间歇光照、呋喃苯胺酸、维生素C对肉鸡PHS的预防及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管国内外已对肉鸡肺动脉高压综合征(pulmonary hypertension syndrome,PHS)又称肉鸡腹水综合征(ascites)进行了多年研究,但它仍然是使世界养禽业遭受重大经济损失的一个疾病。全世界每年约有4%的肉鸡死于PHS,造成高达10亿美元的损失。
     由于肉鸡PHS是一个多因性疾病,药物防治有局限性并且存在残留的问题。早期限饲可以降低PHS发病率,但会引起应激。控制光照能降低肉鸡PHS发病率和应激,并且方便、省电,但公认效果显著的1小时明:3小时暗的措施在国内难以执行和推广。寻求一种易行的控光措施更具有实际意义。由于对控制光照防治肉鸡PHS的机理尚不完全明了,方案的选择存在很大盲目性,因此,首先要清楚控制光照防治PHS的作用机制。
     关于控制光照防治肉鸡PHS的报道主要是观察对生产性能和PHS发病率的影响,而对其机理仅从缺氧状况、红细胞比容、血液中甲状腺素、生长激素和糖皮质激素方面进行了研究。肺血管重构导致肺动脉高压(pulmonary hypertension,PH)持续发展并难以逆转,是哺乳动物PH的重要病理基础。PHS肉鸡也发生了肺动脉重构,但是其在肉鸡PHS的发生过程中是否占据与哺乳动物肺血管重构同等重要的地位,机制如何?控制光照降低PHS发病率的作用机理是否与肺血管形态改变有关,尚不清楚。因此,本文从氧自由基、血小板源生长因子-β受体(PDGF-βR)、蛋白激酶C-α(PKCα)及增殖细胞核抗原(PCNA)等变化入手,在体内和体外两个层次上探讨间歇光照对肉鸡肺血管重构的影响及其分子生物学机制,为指导生产实践提供理论依据。
     试验Ⅰ间歇光照对肉鸡肺动脉高压综合征发病率及肺血管重构的影响。观察在低温环境下间歇光照对肉鸡PHS的防治效果及其对肉鸡肺血管重构的影响。320羽肉鸡随机分为4组:常温组按常规饲养;低温三个组采用低温诱发PHS,并于9d~30d分别在夜间停止光照0、3、5h,以后恢复连续光照。记录PHS发病数、体重和耗料量,测定肺动脉的管壁面积与血管总面积之比(WA/TA)、平均中膜厚度(mMTPA)等指标。结果环境低温使PHS发病率升高,反映血管重构指标的WA/TA和mMTPA值也显著升高,而间歇光照能够有效地降低寒冷诱发的PHS发病率和上述各项值。控制光照期间间歇光照组肉鸡体重低于低温对照组,但最终体重和料重比与之无显著差异。在肉鸡生长早期实施间歇光照制度能够有效降低低温诱发的PHS发病率,抑制肺小动脉重构可能是其重要机理之一。
     试验Ⅱ间歇光照对肉鸡肺动脉高压综合征发病率及体内脂质过氧化作用和抗氧化酶活性的影响。观察控制光照对低温诱导的肉鸡PHS发病率及体内脂质过氧化作用和抗氧化酶活性的影响。320羽肉鸡随机分为四个组。常温组按常规饲养;低温三个组采用低温诱发PHS,并于9d~30d分别在夜间停止光照0、3、5h,以后恢复连续光照。低温显著升高了PHS发病率、右心全心比(RV/TV)、肺厚壁末稍血管百分率(TWPV%)和丙二醛(MDA),而使血浆超氧化物歧化酶(SOD)活性降低。控制光照使SOD活性升高而显著降低了PHS发病率、RV/TV、TWPV%和MDA。减轻体内脂质过氧化作用,提高机体抗氧化酶的活性和减轻以非肌型肺动脉肌型化为特征肺血管重构,可能是间歇光照降低肉鸡PHS发病率的部分机制。
     试验Ⅲ间歇光照对低温诱导的肉鸡肺细小动脉血管重构及其PKCα表达的影响。观察在低温环境下间歇光照对肉鸡肺细小动脉蛋白激酶Cα(PKCα)表达的影响及其与肺血管重构的关系。320羽肉鸡随机分为四个组。常温组按常规饲养;低温三个组采用低温诱发PHS,并于9d~30d分别在夜间停止光照0、3、5h,以后恢复连续光照。测定RV/TV、MDA、SOD、WA/TA、mMTPA、红细胞压积(PCV);采用免疫组化方法标记肺动脉PKCα,以OD值代表PKCα的表达。结果环境低温使肉鸡PHS发病率升高,RV/TV、WA/TA、mMTPA、MDA值和肺细小动脉PKCα的OD值显著升高,而间歇光照能够有效地降低寒冷诱发的PHS发病率和上述指标。肺小动脉PKCα的表达从23日龄起与mMTPA和WA/TA呈正相关,并且具有显著性。寒冷诱使肉鸡肺小动脉PKCα表达的上调可能参与了肺血管重构的形成过程,间歇光照抑制肺血管重构可能与PKCα下调有关。
     试验Ⅳ间歇光照对低温诱导的肉鸡肺细小动脉血管重构及其PDGF-β受体表达的影响。观察在低温环境下间歇光照对肉鸡肺细小动脉PDGF-β受体表达的影响,及其与肺血管重构的关系。320羽肉鸡随机分为四个组,常温组按常规饲养;低温三个组采用低温诱发PHS,并于9d~30d分别在夜间停止光照0、3、5h,以后恢复连续光照。测定PCV、WA/TA和mMTPA等指标;采用免疫组化方法标记肺动脉PDGF-β受体,以OD值代表PDGF-β受体的表达。结果环境低温使PDGF-β受体表达上调,WA/TA和mMTPA值也显著升高,而间歇光照明显抑制血管重构,并且使肺动脉PDGF-D受体的OD值降低。PDGF-β受体的表达从23日龄开始与mMTPA和WA/TA呈正相关,并且具有显著性。PDGF-β受体表达上调可能与低温所致肺小动脉重构有密切关系,而间歇光照减轻肉鸡肺血管重构可能与抑制PDGF-β受体表达有关。
     试验Ⅴ间歇光照对低温诱导的肉鸡肺细小动脉血管重构及其PCNA表达的影响。观察在低温环境下间歇光照对肉鸡肺细小动脉增殖细胞核抗原(PCNA)表达的影响,并探讨PCNA与肺血管重构的关系。320羽肉鸡随机分为四个组,常温组按常规饲养;低温三个组采用低温诱发PHS,并于9 d~30 d分别在夜间停止光照0、3、5 h,以后恢复连续光照。测定WA/TA和mMTPA等指标;采用免疫组化方法标记PCNA,图像分析软件分别计数每条血管中膜PCNA阳性细胞数和细胞总数,求出百分数即为增殖指数(PI)。结果环境低温使肺动脉的WA/TA和mMTPA值和PCNA值显著升高,而间歇光照能够有效地减轻寒冷诱发的肺动脉重构和PCNA值。在肉鸡快速生长的早期采用间歇光照能够抑制寒冷所致的肺血管重构可能与抑制肺动脉平滑肌细胞增殖有关。
     试验Ⅵ添加呋喃苯胺酸对低温诱导的肉鸡肺动脉高压综合征的发病率及肺血管重构的影响。观察在低温环境下呋喃苯胺酸对肉鸡PHS的防治效果及其对肺血管重构的影响。240羽肉鸡于14 d时随机分为A、B和C三组分置于两个鸡舍。A组按常规饲养,B组和C组采取低温诱发PHS,并从30 d至44 d B组不添加药物而C组于日粮中添加0.015%的呋喃苯胺酸。记录每周PHS发病数、体重。定期测定RV/TV、PCV、WA/TA和mMTPA等各项值。结果饲料中添加呋喃苯胺酸降低了寒冷诱发的PHS发病率。B组RV/TV、WA/TA和mMTPA值显著升高,而C组使之降低,并在44 d差异显著;C组体重显著低于B组。降低肺动脉压,抑制以肺动脉壁肥厚为特征的血管重构可能是呋喃苯胺酸有效降低低温所致PHS发病率的部分机制。
     试验Ⅶ维生素C对常温下肉鸡肺动脉高压综合征发病率及肺血管重构的影响。观察在常温环境下维生素C对肉鸡PHS的防治效果及其对肺血管重构的影响。150羽肉鸡于21 d时随机分为C、T1和T2组,按常规饲养,C组不添加药物,T1组和T2组分别从21 d至37 d在饲料中添加维生素C 200 mg/kg和500 mg/kg。统计PHS的死亡数并定期称重。测定RV/TV、PCV、MDA、SOD、WA/TA和mMTPA等指标。结果与对照组相比,T1组PHS死亡率和RV/TV值显著降低,80-200微米肺动脉WA/TA和mMTPA值显著降低,PCV和MDA值极显著降低。T2组PHS死亡率与对照组相同,PCV值显著降低,50-80微米肺动脉的WA/TA和mMTPA值极显著高于对照组,MDA水平极显著高于对照组而SOD值显著降低。降低PCV值、清除体内过多的氧自由基及减轻肺血管重构可能是低剂量维生素C有效防治PHS的部分机制,而使氧自由基产生增多,导致肺血管重构可能是高剂量VC防治PHS失败的部分原因
     试验Ⅷ蛋白激酶C抑制剂Calphostin C对PDGF-BB诱导的肉鸡肺动脉血管平滑肌细胞增殖的影响.探讨蛋白激酶C抑制剂Calphostin C对血小板源生长因子(PDGF-BB)诱导的肉鸡肺动脉平滑肌细胞(PASMC)增殖的影响。肉鸡肺动脉平滑肌细胞体外培养,用PDGF-BB刺激PASMC,采用细胞记数法和流式细胞仪测定Calphostin C对PASMC增殖的影响.结果Calphostin C显著地抑制PDGF-BB诱使的PASMC增殖,使细胞生长停滞于G_0/G_1期。蛋白激酶C抑制剂Calphostin C抑制了PASMC增殖,提示PDGF-BB刺激血管平滑肌细胞增殖与PKC信号传导通道有关,Calphostin C可能作为防治肺血管重构的一种药物。
     试验ⅨX/X0体系作用的肺动脉内皮细胞条件培养液对内鸡肺动脉平滑肌细胞的促增殖作用及褪黑激素对其的影响。观察黄嘌呤-黄嘌呤氧化酶(xanthine-xanthineoxidase,X-XO)条件培养液对肉鸡肺血管平滑肌细胞是否有促增殖作用,及褪黑激素能否抑制其增殖。肉鸡肺动脉平滑肌细胞与X/XO内皮细胞条件培养液共培养刺激PASMC,采用流式细胞仪测定X/XO条件培养液和褪黑激素对PASMC增殖的影响,并检测培养液中的丙二醛(MDA)含量。与正常内皮细胞条件培养基相比,X/XO条件培养基促使PASMC发生增殖,并从G_0/G_1期进入S和G_2/M期,其培养液中MDA含量显著高于对照组;当预先加入褪黑激素时,抑制了X/XO条件培养液的促平滑肌细胞增殖作用,G_0/G_1期细胞比例提高,而S期、G_2/M期细胞减少。褪黑激素组细胞培养液中MDA含量显著低于X/XO模型组。清除培养液中的氧自由基可能是褪黑激素抑制X/XO条件培养液诱导肉鸡肺动脉平滑肌细胞增殖的机制之一。
Despite investigation of the syndrome for many years, ascites or pulmonary hypertension syndrome (PHS) is still a condition that inflicts financial loss on poultry farmers around the world. Approximately 4% of all broilers die from PHS, amounting to a loss estimated at $1 billion annually. So, prevention and cure of PHS are especially important. There are multiple aetiologies of pulmonary hypertension syndrome(PHS). The main cause of which is rapid growth. Thus every drug has its limit to cure the disease. Remanet of drug in meat also is a problem. Early feed restriction could slow broiler growth at early age, reduce ascites incidence, but could induce stress too. Lighting restriction at early age could decrease ascites incidence and stress effectively.
     1 light (L):3dark (D) lighting program is recognized as best schedule to prevent ascites, but is difficult to apply in China. To implore a simple and effective lighting schedule would be of benefit to prevent ascites. Since the mechanism of Lighting restriction remain unclear, The choose of lighting schedules are difficult.
     In recent years, most ascites research has centred on production capability and ascites incidence of broilers. The investigations on the aetiology of ascites in chickens include oxygen level, thyroxin, growth hormone and cortin. Pulmonary vascular remodeling is an important pathological feature of hypoxia pulmonary hypertension in mammal, leading to increased pulmonary vascular resistance and reduced compliance. Since vascular remodeling becomes progressively more important as the disease advances, an possibly more fruitful approach may be to target pulmonary vascular remodeling. It has been fould that Pulmonary vascular remodeling also occurred in PHS in broilers. It's mechanism remain unclear. The present study was conducted to evaluate the association of changes of protein kinase Ca (PKCa), platelet-derived growth factor BB(PDGF-BB) and its receptor (PDGF-βreceptor)、proliferating cell nuclear antigen (PCNA) and oxygen free radical(OFR) with alterations in pulmonary vascular structure for understanding the pathogenesis of pulmonary vascular remodeling in vito and in vitro, to implore the effect of intermittent lighting schedule、furosemide and vitamin C on pulmonary vascular remodeling respectively. If PKC-a and PDGF actually play a critical role in pulmonary vascular remodeling. Both of them may be to target pulmonary vascular remodeling.
     Test 1 Effects of intermittent lighting schedules on incidence of pulmonary hypertension syndrome and pulmonary vascular remodeling in broilers.The purpose of the present study was to examine the efficacy of imposing intermittent lighting schedules on reduction of the incidence of ascites(or Pulmonary Hypertension Syndrome,PHS)induced by cool ambient temperature and to investigate its effect on the pulmonary vascular remodeling of broiler chickens. A total of three hundred and twenty broilers were randomly allocated to four rooms at 9 days of age. In one room, the continuous lighting (CL) schedule of 24 L:0D was maintained, and ambient temperature was kept normal. While in other three rooms continuous lighting (CL) schedule of 24L: 0D and intermittent lighting (IL) schedules of 21L:3 D and 19L:5D dark were imposed respectively during the night from 9 to 30 days of age. Chickens in the later three rooms were subjected to low temperature to induce PHS. PHS cases, body weights and feed intake were measured weekly for each group. The ratio of vessel wall area to total area (WA/TA) and mean medial thickness in pulmonary arterioles (mMTPA) were determined . The results indicated that the cool ambient temperature could increase morbidity of PHS in broilers, the values of WA/TA and mMTPA also were increased significantly, whereas the IL schedule could successfully decrease the morbidity of PHS and the values of WA/TA and mMTPA. Birds in IL groups were lighter than that in LC group during light restriction period, but both the final body weights and total feed conversion ratio were not significantly affected by the lighting program in all birds subjected to low temperature. It is concluded that introduction of IL schedules during the early growing period is of benefit to reduce PHS morbidity induced by cool ambient temperature in fast-growing broilers, and attenuated pulmonary vascular remodeling may be involved in the underlying mechanisms.
     Test 2 Effects of intermittent lighting schedules on the incidence of ascites, the lipid peroxidation and enzymatic antioxidant activity of broilers. The purpose of the present study was to examine the efficacy of intermittent lighting schedules at night in reducing the incidence of ascites induced by cool environment and to test its effect on the lipid peroxidation and activity of enzymatic antioxidant in broilers. A total of three hundred and twenty broilers were randomly aUocated to four rooms at 9 days of age. In one Toom, the continuous lighting (CL) schedule of 24 L:0D was maintained, and ambient temperature was kept normal. While in other three rooms continuous lighting (CL) schedule of 24L:0D and intermittent lighting (IL) schedules of 21L:3 D and 19L:5D dark were imposed respectively during the night from 9 to 30 days of age. Chickens in the later three rooms were subjected to low temperature to induce pulmonary hypertension syndrome(PHS). The results showed that Low temperature significantly increased RV/TV and the ascites morbidity, so were the plasma MDA concentration and the percentages of TWPV. Whereas the plasma SOD activity was decreased. The intermittent lighting (IL) schedules had successfully reduced PHS in broilers. The values of RV/TV, plasma MDA concentration and the percentages of TWPV were reduced significantly, whereas the activity of the plasma SOD were significantly promoted. Body weights (BW) were reduced significantly by light restriction at 20 days of age. However, IL broilers exhibited compensatory growth during the finisher period in such a way that at Day 44, a similar BW as that of their CL counterparts was attained. The results indicated that alleviated the lipid peroxidation, enhanced the enzymatic antioxidant activity and reduced the percentages of the TWPA may be the part mechanism of intermittent lighting (IL) schedule reduced ascites of broiler.
     Test 3 Effects of intermittent lighting schedules on expression of PKCa in pulmonary arterioles and its association with pulmonary vascular remodeling in broilers induced by cold temperature. The purpose of the present study was to examine the effects of intermittent lighting schedules on expression of protein kinase C a (PKC a) in pulmonary arterioles in broilers exposed to cold temperature and its relationship with pulmonary vascular remodeling. A total of three hundred and twenty broilers were randomly allocated to four rooms at 9 days of age. In one room, the continuous lighting (CL) schedule of 24 L:0D was maintained, and ambient temperature was kept normal. While in other three rooms continuous lighting (CL) schedule of 24L: OD and intermittent lighting (IL) schedules of 21L:3 D and 19L:5D dark were imposed respectively during the night from 9 to 30 days of age. Chickens in the later three rooms were subjected to low temperature to induce pulmonary hypertension syndrome(PHS). PHS incidence was recorded. Malonilaldehyde (MDA) concentration,packed cell volume (PCV), Mean medial thickness (mMTPA), Ratio of vessel wall area to total area (WA/TA) and right to total ventricle (RV/TV) were determined. The expression of PKCa in the pulmonary arterioles labeled by immunohistochemistry and quantified by measuring optical density (OD). The results indicated that the cool ambient temperature could increase morbidity of PHS in broilers. The value of MDA, WA/TA and mMTPA were increased significantly, the same as the OD value of PKCa, whereas the IL schedules could successfully decrease the morbidity of PHS .The value of WA/TA ,mMTPA, MDA and PKCa were decreased too. It was concluded that cold exposure enhanced arterioles PKCa expression, which might involved in the underlying mechanisms of pulmonary vascular remodeling. The introduction of IL schedules were of benefit to attenuate pulmonary vascular remodeling ,which may be correlated with the decrease of PKC a expression.
     Test 4 Effects of intermittent lighting schedules on expression of PDGF-βreceptor in pulmonary arterioles and its association with pulmonary vascular remodeling in broilers induced by cold ambient temperature. The purpose of the present study was to examine the effects of intermittent lighting schedules on expression of platelet-derived growth factorβreceptor (PDGF-βreceptor) in pulmonary arterioles in broilers exposed to cold temperature and its relationship with pulmonary vascular remodeling. A total of three hundred and twenty broilers were randomly allocated to four rooms. In one room, the continuous lighting schedule (CL) of 24 L: 0D was maintained, ambient temperature kept normal (group NC),while in other three rooms ,the chickens were subjected to cool ambient temperature to induce PHS. The continuous lighting schedule of 24 L:0D (group LC) and the intermittent lighting (IL) schedule of 21 L:3 D(group L1) and 19 L:5 D (group L2) were imposed respectively from 9 to 30 days of age. PHS incidence was recorded. Mean medial thickness (mMTPA), ratio of vessel wall area to total area (WA/TA) in pulmonary arterioles ,ratio of right to total ventricle (RV/TV), malonilaldehyde (MDA) concentration and packed cell volume (PCV) were determined respectively. The expression of PDGF-βreceptor in the pulmonary arterioles labeled by immunohistochemistry and quantified by measuring optical density (OD). The results indicated that the cool ambient temperature could increase the value of WA/TA and mMTPA in pulmonary arterioles, the same as the OD value of PDGF-βreceptor, whereas the intermittent lighting (IL) schedule could successfully decrease the value of WA/TA、mMTPA and PDGF-βreceptor. It was concluded that cold exposure enhanced PDGF-β receptor expression in pulmonary arterioles, which might involved in the underlying mechanisms of pulmonary vascular remodeling. The introduction of intermittent lighting schedules were of benefit to attenuate pulmonary vascular remodeling , which may be correlated with the decrease of PDGF-βreceptor expression in pulmonary arterioles.
