量子关联及其动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息因为具有经典信息所不具备的优势而受到了广泛关注。量子关联作为量子信息中的重要资源,在量子计算、量子相变和量子态的广播等方面有着重要的应用。然而,任何真实的量子系统不可避免地会与环境发生相互作用,进而导致退相干。因此量子关联的动力学是一个重要的研究课题。
     本文研究量子关联及其动力学,主要内容如下:
     第一,研究了初始关联存在时开放系统的动力学为完全正定映射的条件。当初始关联存在时,要得到完全正定映射,必须限定初始态集合;否则,开放系统的约化动力学不是一个完全正定映射。我们分别在态空间的直和分解框架和分配映射框架下给出这样的态集合的结构。在态空间的直和分解框架下,我们给出了这种初始态集合的一般结构,证明了对于任意的时间演化算符USE(t)这些态的约化动力学总是完全正定映射。我们的结果表明,不仅量子失协等于零的态集合、
     一些量子失协不等于零的可分离态集合的约化动力学是完全正定映射,而且一些量子纠缠态的集合的约化动力学也是完全正定映射。以前的文献中给出的直积态集合和量子失协等于零的态集合是我们给出的初始态集合的特例。在分配映射框架下,我们证明了对于2×N维量子系统来说,本文所给出的初始态集合是使开放系统的约化动力学为完全正定映射的最大态集合,即该态集合所限定的关联是完全正定映射的充要条件。同时给出了M×N维量子系统对应的态集合的完全正定的分配映射。这说明态空间的直和分解框架和分配映射框架给出的结果是一致的。
     第二,研究了玻色热库对两体量子关联的动力学的影响。分别考虑了贝尔对角态受两个独立的玻色热库和一个共同的玻色热库影响时,它的量子失协的几何度量的动力学。我们发现受两个独立的玻色热库影响时,量子失协的几何度量的动力学在次欧姆谱密度(0     第三,研究了常见信道对多体量子关联的动力学的影响。考虑了一类n体量子态分别受比特翻转信道、比特相位翻转信道、相位翻转信道和退极化信道影响时,它的q-全局量子失协和几何全局量子失协的动力学。结果表明,该类态受比特翻转信道影响后,q-全局量子失协和几何全局量子失协关于p=0.5对称,并在此处取得最小值零,同时二者发生突然转变现象的条件相同。不同的是,q-全局量子失协只有在参数q=1并且n是偶数的情况时,才有可能发生冻结现象,而几何全局量子失协发生冻结现象的情形则不受n的影响。当时间参数p保持不变时,q-全局量子失协是参数q的先增后减函数。该类态受比特相位翻转信道和相位翻转信道影响后的q-全局量子失协和几何全局量子失谐的动力学变化与受比特翻转信道影响后的动力学变化情况类似。该类态受退极化信道影响后,q-全局量子失协和几何全局量子失协是时间参数p的先减后增函数,并在p=0.75时取得最小值零。此时量子关联不存在突然转变或者冻结现象。
Quantum information has attracted much attention since it has many advan-tages over classical information. Quantum correlation as an important resource in quantum information has important applications in quantum computation, quan-tum phase transition, and broadcasting of quantum states. However, any real quan-tum system inevitably interacts to some extent with its environment, then quantum decoherence can occur if the process is irreversible. Therefore, investigation of the dynamics of quantum correlation is important and necessary.
     In this thesis, we investigate quantum correlation and its dynamics. The main results are as follows:
     First, we investigate completely positive maps for an open system interacting with its environment in the presence of initial correlations. In this situation, we have to restrict the set of initial states. Therefore, we consider the set of initial states that share one common completely positive map within the framework of direct sum decomposition of state space and the framework of assignment maps. In the framework of direct sum decomposition of state space, a general expression of the initial states are explicitly given, and we prove that the reduced dynamics of the open system can be described by a completely positive map for arbitrary unitary operator USE(t) as long as the initial states of the combined system are with the structure which we have given. The set of initial states includes not only separable states with vanishing or nonvanishing quantum discord but also entangled states. It significantly extends the previous results which can be taken as special cases of our results. In the framework of assignment maps, we prove that the set of initial states given in the framework of direct sum decomposition of state space is a necessary and sufficient condition for2×N quantum systems of which the reduced dynamics is a completely positive map for arbitrary unitary operator USE(t). We also give the expression of assignment maps which are completely positive for the initial states of M x N quantum systems. These results mean that the framework of direct sum decomposition of state space and the framework of assignment maps are consistent.
