的损伤及细胞自身保护机制初探. 农业环境保护, 2001, 20(4): 235-237.
    [140]Hall J L. Electron microscopy and cytochemistry of plant cells. New York: North-Holland Biomedical press, 1978.
    [141]倪才英, 陈英旭, 骆永明, 田光明. 紫云英(Astragalus siniucus L.)对重金属胁迫的响应. 中国环境科学, 2003, 23(5): 503-508.
    [142]徐勤松, 施国新, 杜开和. Hg2+对睡莲幼叶细胞超微结构的损伤. 南京师大学报(自然科学版), 2002, 25(1): 33-37.
    [143]Llugany M, Poschenrieder C H, Barceló J. Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to Al and proton toxicity. Physiol. Plant, 1995, 93:265-271.
    [144]Kidd P S, Llugany M, Poschenrieder C, et al. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot., 2001, 52: 1339-1352.
    [145]?iamporová M, Mistrik I. The ultrastructural response of root cells to stressful conditions. Envir. Exp. Bot., 1993, 33: 11-26.
    [146]黄细花, 赵振纪, 刘永厚, 等. 铜对紫云英生长发育影响的研究.农业环境保护, 1993, 12 (1): 1-6.
    [147]Punz W F, Sieghardt H. The response of roots of herbaceous plant species to heavy metals. Env. Exp. Bot., 1993, 33: 85-98.
    [148]荆红梅, 郑海雷, 赵中秋, 等. 植物对镉胁迫响应的研究进展. 生态学报, 2001, 21(12):2125-2130.
    [149]Andersson A, Nilsson K O. Influence of lime and soil pH on Cd availability to plants. Am. Bio., 1974, 3: 198.
    [150]Raskin I, Kumar P B A N, Dushenkov S, et al. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol., 1994, 5:285-290.
    [151]Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminated soils. TrendsBiotechnol., 1995, 13: 393-397.
    [152]Salt D E, Smith R D, Raskin I. Phytoremedition. Annu. Rev. Plant Physiol. Mol. Biol., 1998, 49: 643-668.
    [153]Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in India Mustard. Plant Physiol., 1995, 109:1427-1433.
    [154]Jarvis S C, Whitehead D C. The absorption distribution and concentration of copper in white clover grown on a range of soils. Plant Soil, 1983, 75: 427-434.
    [155]Marschner H. Mineral nutrition of higher plants. London: Academic Press, 1993, 79-115.
    [156]Haag-Kerwer A, Schafer H J, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on phytosynthesis. J. Exp. Bot., 1999, 50: 1827-185.
    [157]Thornton B, Macklon A E S. Copper uptake by ryegrass seedlings: contribution of cell wall adsorption. J. Exp. Bot., 1989, 40: 1105-1111.
    [158]Chen C T, Chen T H, Lo K F, et al. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Science, 2004, 166: 103-111.
    [159]Hocking P J. The composition of phloem exudates and xylem sap from tree tobacco (Nicotiana glauca Grah.). Ann. Bot., 1980, 45: 633-643.
    [160]Pate J S. Transport and partitioning of nitrogenous solutes. Ann. Rev. Plant Physiol., 1980, 31: 313-340.
    [161]Schmidke I, Stephan U W. Transport of metal micronutrients in the phloem of castor bean (Ricimus communis) seedlings. Physiol. Plant, 1995, 95: 147-153.
    [162]Copper H D, Clarkson D T. Cycling of amino nitrogen and other nutrients between shoots and roots in cereals: A possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. Exp. Bot., 1989, 40: 753-762.
    [163]Touraine B, Muller B, Crignon C. Effect of phloem translocated malate on NO3- uptake byroots of intact soybean plants. Plant Physiol., 1992, 99: 1118-1123.
    [164]杨居荣, 鲍子平, 张素芹. 镉、铅在植物细胞内的分布及其可溶性.中国环境科学,1993, 13(4): 263-268.
    [165]许嘉琳, 鲍子平, 杨居荣, 等. 农作物体内铅、镉、铜的化学形态研究. 应用生态学报, 1991, 2(3): 244-248.
    [166]Kramer U, Smith R D, Wenzel W W, et al. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halaesy. Physiology Plant, 1997, 115: 1641-1650.
    [167]Kupper H, Zhao F J, Mcgath S P. Cellular compartmentation of zine in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol., 1999, 119: 305-311.
    [168]Allen D L, Jarrell W M. Proton and copper absorption to maize and soybean root cell walls. Plant Physiol., 1989, 89: 823-832.
    [169]王友保, 张莉, 沈章军, 等. 铜尾矿区土壤与植物中重金属形态分析. 应用生态学报, 2005, 16(12): 2418-2422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700