     Test 5 Effects of intermittent lighting schedules on expression of PCNA in pulmonary arterioles and its association with pulmonary vascular remodeling in broilers induced by cold temperature. The objection of the present study was to examine the effects of intermittent lighting schedules on expression of proliferating cell nuclear antigen (PCNA) in pulmonary arterioles in broilers exposed to cold temperature and its relationship with pulmonary vascular remodeling. A total of three hundred and twenty broilers were randomly allocated to four rooms at 9 days of age. In one room, the continuous lighting (CL) schedule of 24 L:0D was maintained, and ambient temperature was kept normal. While in other three rooms continuous lighting (CL) schedule of 24L: 0D and intermittent lighting (IL) schedules of 21L:3 D and 19L:5D dark were imposed respectively during the night from 9 to 30 days of age. Chickens in the later three rooms were subjected to low temperature to induce pulmonary hypertension syndrome(PHS). PHS incidence was recorded. The mean medial thickness (mMTPA), ratio of vessel wall area to total area (WA/TA) in pulmonary arterioles ,Ratio of right to total ventricle (RV/TV), packed cell volume (PCV) were determined. The expression of PCNA in the pulmonary arterioles labeled by immunohistochemistry and quantified by counting the number of the positive PCNA cells and total vascular smooth ceils using computer-image analytic software and then calculating the PCNA index (PI). The results indicated that the cool ambient temperature could increase the value of WA/TA and mMTPA significantly, the same as the PI, whereas the IL schedules could successfully attenuate pulmonary vascular remodeling and PI. It was concluded that introduction of intermittent lighting schedule during the early growing period was of benefit to attenuate pulmonary vascular remodeling induced by cool ambient temperature in fast-growing broilers, and the inhibition of vascular smooth cell proliferation might be involved in the underlying mechanisms.
     Test 6 Effects of dietary furosemide on incidence of pulmonary hypertension syndrome and pulmonary vascular remodeling in broilers induced by cool environmental temperatures. The objective of the present study was to evaluate the influence of dietary furosemide (FURO) on the incidence of Pulmonary Hypertension Syndrome(PHS) induced by cool ambient temperature and to investigate its effect on the pulmonary vascular remodeling of broiler chickens. A total of two hundred and forty broilers were randomly allocated to three groups. The birds in group A were fed a grower diet and kept in normal ambient temperature from 14 to 44 day of age. Group C and group B were subjected to cool ambient temperature to induce PHS and were fed a grower diet with (group C) or without 0.015 percent furosemide (group B) from 30 to 44 day of age. PHS incidence, body weights were measured weekly for each group. Heart, Lung and blood samples were taken from 10 birds per group randomly selected at 14, 23, 30, 37 and 44 days of age, for the determination of the ratio of vessel wall area to total area (WA/TA), mean medial thickness in pulmonary arterioles (mMTPA), etc. It was found that birds exposed to cold had higher PHS morbidity. However, it was reduced by dietary furosemide supplementation. The value of right to total ventricular weight ratios (RV/TV) and packed red blood cell volume (PCV) in group B were significantly higher than that in group A, also were the value of WA/TA and mMTPA which served as describing pulmonary vessel remodeling. Birds fed 0.015 percent furosemide had significantly lower RV/TV, WA/TA and mMTPA than that in group B, also were body weights, whereas PCV were increased. It was concluded that dietary furosemide reduced morbidity of PHS induced by cool ambient temperature, presumably by reducing pulmonary arterial pressure. Attenuated pulmonary vascular remodeling might be involved in the underlying mechanisms too.
     Test 7 Effects of dietary vitamin C on mortality of pulmonary hypertension syndrome and pulmonary vascular remodeling in broilers under normal environmental temperatures. The objective of the present study was to evaluate the influence of dietary vitamin C on the mortality of pulmonary hypertension syndrome(PHS) under normal ambient temperature and to investigate its effect on the pulmonary vascular remodeling of broiler chickens. A total of one hundred and fifty broilers were randomly allocated to three groups in one room, in which temperature kept normal. From 21 to 37d, the birds in control group (C) were fed a grower diet, treat 1 (T_1) and treat 2 group(T_2) were fed a grower diet with 200mg/kg and 500mg/kg respectively. PHS mortality and body weights were measured weekly for each group. Heart, Lung and blood samples were taken for the determination of SOD and MDA concentration in blood plasma, packed cell volume (PCV), mean medial thickness in pulmonary arterioles (mMTPA), and the ratio of vessel wall area to total area (WA/TA), right ventricle to total ventricular weight. It was found that birds fed 200mg/kg vitamin C had lower PHS mortality than that in group C. The value of WA/TA、mMTPA of pulmonary artery with outer diameter from 80 to 200μm and PCV vaule were significantly reduced, also were the MDA level, whereas SOD concentration were significantly increased. The birds fed 500mg/kg vitamin C had same PHS mortality as control group. The percentages of WA/TA and mMTPA of pulmonary artery with outer diameter from 50 to 80μm and the concentration of MDA were increased significantly, whereas PCV and SOD concentration were reduced. It was concluded that decreasing PCV value, weeding up extra oxygen free radical (OFR) and attenuating pulmonary artery remodeling might be involved in the underlying mechanisms of prevention PHS by low dose vitamin C, Whereas promoting OFR level and inducing pulmonary artery remodeling might be the cause of high dose vitamin C failing to prevent PHS.
     Test 8 Effects of protein kinase C inhibitor-Calphostin C on proliferation induced by PDGF-BB in pulmonary artery smooth muscle cells of broilers. To xplore the effects of protein kinase C inhibitor-Calphostin C on proliferation in pulmonary artery smooth muscle cells (PASMC) of broilers induced by PDGF-BB. Pulmonary vascular smooth muscle cells were cultured in vitro and stimulated by PDGF-BB. The effects of Calphostin C on PASMC proliferation were analyzed by using flowcytomerty and cell counting. The PASMC proliferation induced by PDGF-BB was significantly inhibited by Calphostin C and the cells were stagnated on G_0/G_1 phase. The result of Calphostin C inhibition on the PASMC proliferation suggested that proliferation induced by PDGF-BB may be correlated with PKC pathway. Calphostin C may be an agent for prevention of vascular remodeling.
     Test 9 Effects of melatonin on proliferation of pulmonary artery smooth muscle cells in broilers induced by xanthine-xanthine oxidase conditioned medium. To investigate the effects of X/XO conditioned medium on proliferation of pulmonary artery smooth muscle cells (PASMC) in broilers, and melatonin could or not attenuate PASMC proliferation induced by X/XO conditioned medium. Pulmonary artery smooth muscle cells were cultured in vitro with X/XO endothelial cells conditioned medium to induce proliferation of PASMC. The effect of melatonin on PASMC proliferation were analyzed using flowcytomerty. The MDA level in medium were detected. Compared to normal PAEC medium, X/XO conditioned medium lead to PASMC proliferation, stimulate PASMC from G_0/G_1 phase to S and G_2/M phase. The MDA level in PASMC cultured with X/XO conditioned medium were significantly higher than that in PASMC cultured with normal PAEC medium. The PASMC proliferation induced by X/XO conditioned medium was successfully inhibited by melatonin, which added in medium ahead, and the number of cells on G_0G_1 phase were higher, whereas on S and G_2/M phase lower. The MDA level in melatonin group was less than X/XO group. Eliminating of OFR may be involved in the underlying mechanisms of the melatonin on inhibiting proliferation of PASMC in broilers induced by X/XO conditioned medium.
引文
[1] Olkowski A A and Classen H L. Progressive bradycardia, a possible factor in the pathogenesis of ascites in fast growing broiler chickens raised at low altitude [J]. British Poultry Science,1998,39:139-146.
    [2] Olkowski A A, Korver D, Rathgeber B, et al. Cardiac index, oxygen delivery, and tissue oxygen extraction in slow and fast growing chickens, and in chickens with heart failure and ascites: A comparative study [J]. Avian Pathology, 1999, 28(2): 137-146.
    [3] Julian R J. Ascites in poultry [J]. Avian Patho, 1993, 22:419--454.
    [4] Wideman R F and Bottje W G. Current understanding of the ascites syndrome and future research directions [A]. In: Nutrition and Technical Symposium proceedings. Novus International, Inc., St. Louis, MO., 1993, 1-20.
    [5] Wideman R F Jr, Forman M F, Hughes J D Jr, et al. Flow-dependent pulmonary vasodilation during acute unilateral pulmonary occlusion in jungle fowl [J]. Poultry Science, 1998, 77: 615-626.
    [6] Peacock A J, Pickett C, Morris K, et al. The relationship between rapid growth and pulmonary hemodynamics in the fast-growing broiler chickens [J]. American Review of Respiratory Disease, 1989, 133: 1524-1530.
    [7] Julian R J, McMillan I, and Qiunton M. The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens [J]. Avian Patho, 1989, 18: 675-684.
    [8] Wideman R F and Tackett C D. Cardio-pulmonary function in broilers reared at warm or cool temperatures: effect of acute inhalation of 100% oxygen [J]. Poultry Science, 2000, 79: 257-264.
    [9] 张克春,王小龙,孙卫东,等.高钠所致肉鸡腹水综合征发病机理的研究[J].南京农业大学学报,1998,21(4):92-97.
    [10] 乔健,赵立红,李连海,等.高钴负荷对肉仔鸡血液粘度的影响及其与肉鸡腹水综合征发生发展的关系[J].中国农业大学学报,1998,3(1):110-112.
    [11] Fedde M R, Wideman RF Jr. Blood viscosity in broilers: influence on pulmonary hypertension syndrome [J]. Poult Sci, 1996,75 (10): 1261-267.
    [12] Julian R J, Caston L J, and Lesson S. The effect of dietary sodium on fight ventricle failure-induced aseites, gain and fat deposition in meat-type chickens [J]. Canadian Journal of Veterinary Research, 1992, 56: 214-219.
    [13] Chapman M E and Wideman R E Pulmonary wedge pressures confirm pulmonary hypertension in broilers is initiated by an excessive pulmonary arterial (precapillary) resistance [J]. Poultry Science, 2001, 80: 468-473.
    [14] Wideman R E Pathophysiology of heart/lung disorder: pulmonary hypertension syndrome in broiler chickens [J]. World Poultry Science Journal, 2001, 57: 289-307.
    [15] Enkvetchakul B, Beasley J, and Bottje W. Pulmonary arteriole hypertrophy in broilers with pulmonary hypertension syndrome (ascites) [J]. Poultry Science, 1995, 74: 1676-1682.
    [16] 李锦春,王小龙,孙卫东,等.高钠所致肺动脉高压肉鸡肺细小动脉病理改变的图象分析[J].畜牧兽医学报,2000,31(5):441-447.
    [17] 向瑞平,王小龙,王金勇,等.肉鸡肺动脉高压综合征自然病例肺微细动脉肌型化的观察[J].南京农业大学学报,2001,24(1):85-88.
    [18] 何诚,赵德明,梁礼成.低温高能日粮对肉鸡肺动脉和腹水症的影响[J].畜牧兽医学报,2000,31(1):34-40.
    [19] Jeffery T K, Morrell N W. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension [J]. Progress in Cardiovascular Diseases, 2002, 45(3): 173-202.
    [20] Botney M D. Role of Hemodynamics in Pulmonary Vascular Remodeling: Implications for Primary Pulmonary Hypertension [J]. American Journal of Respiratory and Critical Care Medicine, 1999, 159(2): 361-364.
    [21] 罗兰,蔡英年.肺血管顺应性的变化与结构重组在肺动脉高压形成中的作用[J].基础医学与临床,1993,3:213-215.
    [22] Fishman A P. Hypoxia on the pulmonary circulation. How and where it acts [J]. Cir Res, 1976, 38: 221-231.
    [23] 刘健华,梁礼成,金久善,等.正常鸡、亚临床腹水鸡和腹水鸡肺外动脉舒张反应性的比较[J].畜牧兽医学报,2003,34(3):262-267.
    [24] Acar N, Sizemore F G, Leach G R, et al. Growth of broiler chickens in response to feed restriction regimens to reduce ascites [J]. Poult Sci, 1995, 74(5): 833-843.
    [25] Shlosberg A, Berman E, Bendheim U, et al. Controlled early feed restriction as a potential means of reducing the incidence of ascites in broilers [J]. Avian Dis, 1991, 35(4): 681-684.
    [26] Shlosberg A, Pano G, Handji V, et al. Prophylactic and therapeutic treatment of ascites in broiler chickens [J]. Br Poult Sci, 1992, 33(1): 141-148.
    [27] Jones G P. Manipulation of organ growth by early-life food restriction: its influence on the development of ascites in broiler chickens [J]. Br Poult Sci, 1995, 36(1): 135-142.
    [28] Julian R J. Physiological management and environmental triggers of the ascites syndrome [J]. Poultry International, 1998, 6: 28-33.
    [29] Maxwell M H and Robertson G W. World broiler ascites survey 1996 [J]. Poultry International, 1997, 36(4): 16-30.
    [30] Buys N, Scheele C W, Kwakernaak C, et al. Performance and physiological variables in broiler chicken lines differing in susceptibility to the ascites syndrome: 1. Changes in blood gases as a function of ambient temperature [J]. Br Poult Sci, 1999,40(1): 135-139.
    [31] Wideman R F, Jr, Kirby Y K. A Pulmonary artery clamp model for inducing pulmonary hypertension syndrome (ascites) in broilers [J]. Poult Sci, 1995, 74: 805-812.
    [32] Wideman R F, Jr, French H. Broiler breeder survivors of chronic unilateral pulmonary artery occlusion produce progeny resistant to pulmonary hypertension syndrome (Ascites) induced by cool temperatures [J]. Poult Sci, 1999, 78(3): 404-411.
    [33] Tamir H and Rather S. Enzymes of arginine metabolism in chick [J]. Arch Biochem Biophys, 1963, 102: 249-258.
    [34] Wideman R F Jr, Kirby Y K, Ismail M, et al. Supplemental L-arginine attenuates pulmonary hypertension syndrome (ascites) in broilers[J]. Poult Sci, 1995, 74(2): 323-330.
    [35] Martinez-Lemus L A, Hester R K, Becker E J, et al. Pulmonary artery endothelium-dependent vasodilation is impaired in a chicken model of pulmonary hypertension[J]. Am J Physiol, 1999, 277(1 Pt 2): R190-R197.
    [36] 王金勇,王小龙,向瑞平,等.L-精氨酸对肉鸡肺动脉高压和腹水综合征发生的影响[J].南京农业大学学报,2001,24(1):98-101.
    [37] 王金勇,王小龙,向瑞平,等.日粮中添加L-NAME对肉鸡腹水综合征发生的影响[J].中国兽医学报,2001,21(6):603-605.
    [38] Wideman R F, Kirby Y K, Forman M F, et al. Cardiopulmonary function during acute unilateral occlusion of the pulmonary artery in broilers fed diets containing normal or high levels of arginine-HCl [J]. Poult Sci, 1996, 75: 1578-1602.
    [39] Ruize-Feria C A, Kidd M T, and Wideman R E Plasma level of arginine, omithine, and urea and growth performance of broilers fed supplemental L-arginine during cool temperature exposure [J]. Poult Sci, 2001, 80: 358-369.
    [40] O'Dell B L and Savage J E. Arginine-lysine antagonism in the chick and its relationship to dietary cations [J]. J Nutr, 1966, 90: 364-370.
    [41] Stutz M W, Savage J E, and O'Dell B L. Cation anion balance in relation to arginine metabolism in the chick [J]. J Nutr, 1972, 102: 249-258.
    [42] Enkvetchakul B, Bottje W, Anthony N, et al. Compromised antioxidant status associated with ascites in broilers [J]. Poult Sci, 1993, 72: 2272-2280.
    [43] Bottje W G and Wideman R E Potential role of free radical in the etiology of pulmonary hypertension syndrome [J]. Poultry Avian Biol Rev, 1995, 6: 211-231.
    [44] Bottje W G, Enkvetchakul B, Moore R, et al. Effect of a-tocopherol on antioxidant, lipid peroxidation, and the incidence of pulmonary hypertension syndrome (ascties) in broiler [J]. Poult Sci, 1995, 74: 1356-1369.
    [45] Bottje W G, Erf G F, Bersi T K, et al. Effect of dietary dl-alpha-tocopherol on tissue alpha-and gamma-tocopherol and pulmonary hypertension syndrome (ascites) in broilers [J]. Poult Sci, 1997, 76: 1506-1512.
    [46] Iqbal M, Cawthon D, Beers K, et al. Antioxidant enzyme activities and mitochondrial fatty acid in pulmonary hypertension syndrome (PHS) in broilers [J]. Poult Sci, 2002, 81: 252-260.
    [47] Ladmakhi M H, Buys N, Dewil E, R et al. The prophylactic effect of vitamin C supplementation on broiler ascites incidence and plasma thyroid hormone concentration [J]. Avian Patho, 1997, 26: 33-34.
    [48] Xiang R P, Sun W D, Wang J Y, et al. Effect of vitamin C on pulmonary hypertension and muscularisation of pulmonary arterioles in broilers [J]. Br Poult Sci, 2002, 43: 705-712.
    [49] 向瑞平,孙卫东,王小龙,等.日粮添加VC和VE对肺动脉高压综合征患鸡自由基代谢的影响[J],中国兽医学报,2005,25(1):73-77.
    [50] Ghislaine Roche. Dietary antioxidants reduce ascites in broilers[J]. World Poultry, 2000, 16(1):18-22.
    [51] 苏瑛.肉鸡腹水症的综合防制[J].中国家禽,1994,3:11-12.
    [52] 潘越博.肉鸡腹水综合征的防治探讨[J].畜牧兽医杂志,2003,22(1):24-25.
    [53] Tan D X, Chen L D,Poeggeler Bet al. Melatonin: a potent,endogenous hydroxyl radical scavenger. Endocrine J,1993, 1:57-60.
    [54] Wideman R F, Kirby Y K, Forman M F, et al. The infusion rate dependent influence of acute metabolic acidosis on pulmonary vascular resistance in broilers [J]. Poult Sci, 1998, 77: 309-321.
    [55] Owen R L, Wideman B S. Effect of age of exposure and dietary acidification or alkalization on mortality due to broiler pulmonary hypertension syndrome [J]. J Appl Poultry Research, 1994, 3: 244-252.
    [56] Squirs E J and Julian R J. The effect of dietary chloride and bicarbonate on blood pH, haematological variables, pulmonary hypertension and ascites in broiler chickens [J]. Br Poult Sci, 2001, 42: 207-212.
    [57] Vanhooser S L, Beker A, and Teeter R G. Bronchodilator, oxygen level and temperature effects on ascites incidence in broiler chickens[J]. Poult Sci, 1995, 74: 1586--1590.
    [58] Wideman R F Jr, Ismail M, Kirby Y K, et al. Furosemide reduce the incidence of pulmonary hypertension syndrome (ascites) in broiler exposed to cool environmental temperatures [J]. Br Poult Sci, 1994, 35: 663-667.
    [59] Forman M F, Wideman R F Jr. Furosemide does not facilitate pulmonary vasodilation in broilers during chronic or acute unilateral pulmonary arterial occlusion [J]. Poult Sci, 2001, 80(7):937-943.