     Second, we investigate the dynamics of quantum correlations for bipartite quan-tum systems. We investigate the dynamics of geometric measure of quantum discord of two qubits in two independent reservoirs and one common reservoir, respectively, where the initial states of the two qubits are Bell-diagonal states. When the two qubits are in two independent reservoirs, the dynamics of geometric measure of quantum discord for the reservoirs with sub-Ohmic (0     Third, we investigate the dynamics of quantum correlations for multipartite quantum systems. We consider the dynamics of q-global quantum discord and ge-ometric global quantum discord of a class of n-qubt states which undergo a local bit flip channel, a bit flip and phase flip channel, a phase flip channel, and a de-polarizing channel, respectively. Our results show that the dynamics of q-global quantum discord and geometric global quantum discord are symmetric with respec-t to p=0.5, and they also obtain the minimum value zero at p=0.5. The sudden transition phenomenon of q-global quantum discord and geometric global quantum discord occurs at the same conditions, q-global quantum discord may have a frozen phenomenon if q=1and n is even. However, geometric measure of quantum dis-cord may have a frozen phenomenon for all n. When the time parameter p remains the same value, q-global quantum discord at first is a monotonic increasing function of parameter q and then becomes a monotonic decreasing function of parameter q. The dynamics of q-global quantum discord and geometric global quantum discord for the states which undergo a local bit flip channel or a local bit flip and phase flip channel or a local phase flip channel are similar to each other. In the depolarizing channel, the dynamics of q-global quantum discord and geometric global quantum discord obtain the minimum value zero at p=0.75, and they are a monotonic de-creasing function of parameter p at first and then become a monotonic increasing function, but in this channel there is no sudden transition phenomenon or frozen phenomenon.
引文
[1]J. von Neumann, Mathematische Grundlagen der Quantenmechanic (Springer, Berlin,1932).
    [2]A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Descrip-tion Reality Be Considered Complete?, Phys. Rev.47,777 (1935).
    [3]E. Schrodinger, Die gegenwdrtige Situation in der Quantenrncchanik, Natur-wissenschaften,23,807 (1935).
    [4]R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations ad-mitting a hidden-variable model, Phys. Rev. A 40,4277 (1989).
    [5]L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.80,517 (2008).
    [6]R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum En-tanglement, Rev. Mod. Phys.81,865 (2009).
    [7]C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett.70,1895 (1993).
    [8]C. H. Bennett and D. P. DiVincenzo, Quantum Information and Computation, Nature,404247 (2000).
    [9]M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-mation (Cambridge University Press, Cambridge,2000).
    [10]J. Preskill, Lecture notes:Course Information for Physics 219/Comput-er Science 219 Quantum Computation, http://www.theory.caltech.edu/ people/preskill/ph229.
    [11]F. Mintert, A. R. R. Carvalho, M. Kus, and A. Buchleitner, Measures and dynamics of entangled states, Phys. Rep.415,207 (2005).
    [12]T. Yu and J. H. Eberly, Finite-Time Disentanglement via Spontaneous E-mission, Phys. Rev. Lett.93,140404 (2004); Sudden Death of Entanglement, Science,323,598 (2009).
    [13]B. Bellomo, R. Lo Franco, and G. Compagno, Non-Markovian Effects on the Dynamics of Entanglement, Phys. Rev. Lett.99,160502 (2007).
    [14]H. Ollivier and W. H. Zurek, Quantum Discord:A Measure of the Quantum-ness of Correlations, Phys. Rev. Lett.88,017901 (2001).
    [15]L. Henderson and V. Vedral, Classical, quantum and total correlations, J. Phys. A 34,6899 (2001).
    [16]J. Oppenheim, M. Horodecki, P. Horodecki, and R. Horodecki, Thermody-namical Approach to Quantifying Quantum Correlations, Phys. Rev. Lett. 89,180402 (2002).
    [17]B. Groisman, S. Popescu, and A. Winter, Quantum, classical, and total amount of correlations in a quantum state, Phys. Rev. A 72,032317 (2005).
    [18]S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum, Phys. Rev. A 77,022301 (2008).
    [19]G. Adesso and A. Datta, Quantum versus Classical Correlations in Gaussian States, Phys. Rev. Lett.105,030501 (2010).
    [20]K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, Unified View of Quantum, and Classical Correlations, Phys. Rev. Lett.104,080501 (2010).
    [21]B. Dakic, V. Vedral, and C. Brukner, Necessary and Sufficient Condition for Nonzero Quantum Discord, Phys. Rev. Lett.105,190502 (2010).
    [22]C. C. Rulli and M. S. Sarandy, Global quantum discord in multipartite systems, Phys. Rev. A 84,042109 (2011).
    [23]S. Luo and S. Fu, Measurement-Induced Nonlocality, Phys. Rev. Lett.106, 120401 (2011).
    [24]S. Fu and S. Luo, Maximum nonlocal effects of quantum states, Int. J. Quant. Info.9,1587 (2011).
    [25]B. Bellomo, G. L. Giorgi, F. Galve, R. Lo Franco, G. Compagno, and R. Zambrini, Unified view of correlations using the square-norm distance, Phys. Rev. A 85,032104 (2012).
    [26]J. Xu, Geometric global quantum discord, J. Phys. A 45,405304 (2012).
    [27]D. Girolami, T. Tufarelli, and G. Adesso, Characterizing Nonclassical Corre-lations via Local Quantum Uncertainty, Phys. Rev. Lett.110,240402 (2013).
    [28]L. Chang and S. Luo, Remedying the local ancilla problem with geometric discord, Phys. Rev. A 87,062303 (2013).
    [29]T. Tufarelli, T. MacLean, D. Girolami, R. Vasile, and G. Adesso, The geo-metric approach to quantum correlations:computability versus reliability, J. Phys. A 46,275308 (2013).
    [30]D. P. Chi, J. S. Kim, and K. Lee, Generalized entropy and global quantum discord in multiparty quantum systems, Phys. Rev. A 87,062339 (2013).
    [31]E. Knill and R. Laflamme, Power of One Bit of Quantum Information, Phys. Rev. Lett.81,5672 (1998).
    [32]A. Datta, A. Shaji, and C. M. Caves, Quantum Discord and the Power of One Qubit, Phys. Rev. Lett.100,050502 (2008).
    [33]B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, Experimental Quantum Computing without Entanglement, Phys. Rev. Lett.101,200501 (2008).
    [34]A. Datta and S. Gharibian, Signatures of nonclassicality in mixed-state quan-tum computation, Phys. Rev. A 79,042325 (2009).
    [35]J. Cui and H. Fan, Correlations in the Grover search, J. Phys. A 43,045305 (2010).
    [36]R. Dillenschneider, Quantum discord and quantum phase transition in spin chains, Phys. Rev. B 78,224413 (2008).
    [37]M. S. Sarandy, Classical correlation and quantum discord in critical systems, Phys. Rev. A 80,022108 (2009).
    M. Piani, P. Horodecki, and R. Horodecki, No-Local-Broadcasting Theorem for Multipartite Quantum Correlations, Phys. Rev. Lett.100,090502 (2008).
    [39]M. Piani, M. Christandl, C. E. Mora, and P. Horodecki, Broadcast Copies Reveal the Quantumness of Correlations, Phys. Rev. Lett.102,250503 (2009).
    [40]T. Wcrlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, Robustness of quantum discord to sudden death, Phys. Rev. A 80,024103 (2009).
    [41]J. Mazicro, L. C. Celeri, R. M. Serra, and V. Vedral, Classical and quantum correlations under decoherence, Phys. Rev. A 80,044102 (2009).
    [42]B. Wang, Z.-Y. Xu, Z.-Q. Chen, and M. Feng, Non-Markovian effect on the quantum discord, Phys. Rev. A 81,014101 (2010).
    [43]M. Ali, A. R. P. Rau, and G. Alber, Quantum discord for two-qubit X states, Phys. Rev. A 81,042105 (2010).
    [44]F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, Non-Markovian dynamics of quantum discord, Phys. Rev. A 81, 052107 (2010).
    [45]L. Mazzola, J. Piilo, and S. Maniscalco, Sudden Transition between Classical and Quantum Decoherence, Phys. Rev. Lett.104,200401 (2010).
    [46]L. Mazzola, J. Piilo, and S. Maniscalco, Frozen discord in non-Markovian dephasing channels, Int. J. Quant. Info.9,981 (2011).
    [47]A. Streltsov, H. Kampermann, and D. BruB, Behavior of Quantum Correla-tions under Local Noise, Phys. Rev. Lett.107,170502 (2011).