    [60] Ocampo L, Cortez U, Sumano H, et al. Use of low doses of clenbuerol to reduce incidence of ascites syndrome in broilers[J]. Poult Sci, 1998, 77(9): 1297-1299.
    [61] 褚跃成.肉鸡腹水症的中兽医诊断与防治[J].中兽医杂志,1995,(4):35-36.
    [62] 向瑞平.腹水灵治疗肉鸡腹水综合症的效果观察[J].中兽医医药杂志,1998,(2):11-12.
    [63] Wang J Y, Hacker R R. Effects of diaoxinxuekang on ascites in broilers[J]. Poult Sci, 1993 72(8): 1467-1472.
    [64] Yang Y, Qiao J, Wu Z, et al. Endothelin-1 receptor antagonist BQ123 prevents pulmonary artery hypertension induced by low ambient temperature in broilers. Biol Pharm Bull. 2005 Dec, 28(12): 2201-2205.
    [65] Walton J P, Julian R J, and Squirs E J. The effect of dietary flax oil and antioxidant on aseites and pulmonary hypertension in broilers using a low temperature model [J]. Br Poult Sci, 2001, 42: 123-129.
    [66] Balog J M, Juff G R, Rath N C, et al. Effect of dietary aspirin on ascites in broilers raised in a hypobaric chamber[J]. Poult Sci, 2000, 79(8): 1101-1105.
    [67] Nakamura K, Noguchi K, Aoyama T, et al. Protective effect of ubiquinone (coenzyme Q9) on ascites in broiler chickens[J]. Br Poult Sci, 1996, 37(1): 189-195.
    [1] Buys N, Buyse J, Hassanzadeh-Ladmakhi M, et al. Intermittent lighting reduces the incidence of ascites in broilers: an interaction with protein content of feed on performance and the endocrine system[J]. Poult Sci, 1998, 77(1): 54-61.
    [2] M Hassanzadeh,M H Bozorgmerifard,A R Akbari, et al. Effect of intermittent lighting schedules during the natural scotoperiod on T(3)-induced ascites in broiler chickens[J]. Avian Pathology, 2000, 29(5): 433-440.
    [3] Classen H L and Ridde C. Poultry Science, 1989, 68: 873-880.
    [4] 栾冬梅.五届全国家畜环境科学讨论会论文集——现代化畜牧业生产的环境与环境管理(二).1995,115-119.
    [5] 杨俊琦,杨英华.渐减渐增光照对肉仔鸡出栏率的影响[J].中国家禽,1996,11:24-25.
    [6] Hassanzadeh M, Fard M H, Buyse J, et al. Beneficial effects of alternative lighting schedules on the incidence of ascites and on metabolic parameters of broiler chickens[J]. Acta Vet Hung, 2003, 51(4): 513-520.
    [7] 贾汝敏,王润莲,韩玉柱.间歇光照对肉鸡腹水征及生产性能的影响[J].中国家禽,1999,21(7):12-13.
    [8] Lott B D, Branton S L, May J D. The effect of photoperiod and nutrition on ascites incidence in broilers[J]. Avian Dis, 1996, 40(4): 788-91.
    [9] Riddell C, Classen HL. Effects of increasing photoperiod length and anticoccidials on performance and health of roaster chickens[J].Avian Dis,1992;36(3):491-8.
    [10] Wilson J L, Weaver W D Jr, Beane W L, et al. Effects of light and feeding space on leg abnormalities in broilers[J]. Poult Sci, 1984, 63(3): 565-567.
    [11] S.H.Gordon著,王进圣摘译.光照程序对肉鸡腹水症死亡率的影响[J].国外畜牧科技,1997,24(5):48-49.
    [12] Esam M J.Zebeba. Preventing leg problems[J]. Poultry International, 1997,31-32.
    [13] Apeldoorn E J, Schrama J W, Mashaly M M, et al. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens[J]. Poult Sci, 1999, 78(2): 223-229.
    [14] Pelham R W. Serum melatonin rhythm in chickens and its abolitionby pinealectomy[J]. Endocrinology, 1975,96(2): 543-546.
    [15] Nakahara K, Murakami N, Nasu T, et al. Individual pineal cells in chick possess photoreceptive, circadian clock and melatonin-synthesizing capacities in vitro[J]. Brain Res, 1997, 74(1-2): 242-245.
    [16] Csernus V, Ghosh M, Mess B. Development and control of the circadian pacemaker for melatonin release in the chicken pineal gland[J]. Gen Comp Endocrinol, 1998,110(1): 19-28.
    [17] Albarran M T, Lopez-Burillo S, Pablos M I, et al. Endogenous rhythms of melatonin, total antioxidant status and superoxide dismutase activity in several tissues of chick and their inhibition by light[J]. J Pineal Res, 2001,30(4): 227-233.
    [18] Liou S S, Cogburn L A, Biellier H V. regulation of plasma melatonin levels in the laying chicken (Gallus domesticus) [J] .Gen Comp Endocrinol, 1987, 67(2): 221-226.
    [19] Pang S F, Lee P P, Tang P L.Sensory receptors as a special class of hormonal cells[J]. Neuroendocrinology, 1991, 53 Suppl 1: 2-11.
    [20] Mahmoud F, Sarhill N, Mazurczak MA. The therapeutic application of melatonin in supportive care and palliative medicine[J]. Am J Hosp Palliat Care,2005,22(4):295-309.
    [21] Reppert S M, Sagar S M. Characterization of the day-night variation of retinal melatonin content in the chick. Invest[J] Ophthalmol Vis Sci, 1983, 24(3): 294-300.
    [22] Faluhelyi N, Reglodi D, Lengvari I, et al. Development of the circadian melatonin rhythm and the effect of PACAP on melatonin release in the embryonic chicken pineal gland. An in vitro study[J]. Regul Pept, 2004,15,123(1-3): 23-28.
    [23] R.Brandstatter. Encoding time of day and time of year by the avian circadian system[J]. Journal of neuroendocrinology,2003,15,398-404.
    [24] M. Mila Macchi, JeVrey N. Bruce. Human pineal physiology and functional signiWcance of melatonin[J]. Frontiers in Neuroendocrinology, 2004, 25: 177-195.
    [25] Zeitzer J M, Dijk D J, Kronauer R, et al. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression[J]. J Physiol, 2000,26: 695-702.
    [26] Zawilska J B.Berezinska M.Rosiak J, et al. Daily variation in the concentration of melatonin and 5-methoxyindole in the goose pineal gland retina and plasma[J]. Gen Comp Endocrinol, 2003, 134(3): 296-302.
    [27] Osol G, Schwartz B, Foss D C. Effects of time,photoperiod,and pinealectomy on ocular and plasma melatonin concentrations in the chick[J]. Gen Comp Endocrinol, 1985,58(3): 415-420.
    [28] Vakkuri O, Rintamaki H, Leppaluoto J. Plasma and tissue concentrations of melatonin after midnight light exposure and pinealectomy in the pigeon[J]. J Endocrinol, 1985, 105(2): 263-268.
    [29] Cogburn L A, Wilson-Placentra S, Letcher L R. Influence of pinealectomy on plasma and extrapineal melatonin rhythms in young chickens (Gallus domesticus) [J]. Gen Comp Endocrinol, 1987, 68(3): 343-356.
    [30] Carrillo-Vico A, Calvo J R, Abreu P, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/orparacrine substance.[J]. FASEB, 2004, 18(3): 537-539.
    [31] Jimenez-Jorge S, Jimenez-Caliani A J, Guerrero J M, et al. Melatonin synthesis and melatonin-membrane receptor (MLT1) expression during rat thymus development: role of the pineal gland[J]. J Pineal Res, 2005, 39(1): 77-83.
    [32] Boguszewska A, Pastemak K.Zaklad Chemii Ogolnej A M W Lublinie. Melatonin and bio-elements[J]. Pol Merkuriusz Lek, 2004, 17(101): 528-529.
    [33] Tan D X, Chert L D, Poeggeler B, et al. Melatonin: a potent,endogenous hydroxyl radical scavenger[J]. Endocrine J, 1993, 1: 57-60.
    [34] Reiter R J, Melchiorri D, Sewerynek E, et al. J Pineal Res, 1995, 18(1): 1-11.
    [35] Pieri C,Marra M,Moroni F, et al..Life Sci, 1994, 55(15): 271-276.
    [36] Topal T, Oter S, Korkmaz A, et al. Exogenously administered and endogenously produced melatonin reduce hyperbaric oxygen-induced oxidative stress in rat lung[J]. Life Sci, 2004, 75(4): 461-467.
    [37] Chad E. Beyer, Jeffery D. Steketee and David Saphier. Antioxidant Properties of Melatonin-An Emerging Mystery[J]. Biochemical Pharmacology, 1998, 56: 1265-1272,
    [38] 狄荣科,马瑞,周志强,等.褪黑激素对中老年大鼠抗氧化作用的初步观察[J].中国老年学杂志,2000,20(4):232-242.
    [39] Hardeland R. Antioxidative protection by melatonin—Multiplicity of mechanisms from radical detoxification to radical avoidance[J]. Endocrine, 2005, 27: 119-130.
    [40] Poeggeler B, Thuermarm S, Dose A., et al. Melatonin's unique radical scavenging properties—Roles of its functional substituents as revealed by a comparison with its structural analogs[J]. Pineal Res, 2002, 33:20-30.
    [41] Srinivasan V, Pandi-Perumal S R, Maestroni G J M., et al.. Role of melatonin in neurodegenerative diseases[J]. Neurotox. Res, 2005, 7: 293-318.
    [42] Rudiger Hardeland, S.R. Pandi-Perumal, Daniel P. Cardinali. Molecules in focus-Melatonin[J]. The International Journal of Biochemistry & Cell Biology, 2006, 38: 313-316.
    [43] Urata Y, Honma S, Goto S, et,al., Melatonin induces g-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells[J]. Free Radical Biology & Medicine, 1999, 27(7/8): 838-847.
    [44] S. Pandey, C. Lopez and A. Jammu. Oxidative stress and activation of proteasome protease during serum deprivation-induced apoptosis in rat hepatoma cells; inhibition of cell death by melatonin.[J] Apoptosis, 2003, 8: 497-508.
    [45] Pablos M I, Agapito M T, Gutierrez R, et al. Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks[J]. J Pineal Res, 1995, 19(3): 111-115.
    [46] Gitto E, Romeo C, Reiter R J, et al. Melatonin reduces oxidative stress in surgical neonates[J]. Pediatr Surg, 2004, 39(2): 184-189.
    [47] Nagi M N, Mansour M A, Al-Shabanah O A, et al. Melatonin inhibits the contractile effect of vanadate in the isolated pulmonary arterial rings of rats: possible role of hydrogen peroxide[J]. Biochem Mol Toxicol, 2002, 16(6): 273-278.
    [48] Boguszewska A, Pasternak K.Zaklad Chemii Ogoinej A M W Lublinie. Melatonin and bio-elements[J]. Pol Merkuriusz Lek, 2004, 17(101): 528-529.
    [49] Mahmoud F, Sarhill N, Mazurczak M A. The therapeutic application of melatonin in supportive care and palliative medicine[J]. Am J Hosp Palliat Care, 2005, 22(4): 295-309.
    [50] Carrillo-Vico A, Lardone PJ, Naji L, et al. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects[J]. J Pineal Res, 2005, 39(4): 400-408.
    [51] 耿拓宇.禽业科技,1996,12(2):13-15.
    [52] 席咏文.译自《Broiler Industry》.能否利用光照方案增强肉鸡的免疫系统.June 1996,24-26.
    [53] Kliger C A, Gehad A E, Hulet R M, et al. Effects of photoperiod and melatonin on lymphocyte activities in male broiler chickens[J]. Poult Sci, 2000, 79(1): 18-25.
    [54] Carrillo-Vico A, Calvo J R, Abreu P, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance[J]. FASEBJ, 2004, 18(3): 537-539.
    [55] Femandes G, Helberg F, Yunis E J, et al. Circadian rhythmic plaque forming cell response of spleens from mice immunized with SBRC[J]. Immunol, 1976, 117: 962.
    [56] Jankovic B D, lsakovick, Petrovics. Effect of pinealectomy on immune reaction in the rat[J]. Immunology, 1970, 18: 1.
    [57] Geoffriau M, Brun J, Chazot G, et al.The physiology and phar macology of melatonin in humans [J].HormRes, 1998, 49:136-141.
    [58] Lauber J K, Vriend J, Oishi T. Plasma corticosterone in chicks reared under several lighting schedules[J]. Comp Biochem Physiol A, 1987, 86(1): 73-78.
    [59] Buckland R B, Bernon D E, Goldrosen A. Effect of four lighting regimes on broiler performance, leg abnormalities and plasma corticoid levels[J], Poult Sci, 1976,55(3): 1072-1076.
    [60] Luger D, Shinder D, Wolfenson D, et al. Erythropoiesis regulation during the development of ascites syndrome in broiler chickens: a possible role of corticosterone [J]. Anim Sci, 2003, 81(3): 784-790.
    [61] Neuro Endocrinol Lett, Sewerynek E .Melatonin and the cardiovascular system[J]. Suppl, 2002, 23 (1): 79-83.
    [62] Serenella Arangino M D, Angelo Cagnacci M D, Marco Angiolucci M D, et al. Effects of Melatonin on Vascular Reactivity,Catecholamine Levels, and Blood Pressure in Healthy Men[J]. THE American Journal of Cardiology, 1999, 83,1:1417-1419.
    [63] Okatani Y, Watanabe K, Hayashi K, et al. Melatonin suppresses vasospastic effect of hydrogen peroxide in human umbilical artery: relation to calcium influx[J]. J Pineal Res, 1997, 22(4): 232-237.
    [64] J Biol Rhythms, Mahle C D, Goggins G D. Comment in Melatonin modulates vascular smooth muscle tone[J]. Biol Rhythms, 1997,12(6): 707-7018.
    [65] Agarwal P, Ryan E, Watson A J, et al. Effects of melatonin on isolated pulmonary artery and vein: role of the vascular endothelium[J]. Pulm Pharmacol, 1993, 6(2): 149-154.
    [66] Weekley L B. Influence of melatonin on bovine pulmonary vascular and bronchial airway smooth muscle tone[J], Clin Auton Res, 1995, 5(1): 53-56.
    [67] Weekley LB. Effects of melatonin on pulmonary and coronary vessels are exerted through perivascular nerves[J]. Clin Auton Res, 1993, 3(1): 45-47.
    [68] Anwar M M, Meki A R, Rahma H H. Inhibitory effects of melatonin on vascular reactivity: possible role of vasoactive mediators[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2001,130(3): 357-367.
    [69] Weekley L B. Melatonin-induced relaxation of rat aorta: interaction with adrenergic agonists[J]. Pineal Res, 1991,11(1): 28-34.
    [70] Viswanathan M, Laitomen J T., and Saavedar J M. Expression of melatonin receptors in arteries involved in thermoregulation[J].Proc Natl Acad Sci., 1990, 87: 6200-6203.
    [71] C E kmekcioglu. Melatonin receptors in humans: biological role and clinical relevance[J]. Biomedicine & Pharmacotherapy, 2006, 60: 97-108.
    [72] Wang X F, Pang C S, Pang S F, et al. Melatonin potentiates phenylephrine -stimulated intracellular Ca~(2+) transient in smooth muscle cell of large arteries of chick embryo[J]. Cardiovasc Pharmacol, 2002, 40(3): 356-362.
    [73] Diana N, Krause, Victor E, et al. Melatonin receptors mediate potentiation of contractile responses to adrenergic nerve stimulation in rat[J] caudal artery European Journal of Pharmacology, 1995, 276: 207-213.
    [74] Suzanne Doolen, Diana N Krause , Margarita L Dubocovich , et al. Melatonin mediates two distinct responses in vascular smooth muscle[J]. European Journal of Pharmacology 1998, 345: 67-69.
    [75] Rimler A, Jockers R, Lupowitz Z, S et al. Differential effects of melatonin and its downstream effector PKCalpha on subcellular localization of RGS proteins[J]. J Pineal Res, 2006,40(2): 144-152.
    [76] Er H, Turkoz Y, Mizrak B, et al. Inhibition of experimental proliferative vitreoretinopathy with protein kinase C inhibitor (chelerythrine chloride) and melatonin[J].Ophthalmologica, 2006,220(1):17-22.
    [77] Soto-Vega E, Meza I, Ramirez-Rodriguez G, et al. Neurofarmacologia, Subdireccion de Investigaciones Clinicas, Instituto Nacional de Psiquiatria, Mexico.
    [78] Weekley L B. Melatonin-induced relaxation of rat aorta: interaction with adrenergic agonists[J]. Pineal Res. 1991,11(1): 28-34.
    [79] Martin V, Herrera F, Carrera-Gonzalez P, et al. Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin[J]. Cancer Res, 2006,15, 66(12): 57-64.
    [80] Schomerus C, Laedtke E, Korf HW. ctivation of arylalkylamine N-acetyltransferase by phorbol esters in bovine pinealocytes suggests a novel regulatory pathway in melatonin synthesis[J]. Neuroendocrinol, 2004,16(9): 741-749.
    [81] Benitez-King G. PKC activation by melatonin modulates vimentin intermediate filament organization in N1E-115 cells[J]. Pineal Res, 2000,29(1): 8-14.
    [82] Fjaerli O, Lund T, Osterud B. The effect of melatonin on cellular activation processes in human blood[J]. J Pineal Res, 1999,26(1): 50-55.
    [83] Gilad E, Matzkin H, Zisapel N. Inactivation of melatonin receptors by protein kinase C in human prostate epithelial cells[J]. Endocrinology, 1997,138(10): 4255-4261.
    [84] Balog J M, Anthony N B, Cooper M A, et al. Ascites syndrome and related pathologies in feed restricted broilers raised in a hypobaric chamber [J]. Poult Sci, 2000, 79(3): 318-323.
    [85] Acar N, Sizemore F G, Leach G R, et al. Growth of broiler chickens in response to feed restriction regimens to reduce ascites [J]. Poult Sci, 1995,74(5): 833-843.
    [86] Shlosberg A, Berman E, Bendheim U, et al. Controlled early feed restriction as a potential means of reducing the incidence of ascites in broilers [J]. Avian Dis, 1991, 35(4): 681-684.
    [87] Shlosberg A, Pano G, Handji V, et al. Prophylactic and therapeutic treatment of ascites in broiler chickens [J]. Br Poult Sci, 1992, 33(1): 141-148.
    [88] Jones G P. Manipulation of organ growth by early-life food restriction: its influence on the development of ascites in broiler chickens [J]. Br Poult Sci, 1995, 36(1): 135-142.
    [89] Buys N, Buyse J, Hassanzadeh-Ladmakhi M, et al. Intermittent lighting reduces the incidence of ascites in broilers: an interaction with protein content of feed on performance and the endocrine system [J]. Poult Sci, 1998, 77(1): 54-61.
    [90] Hassanzadeh M, Fard M H., Buyse J, et al. Beneficial effects of alternative lighting schedules on the incidence of ascites and on metabolic parameters of broiler chickens[J]. Acta Vet Hung, 2003, 51(4): 513-520.
    [91] Camacho M A, Suarez M E, Herrera J G, et al. Effect of age of feed restriction and microelement supplementation to control ascites on production and carcass characteristics of broilers[J]. Poult Sci, 2004, 83(4): 526-532.
    [92] Mollison B, Guenter W, Boycott B R. Abdominal fat deposition and sudden death syndrome in broilers: the effect of restricted intake, early life caloric(fat) restriction and calorie: protein ratio[J]. Poult Sci, 1984, 63: 1190-1200.
    [93] Su G, Sorensen P, Kestin S C. Meal feeding is more effective than early feed restriction at reducing the prevalence of leg weakness in broiler chickens [J]. Poult Sci, 1999, 78(7): 949-955.