    [48]M. D. Lang and C. M. Caves, Quantum Discord and the Geometry of Bell-Diagonal States, Phys. Rev. Lett.105,150501 (2010).
    [49]G. Karpat and Z. Gedik, Correlation dynamics of qubit-qutrit systems in a classical dephasing environment, Phys. Lett. A 375,4166 (2011).
    [50]R. Auccaise, L. C. Celeri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Ser-ra, Environment-Induced Sudden Transition in Quantum Discord Dynamics, Phys. Rev. Lett.107,140403 (2011).
    [51]B. You and L.-X. Cen, Necessary and sufficient conditions for the freezing phe-nomena of quantum discord under phase damping, Phys. Rev. A 86,012102 (2012).
    [52]P. Haikka, T. H. Johnson, and S. Maniscalco, Non-Markovianity of local de-phasing channels and time-invariant discord, Phys. Rev. A 87,010103(R) (2013).
    [53]K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, The classical-quantum boundary for correlations:Discord and related measures, Rev. Mod. Phys.84,1655 (2012).
    [54]K. Kraus, States, Effects and Operations (Spring-Verlag, Berlin,1983).
    [55]P. Pechukas, Reduced Dynamics Need Not Be Completely Positive, Phys. Rev. Lett.73,1060 (1994); Pechukas Replies, Phys. Rev. Lett.75,3201 (1995).
    [56]R. Alicki, Comment on "Reduced Dynamics Need Not Be Completely Posi-tive", Phys. Rev. Lett.75,3020 (1995).
    [57]H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Ox-ford University Press, New York,2002).
    [58]M. Choi, Completely positive linear maps on complex matrices, Linear Algebra and Its Application,10,285 (1975).
    [59]P. Stelmachovic and V. Buzek, Dynamics of open quantum systems initially entangled with environment:Beyond the Kraus representation, Phys. Rev. A 64,062106 (2001); Erratum:Dynamics of open quantum systems initially entangled with environment:Beyond the Kraus representation, Phys. Rev. A 67,029902(E) (2003).
    [60]H. Hayashi, G. Kimura, and Y. Ota, Kraus representation in the presence of initial correlations, Phys. Rev. A 67,062109 (2003).
    [61]K. M. Fonseca Romero, P. Talkner, and T. Hanggi, Is the dynamics of open quantum systems always linear?, Phys. Rev. A 69,052109 (2004).
    [62]D. M. Tong, L. C. Kwck, C. H. Oh, J.-L. Chen, and L. Ma, Operator-sum representation of time-dependent density operators and its applications, Phys. Rev. A 69,054102 (2004).
    [63]C. A. Rodriguez-Rosario, K. Modi, A.-m. Kuah, A. Shaji, and E. C. G. Su-darshan, Completely positive maps and classical correlations, J. Phys. A 41, 205301 (2008).
    [64]H. A. Carteret, D. R. Terno, and K. Zyczkowski, Dynamics beyond completely positive maps:Some properties and applications, Phys. Rev. A 77,042113 (2008).
    [65]A. Shabani and D. A. Lidar, Vanishing Quantum Discord is Necessary and Sufficient for Completely Positive Maps, Phys. Rev. Lett.102,100402 (2009).
    [66]C. A. Rodriguez-Rosario, K. Modi, and A. Aspuru-Guzik, Linear assignmen-t maps for correlated system-environment states, Phys. Rev. A 81,012313 (2010).
    [67]Y.-J. Zhang, X.-B. Zou, Y.-J. Xia, and G.-C. Guo, Different entanglement dy-namical behaviors due to initial system-environment correlations, Phys. Rev. A 82,022108 (2010).
    [68]K. Modi and E. C. G. Sudarshan, Role of preparation in quantum process tomography, Phys. Rev. A 81,052119 (2010).
    [69]A. R. Usha Devi, A. K. Rajagopal, and Sudha, Open-system quantum dy-namics with correlated initial states, not completely positive maps, and non-Markovianity, Phys. Rev. A 83,022109 (2011).
    [70]H.-T. Tan and W.-M. Zhang, Non-Markovian dynamics of an open quantum system with initial system-reservoir correlations:A nanocavity coupled to a coupled-resonator optical waveguide, Phys. Rev. A 83,032102 (2011).
    [71]F. Masillo, G. Scolarici, and L. Solombrino, Some remarks on assignment maps, J. Math. Phys.52,012101 (2011).