    [94] Tottori J, Yamaguchi R, Murakawa Y, et al. The use of feed restriction for mortality control of chickens in broiler farms[J]. Avian Dis, 1997, 41(2): 433-437.
    [95] Fontana E A, Weaver W D Jr, Watkins B A, et al. Effect of early feed restriction on growth, feed conversion, and mortality in broiler chickens [J]. Poult Sci, 1992, 71(8): 1296-1305.
    [96] Lippens M, Room G, De Groote G, et al. Early and temporary quantitative food restriction of broiler chickens. 1.Effects on performance characteristics, mortality and meat quality[J]. Br Poult Sci, 2000, 41(3): 343-354.
    [97] 李玉欣,呙于明.早期限饲对肉仔鸡蛋白质周转代谢的影响[J].中国农业大学学报,2003,8(3):77-80.
    [98] Zubair A K, Leeson, S. Effect of early feed restriction and realimentation on heat production and changes in sizes of digestive organs of male broilers [J]. Poult Sci, 1994, 73: 529-538.
    [99] Griffiths L, Leeson S, Summers J D. Fat deposition in broilers: Influence of system of dietary energy evaluation and level of various fat source on productive performance, carcass composition and abdominal fat pad size [J]. Poult Sci, 1977, 56: 1018-1026.
    [100] Plavnik I, Hurwitz S. Responses of broiler chickens and turkey poults to food restriction of varied severity during early life [J]. Br Poult Sci, 1991, 32: 343-352.
    [101] McMurtry J P, Plavnik I, Rosebrough R W, et al. Effect of early feed restriction in male broiler chicks on plasma metabolic hormones during feed restriction and accelerated growth [J]. Comp Biochem Physiol A, 1988, 91(1): 67-70.
    [102] Lee K H, Leeson S. Performance of broilers fed limited quantities of feed or nutrients during seven to fourteen days of age [J]. Poult Sci, 2001, 80(4): 446-454.
    [103] Yu M E, Robinson E E. Clandinin M T, et al. Growth and body composition of broiler chickens in response to different regimens of feed restriction [J]. Poult Sci, 1990, 69: 2074-2081.
    [104] Leeson S, Zubair A K. Nutrition of the broiler chicken around the period of compensatory growth [J]. Poult Sci, 1997, 76: 992-999.
    [105] Muramatsu T, Kita K. Influence of dietary protein intake on whole body protein turnover in chicks [J]. Br Poult Sci, 1987, 28: 471-482.
    [106] Govaerts T, Room G, Buyse J, et al. Early and temporary quantitative food restriction of broiler chickens. 2. Effects on allometric growth and growth hormone secretion [J]. Br Poult Sci, 2000, 41(3): 355-362.
    [107] Rosebrough R W, Steele N C, Mcmutry J, et al. Effect of early feed restriction in broilers [J]. Lipid Metabolism, 1986,50: 217-227.
    [108] Palo P E, Sell J L. Effect of early nutrient restriction on broiler chickens [J]. Poult Sci, 1995, 74: 88-101.
    [109] Pinchasov Y. Metabolic and anatomical adaptations of heavy-bodied chicks to intermittent feeding [J]. Br Poult Sci, 1990, 31:769-777.
    [110] Klasing K C. Nutritional modulation of resistance to infectious diseases [J]. Poult Sci, 1998, 77:1119-1125.
    [111] Cheema M A, Qureshi M A, Havenstein G B. A comparison of the immune response of a 2001 commercial broiler with a 1957 randombred broiler strain when fed representative 1957 and 2001 broiler diets[J]. Poult Sci, 2003, 82:1519-1529.
    [112] Cook M E. Nutrition and the immune response of the domestic fowl [J]. Crit Rev Poult Biol, 1991, 3:167-189.
    [113] Urdaneta-Rincon M, Leeson S. Quantitative and qualitative feed restriction on growth characteristics of male broiler chickens [J]. Poult Sci, 2002, 81: 679-688.
    [114] Liew P K, Zulkifli I, Hair-Bejo M, et al. Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress[J]. Poult Sci, 2003, 82:1879-1885.
    [115] Ballay M, Dunnington E A, Gross W B, et al. Restricted feeding and broiler performance: age at initiation and length of restriction [J]. Poult Sci, 1992, 71: 440-447.
    [116] Luger D, Shinder D, Rzepakovsky V, et al. Association between weight gain, blood parameters, and thyroid hormones and the development of ascites syndrome in broiler chickens [J]. Poult Sci, 2001, 80(7): 965-971.
    [1] Enkvetchakul B, Beasley J, and Bottje W. Pulmonary arteriole hypertrophy in broilers with pulmonary hypertension syndrome (ascites) [J]. Poult Sci, 1995, 74: 1676-1682.
    [2] Widimsky J, Herget J. Pulmonary blood vessels in lung disease [J]. Prog Respir Res Basel Karger, 1990, 126: 12-28.
    [3] Wilfred M, Copenhaver, Douglas E, et al. Bsiley's texbook of histology (seventeenth edition) [M]. Mt Royal and Guiford Aves, Baltimore, MD21202, USA: Wavedy Press Inc, 1979, 358-390.
    [4] William J Banks. Applied veterinary histology [M]. Mt Royal and Guiford Ayes, Baltimore, MD21202, USA: Wavedy Press Inc, 1981, 304-321.
    [5] 孙本韬,李琳.泡内动脉结构的变形及其逆转与肺动脉压和血气变化之间的关系[J].中华结核和呼吸杂志,1991,14:130-133.
    [6] Davies P, Burke G, Reid L. The structure of the wall of the rat intra-acinar pulmonary artery: an electron microscopic study of microdissected preparations [J]. Microvasc Res, 1986, 32:50-63.
    [7] 程显声.肺血管疾病学[M].北京:北京医科大学—中国协和医科大学联合出版社,1993,15-20.
    [8] Baumbach D and Heistad D. Remodeling of cerebral arterioles in chronic hypertension [J]. Hypertension, 1989, 13(6Pt2): 968-972.
    [9] Dickhout J G and Lee R M. Structural and functional analysis of arteries from young spontaneously hypertensive rats [J]. Hypertension, 1997, 29(3): 781-789.
    [10] Gibbons G H and Dzau V J. The emerging concept of vascular remodeling [J]. N Engl J Med, 1994, 330(20): 1431-1438.
    [11] Zhao L and Winter R J D. Pulmonary vascular remodeling [A]. In: Peacock A J (Ed.), Pulmonary Circulation: A Handbook for Clinicians[C]. London: Chapman and Hall, 1996, 87-95.
    [12] Tohru Takahashi. Density of muscularized arteries in the lung: Its role in congenital heart disease and its clinical significance [J]. Arch Pathol Lab Med, 1983, 107(1):23-28.
    [13] Dingemanns K P and Wagenvoort C A. Pulmonary arteries and veins in experimental hypoxia [J]. Am J Pathol, 1978, 93: 353-368.
    [14] Meyrick B and Reid L. Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression [J]. Am J Pathol, 1980, 100: 151-178.
    [15] 阮英茹,司文学,张连庄,等.肺动脉高压尸检病例的肺动脉形态计量及胶原变化的观察[J].中华病理学杂志,1996,25(2):89-92.
    [16] 翁心植.慢性阻塞性疾病与肺源性心脏病[M].北京:北京出版社,1999,43-70.
    [17] 宋为,蔡英年,邓希贤,等.缺氧性肺动脉高压大鼠肺腺泡内动脉肌化与内皮结构变化的关系[J].中国应用生理学杂志,1993,4:292-296.
    [18] 蔡英年.肺血管结构重建在低氧性肺动脉高压形成中的作用[J].生物学通报,1996,31(11):1-3.
    [19] 孙仁宇,严仪昭.血管胶原代谢改变及其在大鼠低氧性肺动脉高压形成中的作用[J].基础医学与临床,1993,13(005):45-49.
    [20] Voelkel N F, Tuder R M, and Weir E K. Pathophysiology of primary pulmonary hypertension: from physiology to molecular mechanisms [A]. In: Rubin L J and Rich S (Eds.), Primary Pulmonary Hypertension[C]. New York: Marcel Dekker lnc, 1997, 83-129.
    [21] Hislop A and Reid L. Arterial changes in crotalaria spectabilis induced pulmonary hypertension in rats [J]. Br J Exp Pathol, 1974, 55: 153-163.
    [22] Hislop A and Reid L. New findings in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension [J]. Br J Exp Pathol, 1976, 57: 542-554.
    [23] Finlay M, Barer G, and Sugget A J. Quantitative changes in rat pulmonary vasculature in chronic hypoxia relation to haemodynamic changes [J]. Q J Exp Physiol, 1986, 71: 151-163.
    [24] Jeffery T K and Wanstall J C. Pulmonary vascular remodeling in hypoxic rats: effects of amlodipine, alone and with perindopril [J]. Eur J Pharrnacol, 2001, 416: 123-131.
    [25] Takahashi T, Kanda T, Imai S, et al. Amlodipine inhibits the development of right ventricular hypertrophy and media thickening of pulmonary arteries in a rat model of pulmonary hypertension [J]. Res Commun Mol Path Pharmacol, 1996, 91: 17-32.
    [26] Eddahibi S, Raffestin B, Le Monnier de Gouville A, et al. Effect of DMPPO, a phosphodiesterase type 5 inhibitor on hypoxic pulmonary hypertension in rats [J]. Br J Pharmacol, 1998, 125: 681-688.
    [27] Enid L, Howard P, Barer G R. Resolution of hypoxic changes in the heart and pulmonary arterioles of rats during intermittent correction of hypoxia [J]. Clin Sci Mol Med, 1997, 52: 153-162.
    [28] Stenmark K R, Fasules J, Hyde D M, et al. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4300m [J]. Am J Physiol, 1987, 62: 821-830.
    [29] Poiani G J, Tozzi C A, Yohn S E, et al. Collagen and elastin metabolism in hypertensive pulmonary arteries of rats [J]. Circ Res, 1990, 66: 968-978.
    [30] Tozzi C A, Poiani G J, Harangozo A M, et al. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium [J]. J Clin Invest, 1989, 84:1005-1012.
    [31] Kolpakov V, Rekhter M D, Gordon D, et al. protein synthesis in the in vitro pulmonary artery: analysis of the role of individual cell types [J]. Circ Res, 1995, 77: 823-831.
    [32] Chaohong Li, Qingbo Xu. Mechanical stress-initiated signal transduction in vascular smooth muscle cells. Cellular Signalling ,2000,12:435-445
    [33] Dimmeler S, Assmus B, Hermann C, et al. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis [J]. Circ Res, 1998,83(3): 334-341.
    [34] Krieger J E and Dzau V J. Molecular biology of hypertension [J]. Hypertension, 1991, 18(3 Suppl): 13-17.
    [35] Kuchan M J and Frangos J A. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells [J]. Am J Physiol, 1993,264(1 Pt 2): H150-H156.
    [36] Brotherton A F, Hoak J C. Prostacyclin biosynthesis in cultured vascular endothelium is limited by deactivation of cyclooxygenase. [J]. J Clin Invest, 1983,72(4): 1255-1261.
    [37] Traub O ,Monia B P ,Dean N M, et al. Pkc-eis required for mechano-sensitive activation of ERK1/ 2 in endothelial cells[J]. J Biol Chem,1997 ,272 :31251 - 31257.
    [38] Skalak T C and Price R J. The role of mechanical stresses in microvascular remodeling [J]. Microcirculation, 1996,3(2): 143-165.
    [39] Pepper M S,Ferrara N, Orci L, et al. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro [J].Biochem Biophys Res Commun. 1992, 189: 824 - 831.
    [40] Nicosia R F.Nicosia S V, Smith M. Vascular endothelial growth factor,platelet-derived growth factor and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro[J].Am J Pathol, 1994, 145 :1023 - 1029.
    [41] Goldberg M A, Schneider T J. Similarity between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin [J]. J Biol Chem, 1994, 269 :4355-4361.
    [42] Takagi H,King G L,Robinson G S, et al. Hypoxic induction of VEGF is mediated by adenosine through A2 receptors and elevation of cAMP in retinal pericytes and endothelial cells [J].Invest Opthal mol Vis Sci, 1996, 37:2165 - 2176.
    [43] Partovian C, Adnot S, Eddahibi S, et al. Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension [J]. Am J Physiol, 1998, 275 (6 pt 2): H1948-H1956.
    [44] Rabinovitch M. Elastase and cell matrix interactions in the pathobiology of vascular disease [J]. Acta Paediatr Jpn, 1995,37(6):657-666.
    [45] 颜浩,陈文彬,程德云,等。碱性成纤维细胞生长因子在低氧性肺动脉高压大鼠肺内表达及分布的观察[J].中华结核和呼吸杂志,1997,20(6):344-346.
    [46] Katayose D, Ohe M, Yamauchi K, et al. Increased repression of PDGF-A-and B-chain genes in rat lungs with hypoxic pulmonary hypertension [J]. Am J Physiol, 1993, 264 (2 pt 1): L100-L106.
    [47] Rothman A, Wolner B, Button D, et al. Immediate early gene expression in response to hypertrophic and proliferative stimuli in pulmonary arterial smooth muscle cells [J]. J Biol Chem, 1994, 269: 6399-6404.
    [48] Wang H L, Kilfeather S A, Martin G R, et al. Effects of tetrandrine on growth factor-induced DNA synthesis and proliferative response of rat pulmonary artery smooth muscle cells [J]. Pulm Pharmacol Ther, 2000, 13: 53-60.
    [49] Jensen D E, Rich C B, Terpstra A J, et al. Transcriptional regulation of the elastin gene by insulin-like growth factor-Ⅰ involves disruption of Spl binding in aortic smooth muscle cells [J]. J Biol Chem, 1995, 270:6555-6563.
    [50] Lee T C, Gold L I, Reibman J, et al. Immunohistochemical localization of transforming growth factor-beta and insulin-like growth factor-Ⅰ in asbestosis in the sheep model [J].Int Arch Occup Environ Health, 1997, 69(3):157-164.
    [51] Thommes K B, Hoppe J, Vetter H, et al.The synergistic effect of PDGF-AA and IGF-1 on VSMC proliferation might be explained by the differential activation of their intracellular signaling pathways [J]. Exp Cell Res, 1996, 226(1):59-66.
    [52] Ko Y, Stiebler H, Nickenig G, et al. Synergistic action of angiotensin Ⅱ,insulin-like growth factor-Ⅰ,and transforming growth factor-beta on platelet-derived growth factor-BB,basic fibroblastic growth factor, and epidermal growth factor-induced DNA synthesis in vascular smooth muscle cells [J].Am J Hypertens, 1993, 6(6 Pt 1):496-499.
    [53] Anwar A, Runge M, Delafonaine P, et al. Thrombin downregnlates insulin-like growth factor Ⅰ mRNA levels in vascular smooth muscle cells [J].Circulation, 1994, 90:301-305.
    [54] Dempsey E C,Badesch D B,Dobyns E L, et al. Enhanced growth capacity of neonatal pulmonary artery smooth muscle cells in vitro: dependence on cell size,time from birth,Insulin-like growth factor Ⅰ,and auto-activation of protein kinase C [J]. J Cell Physiology, 1994, 160: 469-481.
    [55] Moromisato D Y, Moromisato M Y, Zanconato S, et al. Effects of hypoxia on lung, heart, and liver insulin-like growth factor-Ⅰ gene and receptor expression in the new rat [J].Crit Care Med, 1996, 24(6): 919-924.
    [56] Heino J, Ignotz R A, Hemler M E,et al. Regulation of cell adhesion receptor by transforming growth factor-beta. Concomitant regulation of integrins that share a common beta 1 subunit [J]. J Biol Chem, 1989,264(1):380 - 388.
    [57] Bray P, Agrotis A, Bobik A. Transforming growth factor-beta and receptor tyrosine-activating growth factors negatively regulate collagen genes in smooth muscle of hypertersive rats [J]. Hypertension, 1998,31(4): 986-994.
    [58] Botney M D, Parks W C, Crouch E C, et al. Transforming growth factor-plis increased in remodeling hypertensive bovine pulmonary arteries [J]. J Clin Invest, 1992, 89:1629-1635.
    [59] Nakaki T, Nakayama M, Yamamoto S, et al. Endothelin-mediated stimulation of DNA synthesis in vascular smooth muscle cells [J]. Biochem Biophys Res Commu, 1989,158 (3): 880-883.
    [60] Arai H, Hori S, Aramori I, et al. Cloning and expression of a cDNA encoding an endothelin receptor [J]. Nature, 1990, 348(6303): 730-732.
    [61] Stewart D J, Levy R D, Cernacek P, et al. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? [J]. Ann Inter Med, 1991,114 (6); 464-469.
    [62] Filep J G Endothelin peptides: biological actions and pathophysiological significance in the lung [J]. Life Science, 1993,52(2): 119-133.
    [63] Janakidevi K, Fisher M A, Del Vecchio P J, et al. Endothelin-1 stimulates DNA synthesis and proliferation of pulmonary artery smooth muscle cells [J]. Am J Physiol, 1992, 263 (6 ptl): C1259-C1310.
    [64] Morrell N W, Upton P D, Kotecha S, et al. Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT1 receptors [J]. Am J Physiol, 1999, 277: L440- L448.
    [65] Chassagne C, Eddahibi S, Adamy C, et al. Modulation of angiotensin II receptor expression during development and regression of hypoxic pulmonary hypertension [J]. Am J Respir Cell Mol Biol, 2000, 22: 323-332.
    [66] Goodfriend T L, Elliott M E, Gatt K J. Angiotensin receptors and their antagonists [J]. N Engl J Med, 1996,334(25): 1649-1654.
    [67] Kronemann N , Bouloumi A, Bassus S, et al. Aggregating human platelets stimulate expression of vascular endothelial growth factor in cultured vascular smooth muscle cells through a synergistic effect of transforming growth factor-beta(1) and platelet-derived growth factor(AB) [J]. Circulation, 1999, 100(8): 855-860.
    [68] Lee S L, Wang W W, Lanzillo J J, et al.. Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary artery smooth muscle cells in culture [J]. Am J Physiol, 1994, 266: L46-L52.
    [69] Lee S L, Wang W W, Moore B J, et al. Dual effect of serotonin on growth of bovine pulmonary artery smooth muscle cells in culture [J]. Circ Res, 1991, 68: 1362-1368.
    [70] Pitt B R, Weng W, Steve A R, et al. Serotonin increases DNA synthesis in rat proximal and distal pulmonary vascular smooth muscle cells in culture [J]. Am J Physiol, 1994, 266: L178-L186.
    [71] Mitani Y, Maruyama K, Sakurai M. Prolonged administration of L-Arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats [J]. Circulation, 1997, 96: 689-697.
    [72] 齐建光,杜军保,贾建锋,等.内源性一氧化氮调节大鼠低氧性肺血管结构重建[J].中华儿科杂志,1999,37:104-106.
    [73] Garg U C, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest, 1989, 83:1774-1777.
    [74] Brown M R, Miller F J,Li W G, et al. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells [J]. Circ Res, 1999, 85:524-533.
    [75] Sundaresan M, Yu Z X, Ferrans V J, et al. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction [J]. Science, 1995, 270:296-299.
    [76] Rajagopalan S, Meng XP, Ramasamy S, et al. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability[J]. J Clin Invest, 1996, 98: 2572-2579.
    [77] Grote K, Flach I, Luchtefeld M, et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species[J].Circ Res, 2003, 92(11): e80-e86.
    [78] Voelkel N F, & Tuder R M. Cellular and molecular mechanisms in the pathogenesis of severe pulmonary hypertension[J]. Eur Respir, 1995, 8,2129-2138.
    [79] Tuder R M, Groves B, Badesch D B, et al, Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension[J]. Am J Pathol, 1994,144: 275-285.
    [80] Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension[J]. Am J Respir Crit Care Med, 1995, 151: 1628-1631.
    [81] Madden M C, Vender R L, and Friedman M. Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium [J]. Prostaglandins, 1986, 31: 1049-1062.
    [82] Cooper A L and Beasley D. Hypoxia stimulates proliferation and interleukin-1 production in human vascular smooth muscle cells [J]. Am J Physiol, 1999, 277: H1326-H1337.
    [83] Dawes K E, Bishop J E, Peacock A J, et al. The role of endothelium in vascular remodeling [A]. In: Bishop J E, Reeves J T, and Laurent G J (Eds.), Pulmonary Vascular Remodeling. London: Portland Press, 1995, 241-269.
    [84] Failer D V. Endothelial cell responses to hypoxic stress [J]. Clin Exp Pharmacol Physiol, 1999, 26, 74-84.
    [85] Wort S J, Mitchell J A, Woods M, et al. The prostacyclin-mimetic cicaprost inhibits endogenous endothelin-1 release from human pulmonary artery smooth muscle cells [J]. J Cardiovasc Pharmacol, 2000, 36: S410-S413.
    [86] 陶清国,张珍祥.肺血管结构改建、平滑肌细胞增生与原癌基因[J].国外医学呼吸分册,1997,17:22-24.
    [87] 王家宁,胡大一,陈丈彦,等.反义c-myc RNA对大鼠血管平滑肌细胞增殖的抑制作用[J].临床心血管病杂志,1998,14(4):235-239.
    [88] 韩梅,蔡英年,邓希贤.缺氧诱导大鼠肺动脉PDGF和c-myc基因表达增强[J].基础医学与临床,1994,14(1):30-34.
    [89] 冉丕鑫,欧阳能太,陈顺存,等.原癌基因sis,fos在缺氧大鼠肺内表达的研究[J].中国组织化学与细胞化学杂志,1996,5(4):473-476.
    [90] 冉丕鑫,欧阳能太,陈顺存,等.缺氧大鼠肺原癌基因jun表达之研究[J].中国组织化学与细胞化学杂志,1995,4(1):14-17.
    [91] Cowan K N, Jones P L, and Rabinovitch M. Regression of hypertrophied rat pulmonary arteries in organ culture is associated with suppression of proteolytic activity, inhibition of tenascin-C, and smooth muscle cell apoptosis [J]. Circ Res, 1999, 84: 1223-1233.
    [92] Durmowicz A G and Stenmark K R. Mechanisms of structure remodeling in chronic pulmonary hypertension [J]. Pediatr Rev (online), 1999, 20: e91-e102.
    [93] Pollman M J, Yamada T, Hoduchi M, et al. Vasoactive substances regulate vascular smooth muscle cell apoptosis: countervailing influences of nitric oxide and angiotensin Ⅱ [J]. Circ Res, 1996, 79: 748-756.
    [94] Rabinovitch M. Elastase and the pathobiology of unexplained pulmonary hypertension [J]. Chest Suppl, 1998, 114: 213-224.
    [95] Zhang S, Fantozzi I, Tiguo D D, et al, Thistlethwaite P A, Kriett J M, Yung G, Rubin L J, and Yuan J X-J. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells [J]. Am J Physiol, 2003, 285: L740-L754.
    [96] 陶清国,张珍祥,徐永健.慢性缺氧对大鼠肺内细胞增殖凋亡及相关基因表达的影响[J].中国病理生理杂志,1999,15(5):459.
    [97] 宫丽敏,杜军保,石云,等.一氧化碳调节低氧大鼠肺动脉平滑肌细胞凋亡[J].北京大学学报(医学版),2002,34(3):242-246.
    [98] Yang C, Wang S, Liang T, et al. The roles of bcl-2 gene family in the pulmonary artery remodeling of hypoxia pulmonary hypertension in rats [J]. Chin Med Sci J, 2001,16(3): 182-184.
    [99] Dempsey E C, Stenmark K R, McMurtry I F, et al. Insulin-like growth factor 1 and protein kinase C activation stimulate pulmonary artery smooth muscle cell proliferation through separate but synergistic pathways [J]. Cell Physiol, 1990,144:159-165.
    [100] Yamboliev I A, Hruby A, and Gerthoffer W T. Endothelin-1 activates MAP kinases and c-Jun in pulmonary artery smooth muscle [J]. Pulm Pharmacol Ther, 1998,11: 205-208.
    [101] Van Suylen R J, Smits J F, & Daemen M J. Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary[J]. hypertension. Am J Respir Crit Care Med,1998,157: 1423-1428.
    [102] Clozel J P, Saunier C, Hartemann D, et al. Effects of cilazapril, a novel angiotensin converting enzyme inhibitor, on the structure and function of pulmonary arteries of rats exposed to chronic hypoxia[J]. Cardiovasc Pharmacol, 1991,17:36- 40.
    [103] Nong Z, Stassen JM., Moons L, et al.Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling[J]. Circulation, 1996, 94:1941- 1947.
    [104] Jeffery T K, & Wanstall J C. Perindopril, an angiotensin converting enzyme inhibitor, in pulmonary hypertensive rats: comparative effects on pulmonary vascular structure and function[J]. Br J Pharmacol, 1999,128:1407- 1418.
    [105] Levy B I, Michel J B, Salzmann J L, et al. Effects of chronic converting enzyme inhibition on the structure and function of large arteries in the rat[J]. Clin Exp Hypertens ,1989,11: 487- 498.
    [106] Molteni A, Ward W F, Ts'ao C H, et al. Monocrotaline-induced pulmonary fibrosis in rats: amelioration by captopril and penicillamine[J]. Proc Soc Exp Biol Med,1985,180:112-120.
    [107] Zhao L, Al-Tubuly R, Sebkhi A, et al. Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung[J]. Br J Pharmacol ,1996,119:1217- 1222.
    [108] Miyauchi T, Yorikane R, Sakai S, et al. Contribution of endogenous endothelin-1 to the progression of cardiopulmonary cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension[J], Circ Res,1993 ,73: 887-897.
    [109] Di Carlo V S, Chen S J, Meng Q C, et al. ETA-receptor antagonist prevents and reverses chronic hypoxia-induced pulmonary hypertension in rat[J]. Am J Physiol, 1995,269: L690 - L697.
    [110] Ivy DD, Parker T A, Ziegler J W, et al. Prolonged endothelin A receptor blockade attenuates chronic pulmonary hypertension in the ovine fetus[J]. J Clin Invest ,1997,99:1179- 1186.
    [111] Nguyen Q T, Colombo F, Rouleau J L, et al. LU135252, an endothelin(A) receptor antagonist did not prevent pulmonary vascular remodeling or lung fibrosis in a rat model of myocardial infarction[J]. Br J Phannacol,2000,130:1525-1530.
    [112] Hill N S, Warburton R R, Pietras L, et al. Nonspecific endothelin-receptor antagonist blunts monocrotaline-induced pulmonary hypertension in rats[J]. J Appl Physiol ,1997,83:1209-1215.
    [113] Kim H, Yung G L, Marsh J J, Konopka R G, et al. Endothelin mediates pulmonary vascular remodeling in a canine model of chronic embolic pulmonary hypertension[J]. Eur Respir J,2000,15:640- 648.
    [114] Chen S, Chen Y, Meng Q C, et al. Endothelin-receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats[J]. J Appl Physiol ,1995,79:2122-2131.
    [115] Chen S, Chen Y, Opgenorth T J, et al. The orally active nonpeptide endothelin A-receptor antagonist A-127722 prevents and reverses hypoxiainduced pulmonary hypertension and pulmonary vascular remodeling in Sprague-Dawley rats[J]. J Cardiovasc Pharmacol ,1997,29: 713- 725.
    [116] Tilton R G, Munsch C L, Sherwood S J, et al. Attenuation of pulmonary vascular hypertension and cardiac hypertrophy with sitaxsentan sodium, an orally active ET(A) receptor antagonist. Pulm Pharmacol Ther, 2000,13:87-97.
    [117] Roos C M, Frank D U, Xue C, et al. Chronic inhaled nitric oxide: effects on pulmonary vascular endothelial function and pathology in rats [J]. J Appl Physiol, 1996, 80: 252-260.
    [118] Horstman D J, Frank D U, and Rich G F. Prolonged inhaled NO attenuates hypoxic, but not monocrotaline-induced, pulmonary vascular remodeling in rats [J]. Anesth Analg, 1998, 86: 74-81.
    [119] Roberts J D, Chiche J D, Weimann J, et al. Nitric oxide inhalation decreases pulmonary artery remodeling in the injured lungs of rat pups [J]. Circ Res, 2000, 87:140-145.
    [120] 杜军保, 齐建光, 马占敏,等. L-精氨酸治疗缺氧性肺动脉高压[J]. 中国药房, 2002,13(3): 136 - 138.
    [121] MacLean M R, Johnston E D, McCulloch K M, et al. Phosphodiesterase isoforms in the pulmonary arterial circulation of the rat: changes in pulmonary hypertension[J]. Pharmacol Exp Ther,1997,283: 619- 624.
    [122] Takahashi T, KandaT, Inoue M, et al. A selective type V phosphodiesterase inhibitor, E4021, protects the development of right ventricular overload and medial thickening of pulmonary arteries in a rat model of pulmonary hypertension[J]. Life Sci, 1996b,59,: PL371- PL377.
    [123] Hanasato N, Oka M, Muramatsu M, et al. E-4010, a selective phosphodiesterase 5 inhibitor, attenuates hypoxic pulmonary hypertension in rats[J]. Am J Physiol ,1999,277: L225-L232.
    [124] Kodama K, & Adachi H. Improvement of mortality by long-term E4010 treatment in monocrotaline-induced pulmonary hypertensive rats[J]. Pharmacol Exp Ther, 1999,290: 748-752.
    [125]Nagamine J, Hill L L, & Pearl R G Combined therapy with zaprinast and inhaled nitric oxide abolishes hypoxic pulmonary hypertension[J]. Crit Care Med, 2000,28: 2420-2424.
    [126] Stepien O, Gosusev J, Zhu D, et al. Amlodipine inhibition of serum-, thrombin-or fibroblast growth factor-induced vascular smooth muscle cell proliferation [J]. J Cardiovasc Pharmacol, 1998, 31: 786-793.
    [127] Hassoun P M, Thompson B T, Steigman D, et al. Effect of heparin and warfarin on chronic hypoxic pulmonary hypertension and vascular remodeling in the guinea pig [J]. Am Rev Respir Dis, 1989, 139: 763-768.
    [128] Hu L M, Geggel R, Davies P, et al. The effect of heparin on the haemodynamic and structural response in the rat to acute and chronic hypoxia [J]. Br J Exp Pathol, 1989, 70: 113-124.
    [129] Khoury J and Langleben D. Heparin-like molecules inhibit pulmonaryvascular pericyte proliferation in vitro [J]. Am J Physiol, 2000, 279: L252-L261.
    [130] Thompson B T, Spence C R, Janssens S P, et al. Inhibition of hypoxic pulmonary hypertension by heparins of differing in vitro antiproliferative potency [J]. Am J Respir Crit Care Med, 1994, 49: 1512-1517.
    [131] Lee S L, Wang W W, Joseph P M, et al. Inhibitory effect of heparin on serotonin-induced hyperplasia and hypertrophy of smooth muscle cells [J]. Am J Respk Cell Mol Biol, 1997, 17: 78-83.
    [132] 王怀良,Kilfeather S A,Martin G R,等.肝素对生长因子诱导的大鼠肺动脉平滑肌细胞分裂和增殖的影响[J].中国药理学报,1997,18(5):397-400.
    [133] Daum G, Hedin U, Wang Y, et al. Diverse effects of heparin on mitogen-activated protein kinase-dependent signal transduction in vascular smooth muscle cells [J]. Circ Res, 1997, 81: 17-23.
    [134] McLaughlin V V, Gentthner D E, Panella M M, et al. Reduction in pulmonary vascular resistance with long-term epoprostenol (prostacyclin) therapy in primary pulmonary hypertension[J]. N Engl J Meal, 1998, 338: 273-277.
    [135] Geraci M W, Gao B, Shepherd D C, et al. Pulmonary prostacyclin synthase overexpression in transgenic miceprotects against development of hypoxic pulmonary hypertension [J]. J Clin Invest, 1999, 103: 1509-1515.
    [136] Xu Y, Stenmark K R, Das M, et al. Pulmonary artery smooth muscle cells from chronically hypoxic neonatal calves retain fetal-like and acquire new growth properties [J]. Am J Physiol, 1997, 273: L234-L245.
    [137] Plevin R, Kellock N A, Wakelam M J, et al. Regulation by hypoxia of endothelin-1 stimulated phospholipase D activity in sheep pulmonary artery cultured smooth muscle cells [J]. Br J Pharmacol, 1994, 112: 311-315.
    [138] Bialecki R A, Fisher C S, Murdoch W W, et al. Chronic hypoxia increases staurosporine sensitivity of pulmonary artery smooth muscle to endothelin-1 [J]. Pulm Pharmacol Ther, 1998, 11 (2-3): 159-163.
    [139] Ekhterae D, Flatoshyn O, Krick S, et al. Bcl-2 decreases voltage-gated K~+ channel activity and enhances survival in vascular smooth muscle cells [J]. Am J Physiol, 2001, 281(1): C157-C1
    [1] Balk SD. Calcium as a regulator of the proliferation of normal, but not of transformed, chicken fibroblasts in a plasma2containing medium[J]. Proc Natl Acad Sci USA, 1971, 68(2): 271-275.
    [2] Ross R, Glomset J, Kariya B, et al. A platelet2dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro [J]. Proc Natl Acad Sci USA, 1974, 71 (4): 1207-1210.
    [3] RENHAI CAO, EBBA BRAKENHIELM, XURI LI, et al. Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-α α and-α β receptors[J]. FASEB J, 2002, 16: 1575-1583.
    [4] Hart RN, Liu J, Tanswell AK, et al. Ontogeny of platelet-derived growth factor receptor in fetal rat lung[J]. Microsc Res Tech, 1993, 1, 26(5): 381-8.
    [5] SHILPA BUCH, ROBIN N N HAN, JUDY CABACUNGAN, et al. Changes in Expression of Platelet-Derived Growth Factor and Its Receptors in the Lungs of Newborn Rats Exposed to Air or 60% O_2[J]. Pediatric Research, 2000, 48: 423-433.
    [6] 廖国宁,陈蓓蓓,雷景迈,等.PDGF在低氧内皮细胞条件培养基促猪肺动脉平滑肌细胞增殖中的作用[J].同济医科大学学报,2000,29(2):105-107.
    [7] Stella Kourembanas, Robert L, Hannah LL et al. Oxygen Tension Regulates the Expression of the Platelet-derived Growth Factor-B Chain Gene in Human Endothelial Cells[J]. Clin Invest, 1990, 86: 670-674.
    [8] Kourembanas S, Modta T, Liu Y, et al. Mechanisms by which oxygen regulates gene expression and cell-cell interaction in the vasculature[J]. Kidney Int, 1997, 51(2): 438-443.
    [9] 李丰,董艳彬,车东媛,等.缺氧促进猪肺动脉内皮细胞sis/PDGF-B链基因的表达[J].中国病理生理杂志,1996,12(6):562-565.
    [10] Huang Q, Sun R. Changes of PDGF-alpha and beta receptor gene expression in hypoxic rat pulmonary vessels[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 1997 Dec, 19(6): 470-473.
    [11] Stella Kourembanas, Robert L Hannah, and Douglas V Failer. Oxygen Tension Regulates the Expression of the Platelet-derived Growth Factor-B Chain Gene in Human Endothelial Cells[J]. Clin. Invest, 1990, 86: 670-674.
    [12] Li F, Che D, Yuan Y. Effects of hypoxia on the release of PDGF-B chain from pulmonary artery endothelial cells and on growth of pulmonary artery smooth muscle cells[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 1997, 13(3): 216-219.
    [13] Kourembanas S, Morita T, Liu Y, et al. Mechanisms by which oxygen regulates gene expression and cell-cell interaction in the vasculature[J]. Kidney Int, 1997 Feb, 51(2): 438-43.
    [14] 刘健,王培勇,罗德成,等.缺氧对肺动脉内皮细胞PDGF-A、-B链及其受体α、β亚基基因表达的影响[J].第三军医大学学报,1996,18(4):285-288.
    [15] 刘健,罗德成,王培勇,等.PDGF在缺氧肺动脉平滑肌细胞增殖中的作用及其机理初探[J].第三军医大学学报,1997,12月:489-492.
    [16] Peng Li, Suzanne Oparil, Ju-Zhong Sun, et al. Thompson and Yiu-Fai Chen. Fibroblast growth factor mediates hypoxia-induced endothelin-A receptor expression in lung artery smooth muscle cells[J]. Appl Physiol, 2004, 97(4): 1550-1558.
    [17] Tamm M, Bihl M, Eickelberg O, et al. Hypoxia-induced interleukin-6 and interleukin-8 productio is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells[J]. Am J Respir Cell Mol Biol, 1998, 19(4): 653-661.
    [18]黄 群华,孙仁宇.血小板源生长因子在低氧性肺动脉平滑肌细胞增殖中的作用[J].基础医学与临床,1998,18(2):33-37.
    [19] 黄群华,孙仁宇.低氧致肺动脉平滑肌细胞增殖及其作用机制初探[J].中国病理生理杂志,1999,15(7):598-600.
    [20] SHILPA BUCH, ROBIN N N HAN, JUDY CABACUNGAN, et al. Changes in Expression of Platclet-Derived Growth Factor and Its Receptors in the Lungs of Newborn Rats Exposed to Air or 60% O_2[J]. Pediatric Research, 2000, 48: 423-433.
    [21] Jankov RP, Kantores C, Belcastro R, et al. A Role for Platelet-Derived Growth Factor {beta}-Receptor in a Newborn Rat Model of Endothelin-Mediated Pulmonary Vascular Remodeling. Am J Physiol Lung Cell Mol Physiol. 2005 Feb 18.
    [22] Huang Q, Sun R. Changes of PDGF-alpha and beta receptor gene expression in hypoxic rat pulmonary vessels[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 1997, 19(6): 470-473.
    [23] 黄群华,孙仁宇.低氧致肺动脉平滑肌细胞增殖及其作用初探[J].中国病理生理杂志,1999,15(7):598-600.
    [24] Huang Q, Sun R. Changes of PDGF-alpha and beta receptor gene expression in hypoxic rat pulmonary vessels[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 1997, 19(6): 470-473.
    [25] Zhong guo Yi Xue Ke Xue Yuan Xue Bao. Changes of PDGF-alpha and beta receptor gene expression in hypoxic rat pulmonary vessels, 1997, 19(6): 470-3.
    [26] Lu Q, Sun R, Yu M. Increased expression of platelet-derived growth factor beta receptor gene in hypoxic rat lungs[J]. Zhonghua Jie He He Hu Xi Za Zhi, 1995 Aug, 18(4): 207-8.
    [27] 夏春枝,邓仲端,李丽珠,等.内皮细胞脂质过氧化损伤与平滑肌细胞增殖的关系[J].中国动脉硬化杂志.1996,4(3):181-184.
    [28] 王宏伟,赵华月,刘绍春,等.API0134对氧自由基诱导内皮细胞表达c-sismRNA和血小板源生长因子B链的影响[J].中国动脉硬化杂志,1996,4(1):28-31.
    [29] Sundaresan M, Yu Z X, Ferrans V J, et al. Requirement for generation of H202 for platelet-derived growth factor signal transduction [J]. Science, 1995, 270: 296-299.
    [30] Ross R. Nature 1993, 362: 801-9.
    [31] Reidy MA. Thromb Haemost, 1993, 70: 172-6.
    [32] Meyrick B, Reid L. Clin Chest Med, 1983, 4: 199-217.
    [33] Dimmeler S, Assmus B, Hermann C, et al. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis [J]. Circ Res, 1998, 83(3): 334-341.
    [34] Kuchan M J and Frangos J A. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells [J]. Am J Physiol, 1993, 264(1 Pt 2): H150-H156.
    [35] Emily Wilson, Qing Mai, Krishnankutty Sudhir, et al. Weiss, and Harlan E. Ives. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF[J]. The journal of cell biology, 1993, 123(3): 741-747.
    [36] Yoshiyuki Tanabe, Maki Saito, Akiko Ueno, et al. Mechanical stretch augments PDGF receptor β expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells[J]. Molecular and Cellular Biochemistry, 2000, 215: 103-113, 2000.
    [37] Ma Y-H, Ling S, Ives HE: Mechanical strain increases PDGF-B and PDGF-β receptor expression in vascular smooth muscle cells[J]. Biochem. Biophys Res Commun, 1999, 265: 606-610.
    [38] Toda T, Tamamoto T, Sadi AM, et al. Expression of platelet-derived growth factor and c-myc in atherosclerotic lesions in cholesterol-fed chickens: immunohistochemical and in situ hybridization study[J]. Virchows Arch., 1994, 425(1): 55-61.
    [39] Li J, Poovey HG, Rodriguez JF, et al. Effect of platelet-derived growth factor on the development and persistence of asbestos-induced fibroproliferative lung disease[J]. J Environ Pathol Toxicol Oncol, 2004, 23(4): 253-66.
    [40] 王晓琴,苏 旭,刘瀚等.血小板源生长因子A受体结构域切除对肺血管平滑肌细胞增殖和c-sis[J].基因表达的影响.四川大学学报,2005,36(6):804 807.
    [41] Tatsuya Shimizu, Koh-ichiro Kinugawa, Atsushi Yao, et al. Toshiyuki Takahashi. Platelet-derived growth factor induces cellular growth in cultured chick ventricular myocytes[J]. Cardiovascular Research, 1999, 41: 641-653.
    [42] 王昌明.RG50864对血小板衍生生长因子诱导的肺动脉平滑肌细胞DNA含量及增殖细胞核抗原表达的影响[J].同济医科大学学报,1999,28(5):412.
    [43] 王昌明,曾锦荣,莫碧文,等.RG50864对PDGF诱导的肺动脉平滑肌细胞酪氨酸磷酸化蛋白表达的影响[J].华夏医学,2004,17(1):1-3.
    [44] 王昌明,张珍祥.槲皮素对肺动脉平滑肌细胞增殖及大鼠低氧性肺动脉高压的影响[J].中华物理医学与康复杂志,1999,21(2):103-105,
    [45] Hailer H, Maasch C, Lindschau C, et al. Intracellular targeting and protein kinase C in vascular smooth muscle cells: specific effects of different membrane-bound receptors[J]. Acta Physiol Scand, 1998, 164(4): 599-609.
    [46] Pukac L, Huangpu J, Karnovsky MJ. Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for st/mulation of vascular smooth muscle cell migration[J]. Exp Cell Res, 1998 1, 242(2): 548-60.
    [47] Kluwer Academic Publishers. Boston. Printed in U.S.A[J]. Cardiovascular Drugs and Therapy. 1999, 13: 159-168.
    [48] Guido JR Zamana, Paul MF Vinka, Antoon A Van den Doelena, et al. Tyrosine kinase activity of purified recombinant cytoplasmic domain of platelet-derived growth factor-receptor(-PDGFR) and discovery of a novel inhibitor of receptor tyrosine kinases[J]. Biochemical Pharmacology, 1999, 57(1): 57-64
    [49] 王昌明,张珍祥.酪氨酸蛋白激酶抑制剂对PDGF诱导的肺血管平滑肌细胞增殖的影响[J].中国病理生理杂志,1999,15(3):251-255.
    [50] Inui H, Kitami Y, Tani M, et al. Differences in signal transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in vascular smooth muscle cells. PDGF-BB is a potent mitogen, but PDGF-AA promotes only protein synthesis without activation of DNA synthesis[J]. Erratum in: J Biol Chem, 1995, 28, 270(17): 10358.
    [51] Pukac LA, Carter JE, Ottlinger ME, et al. Mechanisms of inhibition by heparin of PDGF stimulated MAP kinase activation in vascular smooth muscle ceils[J]. Cell Physiol, 1997, 172(1): 69-78.
    [52] Pukac L, Huangpu J, Kamovsky M J. Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration[J]. Exp Cell Res, 1998, 1, 242(2): 548-60.
    [53] 徐永健,Kurt R.Stenmark,Edward C.Dempsey.蛋白激酶C信号通道对牛肺动脉平滑肌细胞增生的调控作用[J].同济医科大学学报,1998,27(2):124-134.
    [54] Dempsey E C, Frid M G, Aldashev AA, et al. Heterogeneity in the proliferative response of bovine pulmonary artery smooth muscle cells to mitogens and hypoxia: importance of protein kinase C[J]. Can J Physiol Pharmacol, 1997,75(7):936-44.
    [55] Kataoka S, Alam R, Dash P K, et al. Inhibition of PDGF-mediated proliferation of vascular smooth muscle cells by calcium antagonists[J]. Stroke, 1997,28(2):364-9.
    [56] Alam R, Kataoka S, Alam S, et al. Inhibition of vascular smooth muscle cell proliferation by the calcium antagonist clentiazem: role of protein kinase [C]. Atherosclerosis, 1996 Oct 25,126(2):207-19.
    [57] Liou SF, Yeh JL, Liang JC, et al. Inhibi tion of mitogen-mediated proliferation of rat vascular smooth muscle cells by labedipinedilol-A through PKC and ERK 1/2 pathway[J]. J Cardiovasc Pharmacol, 2004;44(5):539-51.
    [58] Kataoka S, Alam R, Dash PK, et al. Inhibition of PDGF-mediated proliferation of vascular smooth muscle cells by calcium antagonists[J]. Stroke, 1997b,28(2):364-9.
    [59] Alam R, Kataoka S, Alam S, et al. Inhibition of vascular smooth muscle cell proliferation by the calcium antagonist clentiazem: role of protein kinase [C]. Atherosclerosis, 1996 ,25,126(2):207-19.
    [60] Sharma RV, Bhalla RC. PDGF-induced mitogenic signaling is not mediated through protein kinase C and c-fos pathway in VSM cells[J]. Am J Physiol, 1993,264(1 Pt l):C71-9.
    [61] Rothman A ,Wolner B ,Button D , et al . Immediate2early gene expression in response to hypertrophic and proliferative stimuli in pulmonary arterial smooth muscle cells[J]. Biol Chem,1994 ,269 :6399 - 6404.
    [1] Harry MELLOR and Peter J. PARKER. REVIEW ARTICLE-The extended protein kinase C superfamily[J]. Biochem J, 1998, 332: 281-292.
    [2] Lee Y H, Kim I, Laporte R, et al. Isozyme-specific inhibitors of protein kinase C translocation: effects on contractility of single permeabilized vascular muscle cells of the ferret[J]. Physiol, 1999, 517(Pt 3): 709-720.
    [3] Dallas A, & Khalil R A. Ca~(2+) antagonist-insensitive coronary smooth muscle contraction involves activation of epsilon-protein kinase C-dependent pathway[J]. Am J Physiol Cell Physiol, 2003, 285: C1454-C1463.
    [4] Weissmann N, Voswinckel R, Hardebusch T, et al. Evidence for a role of protein ldnase C in hypoxic pulmonary vasoconstriction [J]. Am J Physiol, 1999, 276: L90-L95.
    [5] Littler C M, Morris K G Jr, Faga K A, et al. Protein kinase C-e-null mice have decreased hypoxic pulmonary vasoconstriction [J]. Am J Physiol, 2003, 284: H1321-H1331.
    [6] 杨慧,徐永健,张珍祥.L-精氨酸对低氧性肺动脉高压大鼠离体肺动脉环蛋白激酶C通道的影响[J].中国病理生理杂志,2001,17(2):108-111.
    [7] 刘琰,徐永健,张珍祥.蛋白激酶C对大鼠离体肺动脉环张力及其反应性的调节作用[J].中国应用生理学杂志,1999,15(3):238-241.
    [8] Jin N, Packer C S, & Rhoades R A. Pulmonary arterial hypoxic contraction: signal transduction[J]. Am J Physiol, 1992, 263: L73-L78.
    [9] Zhao Y, Rhoades R A., & Packer C S. Hypoxia-induced pulmonary arterial contraction appears to be dependent on myosin light chain phosphorylation[J]. Am J Physiol,1996,271: L768- L774.
    [10] Robertson T P, Aaronson P I, & Ward J P T. Hypoxic vasoconstriction and intracellular Ca~(2+) in pulmonary arteries: evidence for PKC-independent Ca~(2+) sensitization[J]. Am J Physiol , 1995, 268:H301- H307.
    [11] Kamm K E and Stull J. Regulation of smooth muscle contractile elements by second messengers [J]. Annu Rev Physiol, 1989, 51: 299.
    [12] Rasmussen H, Forder J, Kojima I, and Scriabine A. TPA-induced contraction of isolated rabbit vascular smooth muscle [J]. Biochem Biophys Res Commun, 1984,122(2): 776-784.
    [13] Ruzycky A L and Morgan K G Involvement of the protein kinase C system in calcium-force relationships in ferret aorta [J]. Br J Pharmacol, 1989, 97 (2): 391-400.
    [14] Consigny P M. Phorbol amplification of serotonin-induced arterial contractions is endothelium dependent [J]. Am J Physiol, 1989,257: H1174-H1179.
    [15] Wei X Y and Triggle D J. Ca~(2+) channel ligand sensitive responses to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate in vascular smooth muscle [J]. Can J Physiol Pharmacol, 1986,64: 1489-1496.
    [16] Barman S A. Effect of protein kinase C inhibition on hypoxic pulmonary vasoconstriction [J]. Am J Physiol, 2001, 280: L888-L895.
    [17] Shimoda L A, Sylvester J T, and Sham J S K, Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1 [J]. Am J Physiol, 1998,274 (5): L842-L853.
    [18] Barman S A. Potassium channels modulate canine pulmonary vasoreactivity to protein kinase C activation [J]. Am J Physiol, 1999, 280 (5): L888-L895.
    [19] Shimoda L A, Norins N A, and Madden J A. Flow-induced responses in cat isolated pulmonary arteries [J]. J Appl Physiol, 1997,83:1617-1622.
    [20] Cogolludo A, Moreno L, Bosca L, et al. Thromboxane A2-induced inhibition of voltage-gated K+ channels and pulmonary vasoconstriction: role of protein kinase C? [J]. Circ Res, 2003, 93: 656.
    [21] Geng Y, Wu Q, and Hansson G K. Protein kinase C activation inibits cytokine-induced nitric oxide synthesis in vascular smooth muscle cells [J]. Biochim Biophys Acta, 1994,1223 (1): 125-132.
    [22] Trukahara H, Gordienko D V, and Goligorsky M S. Continuous monitoring of nitric oxide release from human umbilical vein endothelia cells [J]. Biochem Biophys Res Commun, 1993, 193 (2): 722-729.
    [23] Vender R L. Chronic pulmonary hypertension: cell biology to pathophysiology [J]. Chest, 1994, 106: 236-243.
    [24] Frid M G, Dempsey E C, Durmowicz A G, et al. Smooth muscle cell heterogeneity in pulmonary and systemic vessels: importance in vascular disease [J]. Anerioscler Thromb Vase Biol, 1997, 17: 1203-1209.
    [25] Dempsey E C, Frid M G, Aldashew A A, et al. Heterogeneity in the proliferative response of bovine pulmonary artery smooth muscle cells to mitogens and hypoxia: importance of protein kinase C [J]. Can J Physiol Pharmacol, 1997, 75: 936-944.
    [26] Xu Y, Stcnmark KR, DasM, ct al. Pulmonary artery smooth muscle cells from chronically hypoxic neonatal calves retain fetal2like and acquire new growth properties[J]. AmJ Physiol, 1997, 273: L234-L245.
    [27] Pukac LA, Carter JE, Ottlinger ME, et al. Mechanisms of inhibition by hcparin of PDGF stimulated MAP kinasc activation in vascular smooth muscle cells. J Cell Physiol, 1997, 172(1): 69-78.
    [28] Pukac L, Huangpu J, Karnovsky MJ. Platelet-derivcd growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration[J]. Exp Cell Res, 1998 1, 242(2): 548-60.
    [29] Sasaguri T, Kosaka C, Hirata M, et al. Exp. Cell Res, 1993, 208(1): 311-320.
    [30] Huang C L, and Ives H E. Nature, 1987, 329: 849-850.
    [31] Kenji Yano, Jeanette R Bauchat, Marya B Liimatta, et al. Down-regulation of protein kinase C inhibits insulin-like growth factor I-Induced vascular smooth muscle cell proliferation, migration, and genc expression[J]. Endocrinology, 1999, 140: 4622-4632.
    [32] Dempscy E C, McMurtry I F, and O'Brien R F. Protein kinase C activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia [J]. Am J Physiol, 1991, 260: L136-L145.
    [33 Xu Y, Stcnmark K R, Das M, et al. Pulmonary artery smooth muscle cells from chronically hypoxic neonatal calves retain fetal-like and acquire new growth properties [J]. Am J Physiol, 1997, 273: L234-L245.
    [34] 于天正,马传桃.低氧对培养的不同内径的肺动脉平滑肌细胞增殖的影响[J].中国应用生理学杂志,2001,17(1):58-60.
    [35] 宋为,蔡英年,邓希贤,等.缺氧对肺动脉平滑肌增殖的影响及其传递途径[J].基础医学与临床,1994,14(5):35-39.
    [36] 丁毅鹏,徐永健,张珍祥,等.低氧对肺动脉平滑肌和内皮细胞蛋白激酶Cα xmRNA表达的影响[J].中华病理学杂志,2001,30(3):202-206.
    [37] 钟声,徐永建,张珍祥.慢性缺氧大鼠肺动脉蛋白激酶C表达变化的免疫组织化学研究[J].同济医科大学学报,1999,28(6):475-477.
    [38] Zhang J, Jin N, Liu Y, et al. Hydrogen peroxide stimulate extracellular signal regulated protein kinases in pulmonary arterial smooth muscle cells [J]. AmJ Respir Cell Mol Biol, 1998, 19: 324-332.
    [39] Traub O ,Monia BP ,Dean NM, et al. Pkc-eis required for mechano-sensitive activation of ERK1/ 2 in endothelial cells[J]. J Biol Chem,1997 , 272 :31251- 31257.
    [40] Li C. Mechanical stress-initiated signal transduction in vascular smooth muscle cells[J] . Cell Signal ,2000,12:435-445.
    [41] Suzuki E, Nagata D, Kakoki M, et al . Molecular mechanisms of endothelin-1 induced cell cycle progression :involvement of extracellular signal regulated kinase,protein kinase c ,and phosphatidylinositol 3-kinase at distinct points[J ]. Circ Res ,1999,84 :611- 619.
    [42] Plevin R, Kellock NA, WakclamMJ, et al. Regulation by hypoxia of endothelin-1-stimulated phospholipase D activity in sheep pulmonary artery cultured smooth muscle cells[J] .Br J Pharmacol ,1994,112 :311- 315.
    [43] Bialecki RA, Fisher CS, Murdoch WW, et al . ZD1611 , an orally active endothelin-A receptor antagonist, prevents chronic hypoxia-induced pulmonary hypertension in the rat [J ]. Pulm Pharmacol Ther ,1998 ,11:159.
    [44] Damron DS. Intracellular translocation of pkc isoforms in canine pulmonary artery smooth muscle cells by ANG II [J ]. AmJ Physiol ,1998 ,274 :L278 -L288.
    [45] Whelan RD, Parker PJ. Loss of protein kinase C function induces an apoptotic response[J]. Oncogene, 1998,16:1939-44.
    [46] Leirdal M, Sioud M. Ribozyme inhibition of the protein kinase Cα triggers apoptosis in glioma cells[J]. Br J Cancer, 1999,80:1558-64.
    [47] Matassa AA, Kalkofen RL, Carpenter L, et al. Inhibition of PKC α induces a PKCd-dependent apoptotic program in salivary epithelial cells[J]. Cell Death Differ, 2003,10:269-77.
    [48] Ruvolo PP, Deng X, Carr BK, et al. A functional role for mitochondrial protein kinase C α in Bcl2 phosphorylation and suppression of apoptosis[J]. J Biol Chem, 1998,273:25436-42.
    [49] Jiffar T, Kurinna S, Suck G, et al. PKCα mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation[J]. Leukemia, 2004,18:505-12.
    [50] Blackburn RV, Galoforo SS, Berns CM, et al. Differential induction of cell death in human glioma cell lines by sodium nitroprusside[J]. Cancer, 1998,82:1137-45.
    [51] Meyrick B and Reid L. Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall [J]. Am J Pathol, 1979, 96: 51-70.
    [52] Morin F C and Stenmark K R. Persistent pulmonary hypertension of the newborn [J]. Am J Respir Crit Care Med, 1995,151: 2010-2032.
    [53] Das M, Dempsey E C, Bouchey D, et al. Chronic hypoxia induces exaggerated growth responses in pulmonary artery adventitial fibroblasts [J]. Am J Physiol, 2000, 22: 15-25.
    [54] Poiani G J, Kemnitzer J E, Fox J D, et al. Polymeric carrier of proline analogue with antifibrotic effect in pulmonary vascular remodeling [J]. Am J Respir Crit Care Med, 1997, 155(4): 1384-1390.
    [55] Tozzi C A, Christiansen D L, Poiani G J, et al. Excess collagen in hypertensive pulmonary arteries decreases vascular distensibility [J]. Am J Respir Crit Care Med, 1994, 149: 1317-1326.
    [56] Park R W, Kim I S, and Jo J S. Bisindolylmaleimide inhibits the PMA induced down regulation of collagen synthesis in fibroblasts [J]. Biochem Mol Biol Int, 1996, 40: 101-109.
    [57] 周浩,陈少贤,王良兴,等.蛋白激酶C对慢性低氧大鼠肺动脉胶原表达的调控及灯盏花素的干预作用[J].中华结核和呼吸杂志,2002,25(6):347—351.
    [58] Norman J T, Clark I M and Garcia P L. Hypoxia promotes fibrogenesis in human renal fibroblasts [J]. Kidney hat, 2000, 58: 2351-2366.
    [59] Naito S, Shimizu S, Maeda S, et al. Ets-1 is an early gene activated by ET-1 and PDGF-BB in vascular smooth muscle ceils [J]. Am J Physiol, 1998, 274: 472-480.
    [60] Koya D and King G L. Protein kinase C activation and the development of diabetic complications[J]. Diabetes, 1998, 47: 859-866.
    [1] B Enkvetchakul, W Bottje, N Anthony, et al. Compromised antioxidant status associated with ascites in broilers[J]. Poultry Science, 1993, 72: 2272-2280.
    [2] Bottje W B, Wideman R F. Potential role of free radicals in the pathogenesis of Pulmonary hypertension syndrome[J]. Poultry and avian Biology Reviews, 1995, 6: 221-231.
    [3] Slater T F. Free radical mechanisms in tissue injury[J]. Biochem., 1984, 222(1): 1-15.
    [4] Halli WeLl B. Chloroplast metabolism: the structure and function of chloroplast in green leaf cells[M]. Oxford: Clarendon Press, 1984. 180-202.
    [5] 张利民.多脂鱼抗氧化性能研究[J].食品科学,1993,(8):9-12.
    [6] Peter J M and Block E R. The effect to oxidant gases on membrane fluidity and function in pulmonary endothelia cell [J]. Free Radical Biol Med, 1998,4:121-126.
    [7] Chen Ji-wu , Zhu Zhen-qin , et al. A novel chemiluminescence system for detecting and analyzing oxidative damaged RNA by Hydroxyl radical and its molecular mechanism[J]. Chinese Journal of Luminescence , 2002 ,23(1).
    [8] Walter G Bottje and Robert F Wideman Jr. Potential Role of free radicals in the pathogenisis of pulmonary hypertension syndrome[J]. Poultry and Avian Reviews,1995,6(3):211-231.
    [9] Tan DX, Chen L D, Poeggeler B, et al. Melatonin : a potent,endogenous hydroxyl radical scavenger[J]. Endocrine J,1993,l:57-60.
    [10] Walter Bottje, Boonprom Enkvetchakul,and Robert Moore. Effect of α -Tocopherol on antioxidants,lipid peroxidation.and the incidence of pulmonary hypertension syndrome (Ascites) in broilers[J]. Poultry science,1995,74:1356-1369.
    [11] Steiner D R, Gonzalez N C, Wood JG Interaction between reactive oxygen species and nitric oxide in the microvascular response to systemic hypoxia [J]. J Appl Physiol, 2002,93 (4): 1411-1418.
    [12] Maxwell M H, GW Robertson, and S Spence. Studies on an ascitic syndrome in young broilers. 1. Haematology and pathology[J]. Avian Pathol, 1986,15: 511-524.
    [13] Enkvetchakul B, Antioxidants, lipid peroxides, and pathophysiology of male broiler chickens with ascites[J]. Fayetteville,1994.
    [14] Bottje W, B Enkvetchakul, and Robert Moore. Effect of α -tocopherol on antioxidants, lipid peroxidation, and the incidence of pulmonary hypertension syndrome (ascites) in broilers[J]. Poultry Sci,1995,74:1356-1369.
    [15] Crowther JE , Kutala VK, Kuppusamy P , et al . Pulmonary surfactant protein A inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity[J] . J Immunol, 2004,172 (11) : 6866 - 68741.
    [16] Gao XP , Standiford TJ , Rahman A , et al . Role of NADPH oxidase in the mechanismof lung neutrophil sequestration and microvessel injury induced by Gram - negative sepsis : studies in p47phox -/ - and gp91phox - / - mice[J ]. J Immunol ,2002 ,168 (8) :3974-39821.
    [17] Bankers - Fulbright JL , Kita H , Gleich GJ , et al . Regulation of human eosinophil NADPH oxidase activity : a central roll for PKCd[J ]. J Cell Physiol ,2001,189(3) :306 -315.
    [18] Koay MA, Christman JW, Segal BH , et al. Impaired pulmonary NF - ?B activation in response to lipopolysaccharide in NADPH oxidase - deficient mice[J ]. Infect Immun ,2001,69 (10): 5991- 5996.
    [19] Abu B. Al - Mehdi, Guochang Zhao , Chandra Dodia , et al . Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K~+ [J ] . Circ Res ,1998 ,83 (7): 730- 737.
    [20] AB Fisher, AB Al - Mehdi, V Muzykantov. Activation of endothelial NADPH oxidase as the source of a reactive oxygen species in lung ischemia[J ]. Chest ,1999 ,116 :25- 26.
    [21] Maddaiah VT, Glutathione. correlates with lipid peroxidation in liver mitochondria of triiodothyronine-injected hypophysectomized rats[J]. FASEB J, 1990,4:1513-1518.
    [22] Chen IYD and HochFL. Thyroid hormone control over biomembranes: Rat liver mitochondrial inner membrane. Arch. Biochem[J]. Biophys.1977,181:470-483.
    [23] Buys N, BuyseJ,and Decuypere E.Ascites syndrome mortality and growth in two commercial broiler stains subjected to different early temperature programs[J]. Poultry Science,1993,72(1):135.
    [24] Hassanzadeh Ladmakhi.Nadine Buys,Erna Dewil, et al.The prophylactic effect of vitamin C supplementation on broiler ascites incidence and plasma thyroid hormone concentration[J]. Avian pathology,1997,26,33-44.
    [25] M Hassanzadeh,M H Bozorgmerifard,A R Akbari, et al. Effect of intermittent lighting schedules during the natural scotoperiod on T(3)-induced ascites in broiler chickens[J]. Avian Pathology, 2000, 29(5):433-440.
    [26] R M Touyz, E LSchiffrin. Reactive oxygen species in vascular biology:implications in hypertension[J]. Histochem Cell Biol, 2004,122:339-352.
    [27] Griendling K K, Minieri C A, Ollerenshaw J D, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells [J].Circ Res, 1994, 74:1141-1148.
    [28] Weir E K, Eaton J W, Chester E. Redox status and pulmonary vascular reactivity [J]. Chest, 1985, 88:249S-252S.
    [29] Suzuki Y, Tanigaki T, Heimer D, et al. Polyethylene glycol-conjugated superoxide dismutase attenuates septic lung injury in guinea pigs [J]. Am Rev Respir Dis, 1992,145(2 Pt 1):388-393.
    [30] Archer S L, Peterson D, Nelson D P, et al. Oxygen radicals and antioxidant enzymes alter pulmonary vascular reactivity in the rat lung [J]. J Appl Physiol, 1989, 66(1): 102-111.
    [31] Mclntyre M, Bohr D F, Dominiczak A F. Endothelial functional hypertension: therole of superoxide anion[J]. Hypertens,1999,34:539-545.
    [32] Katusic Z S, Schugel J, Cosention F, et al. Endothelium-dependent contraction to oxygen-derived free radicals in the canine basilar artery [J]. Am J Physiology, 1993, 264(33): H859-H864.
    [33] Tate R M, Vanbenthuysen K M, Shasby D M, et al. Oxygen-radical-mediated permeability edema and vasoconstriction in isolated perfused rabbit lungs [J]. Am Rev Respir Dis, 1982,126(5):802-806.
    [34] Barnard M L, Matalon S. Mechanisms of extracellular reactive oxygen species injury to the pulmonary microvasculature [J]. J Appl Physiol, 1992,72(5):1724 - 1729.
    [35] Burghuber O C, Strife R J, Zirrolli J, et al. Leukotriene inhibitors attenuate rat lung injury induced by hydrogen peroxide [J]. Am Rev Respir Dis, 1985,131(5):778-785.
    [36] 杨向红,陈铁镇,王跃中.脂质过氧化对血管内皮细胞促增殖活性的影响[J].中国动脉硬化杂志,1998,6(3):224-227.
    [37] 夏春枝,邓仲端,李丽珠,等.内皮细胞脂质过氧化损伤与平滑肌细胞增殖的关系[J].中国动脉硬化杂志,1996,4(3):181-184.
    [38] Dimmeler S, Zeiher A M. Reactive oxygen species and vascula cell apoptosis in response to angiotensin Ⅱ and pro-atherosclerotic factors [J]. Regul Pept, 2000, 90: 19-25.
    [39] Li A E, Ito H, Rovira I I, et al. A role for reactive oxygen species in endothelial cell anoikis [J]. Circ Res, 1999, 85: 304-310.
    [40] Marui N, Offermann M K, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells [J]. J Clin Invest, 1993, 92: 1866-1874.
    [41] Peacock A J, Pickett C, Morris K, et al. Spontaneous hypoxaemia and right ventricular hypertrophy in fast growing broiler chickens reared at sea level [J]. Comp Biochem Physiol, 1990, 97A: 537-541.
    [42] Maulik N, Das D K. Redox signaling in vascular angiogenesis [J]. Free Radio Biol Meal ,2002, 33: 1047-1060
    [43] Ushio-Fukai M, Tang Y, Fukai T, et al. Novel role of gp91(phox)-containing NAD (P) H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis [J]. Circ Res, 2002, 91: 1160-1167.
    [44] Cowan K N, Jones P L, and Rabinovitch M. Regression of hypertrophied rat pulmonary arteries in organ culture is associated with suppression of proteolytic activity, inhibition of tenascin-C, and smooth muscle cell apoptosis [J]. Cite Res, 1999, 84: 1223-1233.
    [45] Durmowicz A G and Stenmark K R. Mechanisms of structure remodeling in chronic pulmonary hypertension [J]. Pediatr Rev (online), 1999, 20: e91-e102.
    [46] Pollman M J, Yamada T, Horiuchi M, et al. Vasoactive substances regulate vascular smooth muscle cell apoptosis: countervailing influences of nitric oxide and angiotensin Ⅱ[J]. Cite Res, 1996, 79: 748-756.
    [47] Rabinovitch M. Elastase and the pathobiology of unexplained pulmonary hypertension [J]. Chest, 1998, 114(3 Suppl): 213S-224S.
    [48] Brown M R, Miller F J, Li W G, et al. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells [J]. Cite Res, 1999, 85: 524-533.
    [49] Li P F, Dietz R, von Harsdorf R. Reactive oxygen species induce apoptosis of vascular smooth muscle cell [J]. FEBS Lett, 1997, 404: 249-252.
    [50] Stephen Wedgwood and Stephen M. Black. Combined superoxide dismutase/catalase mimeties alter fetal pulmonary arterial smooth muscle cell growth. Antioxidants & Redox Signaling. 2004, 6(1): 191-197.
    [51] J Q Pan, X Tan, J C Li, et al. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodeling and ascites morbidity in broilers under normal and cold temperature. British Poultry Science, 2005, 46(3): 374-381.
    [52] 高岩,陈铁镇,杨向红,等.内皮细胞脂质过氧化损伤对平滑肌细胞增殖的影响[J].中华病理学杂志,1997,26(1):42.
    [53] Brennan LA, Steinhorn RH, Wedgwood S, et al. Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role of NADPH oxidase[J]. Cite Res, 2003, 92(6): 683-6911
    [54] Daniel Boscoboinik, Adam Szewczyk and Angelo Azzi. alpha; -Tocopherol (vitamin E) regulates vascular smooth muscle cell proliferation and protein kinase C activity. Available online 28 October 2004.
    [55] Gurtner G H, AdkinsonN F, Scinto A M, et al. The role of arachidonate mediators in peroxide-induced lung injury. Am. Rev. Respir. Dis, 1987, 136, 480.
    [56] Atzori L, Olafsdottir K, Corriga A M, et al. Thiol modification in H2O_2 and thromboxane induced vaso-and bronchoeonstriction in rat perfused lung[J]. J Appl Physiol, 1991, 71: 1309.
    [57] McNamara D B, Kerstein M D, Landry A Z, et al. Coronary arterial prostacyclin synthetase and prostaglandin E2 isomerase activities, In Prostaglandins, Leukotrienes and lipoxins, ed Bailey, J. M. Plenum Press, New York, 1985, p57.
    [58] Buckley B J, Kent R S and Whorton A R.. Regulation of endothelial cell prostaglandin synthesis by glutathione. J. Biol Chem, 1991, 266: 16659.
    [59] Zvonimir S Katusic, Joachim Schugel, Francesco Cosentino, et al. Vanhoutte Endothelilum-dependent contractions to oxygen-derived free radicals in the canine basilar artery[J]. The Am J Physiol, 1993, 264: H859-H864.
    [60] Jr Wideman R F, Ismail M, Kirby Y K, et al. Furosemide reduces the incidence of pulmonary hypertension syndrome (ascites) in broilers exposed to cool environmental temperatures[J]. Poultry Science, 1995, 74(2): 314-322.
    [61] Wideman R F , Kirby Y K, Ismail M, et al. Supplemental L-arginine attenuates pulmonary hypertension syndrome (ascites) in broiler[J]. Poultry Science, 1995, 74: 323-330.
    [62] Dawn R. S. Steiner, Norberto C. Gonzalez, and John G. Wood. Interaction between reactive oxygen species and nitric oxide in the microvascular response to systemic hypoxia[J]. Appl Physiol, 2002, 93: 1411-1418.
    [63] Sowers JR. Hypertension, angiotensin II, and oxidative stress[J]. J New Engl J Med,2002,346(25): 1954-1962.
    [64] Laursen JB,Rajagopalen S, Garm Z,et, al. Role of superoxide in angiotensin II—induced but catecholamlne-induced hypertension[J]. Circulation.1997,95(3): 588-593.
    [65]RaoGN,BerkBC.CircRes,1992;70:593-599.
    [66] J Lum H, Roebuck K A. Oxidant stress and endothelial cell dysfunction[J]. Am J Physiol Cell Physiol, 2001, 280(4): C719-C741.
    [67] Rajagopalan S, Meng X P, Ramasamy S, et al. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability[J]. J Clin Invest, 1996, 98: 2572-2579.
    [68] Grote K, Flach I, Luchtefeld M, et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species[J].Circ Res, 2003, 92(11): e80-e86.
    [69] Agudelo L G Possible causes of avian oedema[J]. Poultry International, 1983,22:8-14.
    [70] Maxwell M H, Robertson GW, Spence . Studies on ascitic syndrome in young broilers: 1. Haematology and pathology[J]. Avian Pathology, 1986,15:511-524.
    [71] Maxwell M H, Spence S, Robertson G W, et al. Haematological and morphological responses of broiler chicks to hypoxia[J]. Avian Pathology, 1990,19:23-40.
    [72] Halliwell B, Gutteridge J M. Role of free radicals and catalytic metal ions in human disease: an overview [J]. Methods Enzymol, 1990,186:1-85.
    [1] M Hassanzadeh, M H Bozorgmerifard, A R Akbari, et al. Effect of intermittent lighting schedules during the natural scotoperiod on T(3)-induced ascites in broiler chickens[J]. Avian Pathology, 2000, 29: 433-440.
    [2] Buys N, Buyse J, Hassanzadeh-Ladmakhi M, et al. Intermittent lighting reduces the incidence of ascites in broilers: An interaction with protein content of feed on performance and the endocrine system[J]. Poultry Science, 1998, 77(1): 54-61.
    [3] 李锦春,王小龙,孙卫东,等.肉鸡肺动脉高压综合征自然病例肺细小动脉病理改变的图象分析[J].中国兽医学报,1999,19:479-482.
    [4] 李锦春,王小龙,孙卫东,等.高钠所致肺动脉高压肉鸡肺细小动脉病理改变的图象分析[J].畜牧兽医学报,2000,31:441-447.
    [5] Xiang R P, Sun W D, Wang J Y, et al. Effect of vitamin C on pulmonary hypertension and muscularisation of pulmonary arterioles in broilers[J]. British Poultry Science, 2002, 43: 705-712.
    [6] 李悦梅.高血压血管重构的研究进展[J].中国动脉硬化杂志,2003,11(2):171-174.
    [7] 翟丽华.高血压血管重塑及药物干预后的逆向重塑[J].高血压杂志,2001,9(1):76-78.
    [8] 许柳青.P38MAPK与血管重构[J].高血压杂志,2005,13(5):262-265.
    [9] Richard R J, Mcmillan I, Quinton M. The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens[J]. Avian Pathology, 1989, 18: 675-684.
    [10] Shlosberg A, Zadikov I, Bendheim U, et al. The effect of poor ventilation, low temperatures, type of feed and sex of birds on the development of ascites in broilers[J]. Avian Pathology, 1992, 21: 369-382.
    [11] Richard R J. Ascites in poultry[J]. Avian pathology, 1993, 22: 419-454.
    [12] Enkvetchakul B, Beasley J, Bottje W. Pulmonary arteriole hypertrophy in broilers with pulmonary hypertension syndrome (ascites) [J]. Poultry Science, 1995, 74: 1677-1682.
    [13] Wilson E, Mai Q, Sudhir K, et al. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGE [J] Journal Cell Biology, 1993, 123: 741-747.
    [14] Bottje W G, Wideman R F. Potential role of free radical in the pathogenesis of pulmonary hypertension syndrome[J]. Poultry and Avian Biology Review, 1995, 6: 211-231.
    [15] 钱建中,曹斌.人工光照方式对鸡免疫系统的影响[J].禽业科技,1997,13(5):19.
    [16] Kliger C A, Gehad A E, Hulet R M, et al. Effects of photoperiod and melatonin on lymphocyte activities in male broiler chickens[J]. Poultry Science, 2000, 79(1): 18-25.
    [17] 刘志民.松果腺激素及其受体研究现状及展望[J].解放军医学杂志,2003,28:212-213.
    [1] Maxwell M H and Robertson O W. World broiler ascites survey 1996 [J]. Poultry International, 1997, 36(4): 16-30.
    [2] Bottje W B, Wideman R F. Potential role of free radicals in the pathogenesis of Pulmonary hypertension syndrome[J]. Poultry and avian Biology Reviews, 1995, 6: 221-231.
    [3] 隋辉.氧自由基与高血压关系研究进展[J].高血压杂志,2002,10(5):414-417.
    [4] Richard J. Julian, I. Mcmillan and M. Ouinton. The effect of cold and dietary energy on fight ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens[J]. Avian Pathology, 1989, 18: 675-684.
    [5] 向瑞平,王小龙,王金勇,等.肉鸡肺动脉高压综合征自然病例肺微细动脉肌型化的观察[J].南京农业大学学报,2001,24(1):85-88.
    [6] Akbari A R, et al. Effect of intermittent lighting schedules during the natural scotoperiod on T(3)-induced ascites in broiler chickens[J]. Avian Pathol, 2000, 29: 433-439.
    [1] Hassanzadeh M, Fard M H, Buyse J, et al. Beneficial effects of alternative lighting schedules on the incidence of ascites and on metabolic parameters of broiler chickens[J]. Acta Vet Hung, 2003, 51(4): 513-520.
    [7] Sato T, Tezuka K, Shibuya H, et al. Cold-induced ascites in broiler chickens and its improvement by temperature-controlled rearing[J]. Avian Dis, 2002, 46(4): 989-996.
    [8] 陈敏.褪黑激素与自由基[J].国外医学儿科学分册,1999,26(4):204-207.
    [9] 钱建中,曹斌.人工光照方式对鸡免疫系统的影响[J].禽业科技,1997,13(5):19.
    [10] Matsui H, Shimosawa T, Itakura K, et al. Adrenomedullin can protect against pulmonary vascular remodelling induced by hypoxia[J]. Circulation, 2004, 109(18): 2246-2251
    [11] 王关嵩.血小板源生长因子及其对血管平滑肌细胞作用的研究进展[J].国外医学临床生物化学与检验学分册,1997,18(4):149-151.
    [1] 贾汝敏,王润莲,韩玉柱.间歇光照对肉鸡腹水征及生产性能的影响[J].中国家禽,1999,21(7):12-13.
    [2] Buys N, Buysc J, Hassanzadeh-Ladmakhi M, et al. Intermittent lighting reduccs the incidence of ascites in broilers: an interaction with protein content of feed on performance and the endocrine system[J]. Poult Sci, 1998, 77(1): 54-61.
    [3] M Hassanzadeh, M H Bozorgrncrifard, A R Akbari, ct al. Effect of intermittent lighting schedules during the natural scotopcriod on T(3)-induced ascites in broiler chickens[J]. Avian Pathology, 2000, 29(5): 433-440.
    [4] Hassanzadch M, Fard M H, Buyse J, et al. Beneficial effects of alternative lighting schedules on the incidence of ascitcs and on metabolic parameters of broiler chickens[I]. Acta Vet Hung, 2003, 51(4): 513-520.
    [5] Loft BD, Branton SL, May JD. The effect of photoperiod and nutrition on ascites incidence in broilers[J]. Avian Dis, 1996, 40(4): 788-91.
    [6] Xiang R P, Sun W D, Zhang K C, et al. Sodium chloride-induced acute and chronic pulmonary hypertension syndrome in broiler chickens[J]. Poult Sci, 2004, 83(5): 732-736.
    [7] Enkvctchakul B, Beasley J, and Bottje W. Pulmonary arteriole hypertrophy in broilers with pulmonary hypertension syndrome (ascitcs) [J]. Poultry Science, 1995, 74: 1676-1682.
    [8] 李锦春,王小龙,孙卫东,等.肉鸡肺动脉高压综合征自然病例肺细小动脉病理改变的图像分析[J].中国兽医学报,1999,19(5):479-482.
    [9] 李锦春,王小龙,孙卫东,等.高钠所致肺动脉高压肉鸡肺细小动脉病理改变的图象分析[J].畜牧兽医学报,2000,31(5):441-447.
    [10] X. Tan, Y J Liu, J C Li, et al. Activation of PKCα and Pulmonary Vascular Remodeling in Broilers[J]. Research in Veterinary Science, 2005
    [11] Richard J. Julian, I. Mcmillan and M. Quinton. The effect of cold and dietary energy on fight ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens[J]. Avian Pathology, 1989, 18: 675-684.
    [12] Dempsey E C, McMurtry I F, and O'Brien R F. Protein kinase C activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia [J]. Am J Physiol, 1991, 260: L136-L145.
    [13] Xu Y, Stenmark K R, Das M, et al. Pulmonary artery smooth muscle cells from chronically hypoxic neonatal calves retain fetal-like and acquire new growth properties [J]. Am J Physiol, 1997, 273: L234-L245.
    [14] 钟声,徐永建,张珍祥.慢性缺氧大鼠肺动脉蛋白激酶C表达变化的免疫组织化学研究[J].同济医科大学学报,1999,28(6):475-477.
    [15] Peacock A J, Pickett C, Morris K, et al. The relationship between rapid growth and pulmonary hemodynamics in the fast-growing broiler chickens [J]. American Review of Respiratory Disease, 1989, 133: 1524-1530.
    [16] Julian R J, McMillan I, and Qiunton M. The effect of cold and dietary energy on fight ventrieular hypertrophy, right ventricular failure and ascites in meat-type chickens [J]. Avian Patho, 1989, 18: 675-684.
    [17] Brown M R, Miller F J, Li W G, et al. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells [J]. Circ Res, 1999, 85: 524-533.
    [18] Stephen Wedgwood and Stephen M. Black. Combined superoxide dismutase/catalase mimetics alter fetal pulmonary arterial smooth muscle cell growth[J]. Antioxidants & Redox Signaling, 2004, 6(1): 191-197.
    [19] J Q Pan, X Tan, J C Li, et al. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodeling and ascites morbidity in broilers under normal and cold temperature[J]. British Poultry Science,2005,46(3):374-381.
    [20] Dimmeler S,Zeiher A M. Reactive oxygen species and vascula cell apoptosis in response to angiotensin II and pro-atherosclerotic factors [J]. Regul Pept, 2000,90:19-25.
    [21] Pelham RW. serum melatonin rhythm in chickens and its abolitionby pinealectomy[J]. Endocrinology,1975,96(2):543-546.
    [22] Esam MJ.Zebeba. Preventing leg problems[J] .Poultry International,1997,31-32.
    [1] 廖国宁,陈蓓蓓,雷景迈,等.PDGF在低氧内皮细胞条件培养基促猪肺动脉平滑肌细胞增殖中的作用[J].同济医科大学学报,2000,29(2):105-107.
    [2] Stella Kourembanas, Robert L Hannan LL and Douglas V. Failer. Oxygen Tension Regulates the Expression of the Platelet-derived Growth Factor-B Chain Gene in Human Endothelial Cells[J]. Clin. Invest, 1990, 86: 670-674.
    [3] Kourembanas S, Morita T, Liu Y, et al. Mechanisms by which oxygen regulates gene expression and cell-cell interaction in the vasculature[J]. Kidney Int., 1997, 51(2): 438-443.
    [4] 刘健,罗德成,王培勇,等.PDGF在缺氧肺动脉平滑肌细胞增殖中的作用及其机理初探[J].1997,489-492
    [5] Peng Li, Suzanne Oparil, Ju-Zhong Sun, Jet al. Thompson and Yiu-Fai Chen. Fibroblast growth factor mediates hypoxia-induced endothelin-A receptor expression in lung artery smooth muscle cells[J]. Appl Physiol, 2004, 97 (4): 1550-1558.
    [6] Tamm M, Bihl M, Eickelberg O, et al. Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells[J]. Am J Respir Cell Mol Biol, 1998, 19(4): 653-661.
    [7] 黄群华,孙仁宇.血小板源生长因子在低氧性肺动脉平滑肌细胞增殖中的作用.基础医学与临床[J],1998,18(2):33-37.
    [8] 黄群华,孙仁宇.低氧致肺动脉平滑肌细胞增殖及其作用机制初探.中国病理生理杂志[J],1999,15(7):598-600
    [9] Pukac L A, Carter J E, Ottlinger M E, et al. Mechanisms of inhibition by heparin of PDGF stimulated MAP kinase activation in vascular smooth muscle cells[J]. J Cell Physiol, 1997, 172(1): 69-78.
    [10] Pukac L, Huangpu J, Karnovsky MJ. Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration[J]. Exp Cell Res, 1998, 1, 242(2): 548-60.
    [11] 徐永健,Kurt R.Stenmark,Edward C.Dempsey.蛋白激酶C信号通道对牛肺动脉平滑肌细胞增生的调控作用[J].同济医科大学学报,1998,27(2):124-134
    [12] Inui H, Kitami Y, Tani M, et al. Differences in signal transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in vascular smooth muscle cells. PDGF-BB is a potent mitogen, but PDGF-AA promotes only protein synthesis without activation of DNA synthesis[J]. Erratum in: J Biol Chem, 1995 28, 270(17): 10358.
    [13] Richard R J, Mcmillan I, Quinton M. The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens[J]. Avian Pathology, 1989, 18: 675-684.
    [14] 李锦春,王小龙,孙卫东,等.高钠所致肺动脉高压肉鸡肺细小动脉病理改变的图象分析[J].畜牧兽医学报,2000,31:441-447.
    [15] 刘健,罗德成,王培勇,等.PDGF在缺氧肺动脉平滑肌细胞增殖中的作用及其机理初探[J],1997,489-492.
    [16] Peng Li, Suzanne Oparil, Ju-Zhong Sun, et al. Thompson and Yiu-Fai Chen. Fibroblast growth factor mediates hypoxia-induced endothelin-A receptor expression in lung artery smooth muscle cells[J]. J Appl Physiol, 2004, 97(4): 1550-1558.
    [17] Tamm M, Bihl M, Eickelberg O, et al. Hypoxia-induced interleukin-6 and interleuldn-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells[J]. Am J Respir Cell Mol Biol. 1998, 19(4): 653-661.
    [18] 黄群华,孙仁宇.血小板源生长因子在低氧性肺动脉平滑肌细胞增殖中的作用[J].基础医学与临床,1998,18(2):33-37.
    [19] 黄群华,孙仁宇.低氧致肺动脉平滑肌细胞增殖及其作用机制初探[J].中国病理生理杂志,1999,15(7):598-600.
    [20] SHILPA BUCH, ROBIN N. N. HAN, JUDY CABACUNGAN, et al. Changes in Expression of Platelet-Derived Growth Factor and Its Receptors in the Lungs of Newborn Rats Exposed to Air or 60% O_2 [J]. Pediatric Research, 2000, 48: 423-433.
    [21] Jankov RP, Kantores C, Belcastro R, et al. A Role for Platelet-Derived Growth Factor {beta}-Receptor in a Newborn Rat Model of Endothelin-Mediated Pulmonary Vascular Remodeling[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 18
    [22] Li F, Che D, Yuan Y. Effects of hypoxia on the release of PDGF-B chain from pulmonary artery endothelial cells and on growth of pulmonary artery smooth muscle cells[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 1997, 13(3): 216-219.
    [23] Huang Q, Sun R, Changes of PDGF-alpha and beta receptor gene expression in hypoxic rat pulmonary vessels[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1997, 19(6): 470-473.
    [24] 夏春枝,邓仲端,李丽珠,等.内皮细胞脂质过氧化损伤与平滑肌细胞增殖的关系[J].中国动脉硬化杂志,1996,4(3):181-184.
    [25] 王宏伟,赵华月,刘绍春,等.API0134对氧自由基诱导内皮细胞表达c-sismRNA和血小板源生长因子B链的影响[J].中国动脉硬化杂志,1996,4(1):28-31.
    [26] Esam M J. Zebeba. Preventing leg problems[J]. Poultry International, 1997, 31-32.
    [1] Cowan K N, Jones P L, and Rabinovitch M. Regression of hypertrophied rat pulmonary arteries in organ culture is associated with suppression of proteolytic activity, inhibition of tenascin-C, and smooth muscle cell apoptosis [J]. Circ Res, 1999, 84: 1223-1233.
    [2] Durmowicz A G and Stenmark K R. Mechanisms of structure remodeling in chronic pulmonary hypertension [J]. Pediatr Rev (online), 1999, 20: e91-e102.
    [3] Pollman M J, Yamada T, Horiuchi M, et al. Vasoactive substances regulate vascular smooth muscle cell apoptosis: countervailing influences of nitric oxide and angiotensin Ⅱ [J]. Circ Res, 1996, 79: 748-756.
    [4] Rabinovitch M. Elastase and the pathobiology of unexplained pulmonary hypertension [J]. Chest Suppl, 1998, 114: 213-224.
    [5] Jankov RP, Kantores C, Belcastro R, et al. A Role for Platelet-Derived Growth Factor{beta}-Receptor in a Newborn Rat Model of Endothelin-Mediated Pulmonary Vascular Remodeling[J]. Am J Physiol Lung Cell Mol Physiol. 2005 Feb 18
    [6] Vivek Balasubramaniam, Timothy D. Le Cras, D. Dunbar Ivy, et al. Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus[J] .Am J Physiol Lung Cell Mol Physiol, 2003,284: L826-L833.
    [7] B ravo R, F rank R, Blundell P, et al. Cyclin PCNA is the auxilliary pro tein of DNA poly-merase delta[J]. Nature (Lond), 1987,326: 515-517
    [8] Inui H, Kitami Y, Tani M, et al. Differences in signal transduction between platelet-derived growth factor (PDGF) alpha and beta receptors in vascular smooth muscle cells. [J]. Erratum in: J Biol Chem, 1995, 28,270(17):10358.
    [9] Richard J Julian, I Mcmillan and M.Quinton.The effect of cold and dietary energy on right ventricular hypertrophy.right ventricular failure and ascites in meat-type chickens[J]. Avian Pathology, 1989,18:675-684.
    [10] Stella Kourembanas, Robert L Hannan , and Douglas V Faller. Oxygen Tension Regulates the Expression of the Platelet-derived Growth Factor-B Chain Gene in Human Endothelial Cells[J]. Clin.Invest, 1990,86:670-674.
    [11] Kourembanas S, Morita T, Liu Y, et al. Mechanisms by which oxygen regulates gene expression and cell-cell interaction in the vasculature[J]. Kidney Int. 1997,51(2):438-443.
    [12] Jankov RP, Kantores C, Belcastro R, et al. A Role for Platelet-Derived Growth Factor {beta}-Receptor in a Newborn Rat Model of Endothelin-Mediated Pulmonary Vascular Remodeling[J]. Am J Physiol Lung Cell Mol Physiol, 2005 ,18
    [13] SHILPA BUCH, ROBIN N. N. HAN, JUDY CABACUNGAN, et al. Changes in Expression of Platelet-Derived Growth Factor and Its Receptors in the Lungs of Newborn Rats Exposed to Air or 60% O_2[J]. Pediatric Research, 2000,48:423-433.
    [1] 李锦春,王小龙,孙卫东,等.高钠所致肺动脉高压肉鸡肺细小动脉病理改变的图象分析[J].畜牧兽医学报,2000,31(5):441-447.
    [2] 向瑞平,王小龙,孙卫东,等.饮水高钠致肉鸡急性和慢性肺动脉高压综合征[J].南京农业大学学报,2002,25(3):80-84.
    [3] 向瑞平,王小龙,王金勇,等.肉鸡肺动脉高压综合征自然病例肺微细动脉肌型化的观察[J].南京农业大学学报,2001,24(1):85-88.
    [4] Trina K, Jeffery, Janet C, et al. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension [J]. Pharmacology and Therapeutics, 2001, 92: 1-20.
    [5] 李悦梅.高血压血管重构的研究进展[J].中国动脉硬化杂志,2003,11(2):171-174.
    [6] 蔡英年.肺血管结构重建在低氧性肺动脉高压形成中的作用[J].生物报,1996,31(11):1-3.
    [7] 陈启兰,金庆文.高血压血管重构的研究进展[J].深圳中西医结合志,2001,11(2):119-121
    [8] Jr Wideman R F, Ismail M, Kirby Y K, et al. Furosemide reduces the incidence of pulmonary hypertension syndrome (ascites) in broilers exposed to cool environmental temperatures [J]. Poultry Science, 1995, 74(2): 314-322.
    [9] Scherer B, Weber P C. Time-dependent changes in prostaglandin excretion in response to frusemide in man[J]. Clin Sci, 1979, 56: 77-81.
    [10] Greenberg S, McGowan C, Xie J, et al. Selective pulmonary and venous smooth muscle relaxation by furosemide: a comparison with morphine[J]. J Pharmacol Exp Therap, 1994, 270: 1077-1085.
    [11] Inge M, Christensen J A, Halvorsen O J, et al. Effect of volume depletion on the afferent arterioles in the avian kidney [J]. Virchows Archiv (Historical Archive), 1987, 411(2): 149-155.
    [12] Julian R J, Mcmillan I, Quinton M. The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens [J]. Avian Pathology, 1989, 18: 675—684.
    [13] Enkvetchakul B, Beasley J, Bottje W. Pulmonary arteriole hypertrophy in broilers with pulmonary hypertension syndrome (ascites) [J]. Poultry Science, 1995, 74(10): 1677-1682.
    [14] Bishop J E, Butt R P, Laurent G J. The role of mechanical force in the regulation of fibroblast function: implications for enhanced collagendeposition during pulmonary vascular remodelling [J]. Eur Respir Rev, 1993, 3: 613-617.
    [15] 崔勤,杨景学,朱海龙,等.动力性肺动脉高压幼犬模型中肺动脉压力与血管结构的关系[J].第四军医大学学报,2000,21(5):601-604.
    [16] 李中言,赵连友.高血压血管重构[J].心功能杂志,1997,9(1):27-30.
    [17] Forman M F, Jr Wideman R F. Furosemide does not facilitate pulmonary vasodilation in broilers during chronic or acute unilateral pulmonary arterial occlusion [J]. Poultry Science, 2001, 80(7): 937-943.
    [1] Bottje, W B, Enkwetchakul B, and Wideman R F Jr. Antioxidants, hypoxia and lipid peroxidation involvement in pulmonary hypertension syndrome(ascites) [J]. Nutrition Update, 1995, 5(2).
    [2] 向瑞平,王小龙.自由基与肉鸡肺动脉高压综合征.畜牧与兽医,2000,32(4):41-42.
    [3] Bottje W G and Wideman R F. Potential role of free radical in the etiology of pulmonary hypertension syndrome [J]. Poultry Avian Biol Rev, 1995, 6: 211-231.
    [4] Enkvetchakul B, Bottje W, Anthony N, et al. Compromised antioxidant status associated with ascites in broilers [J]. Poult Sci, 1993, 72: 2272-2280.
    [5] Iqbal M, Cawthon D, Beers K, et al. Antioxidant enzyme activities and mitochondrial fatty acid in pulmonary hypertension syndrome (PHS) in broilers [J]. Poult Sci, 2002, 81: 252-260.
    [6] Xiang R P, Sun W D, Wang J Y, et al. Effect of Vitamin C on pulmonary hypertension and muscularisation of pulmonary arterioles in broilers[J]. Br Poult Sci, 2002, 43: 705-712.
    [7] Ladmakhi M H, Buys N, Dewil E, et al. The prophylactic effect of vitamin C supplementation on broiler ascites incidence and plasma thyroid hormone concentration [J]. Avian Pathology, 1997, 26: 33-34.
    [8] Willson S L. Vitamin, selenium, zinc and copper interaction in free radical protection against ill-pace iron [J]. Prroc Nutri Soc, 1987, 46: 27-35.
    [9] Richard J J, Mcmillan I, Quinton M. The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens[J]. Avian Pathology, 1989, 18: 675-684.
    [10] 向瑞平,孙卫东,王小龙,等.日粮添加Vc和VE对肺动脉高压综合征患鸡自由基代谢的影响[J],中国兽医学报.2005,25(1):73-77.
    [11] Orban J I, Roland D A and Cummins S R K. et, al. Influence of large doses of ascorbic acid on performance, plasma calcium, bone characteristics, and eggshell quality in broilers and leghorn hens[J]. Poultry Science, 1993, 72: 691-700.
    [12] Walton, J P, Julian, R J, Squires E J. The effects of dietary flax oil and antioxidants on ascites and pulmonary hypertension in broilers using a low temperature model[J]. British Poultry Science, 2001, 42(1): 123-129.
    [13] Villar-Patino, Gonzalo, Díaz-Cruz, et al. Effects of dietary supplementation with vitamin C or vitamin E on cardiac lipid peroxidation and growth performance in broilers at risk of developing ascites syndrome [J]. American Journal Of Veterinary Research, 2002, 63(5): 673-676.
    [1] Dempsey E C, Stenmark K R, McMurtry I F, et al. Insulin-like growth factor 1 and protein kinase C activation stimulate pulmonary artery smooth muscle cell proliferation through separate but synergistic pathways [J]. J Cell Physiol, 1990, 144: 159-165.
    [2] Yamboliev I A, Hruby A, and Gerthoffer W T. Endothelin-lactivates MAP kinases and C-Jun in pulmonary artery smooth muscle [J]. Pulm Pharmacol Ther, 1998, 11: 205-208.
    [3] Xu Y, Stenmark K R, Das M, et al. Pulmonary artery smooth muscle cells from chronically hypoxic neonatal calves retain fetal-like and acquire new growth properties [J]. Am J Physiol, 1997, 273: L234-L245.
    [4] Plevin R, Kellock N A, Wakelam M J, et al. Regulation by hypoxia of endothelin-1 stimulated phospholipase D activity in sheep pulmonary artery cultured smooth muscle cells [J]. Br J Pharmacol, 1994, 112: 311-315.
    [5] Bialecki R A, Fisher C S, Murdoch W W, et al. Chronic hypoxia increases staurosporine sensitivity ot pulmonary artery smooth muscle to endothelin-1 [J]. Pulm Pharmacol Ther, 1998, 11 (2-3): 159-163.
    [6] Ekhterae D, Platoshyn O, Krick S, et al. Bcl-2 decreases voltage-gated K~+ channel activity and enhances survival in vascular smooth muscle cells [J]. Am J Physiol, 2001, 281(1): C157-C165.
    [1] 何诚,赵德明,梁礼成.低温高能日粮对肉鸡肺动脉和腹水症的影响[J].畜牧兽医学报,2000,31(1):34-40.
    [2] Mclntyre M, Bohr D F, Dominiczak A F. Endothelial functionin hypertension: therole of superoxide anion[J]. Hypertens, 1999, 34: 539-545.
    [3] Katusic Z S, Schugel J, Cosention F, et al. Endothelium-dependent contraction to oxygen-derived free radicals in the canine basilar artery [J]. Am J Physiology, 1993, 264(33): H859-H864.
    [4] Ram J I, Hiebert L M. Dextran sulfate protects porcine but not bovine cultured endothelial cells from free radical injury [J]. The Canadian Journal of Veterinary Research, 2003, 67(2): 81-87.
    [5] 李锦春,赵洪进,谭勋,等.间歇光照对肉鸡体内脂质过氧化作用和抗氧化酶活性的影响[J].已录用,拟于中国兽医学报,2007年第二或第三期刊登。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700