    [72]K. Modi, C. A. Rodriguez-Rosario, and A. Aspuru-Guzik, Positivity in the presence of initial system-environment correlation, Phys. Rev. A 86,064102 (2012).
    [73]G. F. Xu, L. J. Liu, and D. M. Tong, Effect of preparation procedures on the system's entanglement evolution, Eur. Phys. J. D 66,236 (2012).
    [74]A. Brodutch, A. Datta, K. Modi, A. Rivas, and C. A. Rodriguez-Rosario, Van-ishing quantum discord is not necessary for completely positive maps, Phys. Rev. A 87,042301 (2013).
    [75]A. Smirne, L. Mazzola, M. Paternostro, and B. Vacchini, Interaction-induced correlations and non-Markovianity of quantum dynamics, Phys. Rev. A 87, 052129 (2013).
    [76]F. Buscemi, Complete positivity in the presence of initial correlations:neces-sary and sufficient conditions given in term.s of the quantum, data-processing inequality, arXiv:1307.0363vl (2013).
    [77]J. M. Dominy, A. Shabani, and D. A. Lidar, A general framework for complete positivity, arXiv:1312.0908vl (2013).
    [78]A. Peres, Separability Criterion for Density Matrices, Phys. Rev. Lett.77, 1413 (1996).
    [79]M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223,1 (1996).
    [80]A. Datta, Studies on the Role of Entanglement in Mixed-state Quantum Com-putation, arXiv:0807.4490 (2008).
    [81]C. Tsallis, Possible Generalization of Boltzmann-Gibbs Statistics, J. Stat. Phys.52,479 (1988).
    [82]P. T. Landsberg and V. Vedral, Distributions and channel capacities in gen-eralized statistical mechanics, Phys. Lett. A 247,211 (1998).
    [83]T. Sasaki, T. Ichikawa, and I. Tsutsui, Outcome Independence of Entangle-ment in One-Way Computation, J. Phys. Soc. Jpn.81,064005 (2012).
    [84]R. Namiki, Einstein-Podolsky-Rosen-Like Correlation on a Coherent-State Basis and Inseparability of Two-Mode Gaussian States, J. Phys. Soc. Jpn.82, 014001 (2013).
    [85]K. Modi, H. Cable, M. Williamson, and V. Vedral, Quantum Correlations in Mixed-State Metrology, Phys. Rev. X 1,021022 (2011).
    [86]L. Roa, J. C. Retamal, and M. Alid-Vaccarezza, Dissonance is Required for Assisted Optimal State Discrimination, Phys. Rev. Lett.107,080401 (2011).
    [87]B. Li, S.-M. Fei, Z.-X. Wang, and H. Fan, Assisted state discrimination with-out entanglement, Phys. Rev. A 85,022328 (2012).
    [88]S. Luo and S. Fu, Geometric measure of quantum, discord, Phys. Rev. A 82, 034302 (2010).
    [89]J.-s. Jin, F.-y. Zhang, C.-s. Yu, and H.-s. Song, Direct scheme for measuring the geometric quantum discord, J. Phys. A 45,115308 (2012).
    [90]A. S. M. Hassan and P. S. Joag, Geometric measure of quantum discord and total quantum correlations in an N-partite quantum state, J. Phys. A 45, 345301 (2012).
    [91]M.-L. Hu and H. Fan, Dynamics of entropic measurement-induced nonlocality in structured reservoirs, Ann. Phys.327,851 (2012).
    [92]X. Yin, Z. Xi, X.-M. Lu, Z. Sun, and X. Wang, Geometric measure of quantum discord for superpositions of Dicke states, J. Phys. B 44,245502 (2011).
    [93]B. Bellomo, R. Lo Franco, and G. Compagno, Dynamics of geometric and entropic quantifiers of correlations in open quantum systems, Phys. Rev. A 86,012312 (2012).
    [94]M. Daoud and R. A. Laamara, Geometric measure of pairwise quantum dis-cord for superpositions of multipartite generalized coherent states, Phys. Lett. A 376,2361 (2012).
    [95]T. Debarba, T. O. Maciel, and R. O. Vianna, Witnessed entanglement and the geometric measure of quantum discord, Phys. Rev. A 86,024302 (2012).
    [96]G. F. Zhang, H. Fan, A. L. Ji, and W. M. Liu, Dynamics of geom.et.ric discord and measurement-induced nonlocality at finite temperature, Eur. Phys. J. D 66,34 (2012).
    [97]W. Song, L.-B. Yu, D.-C. Li, P. Dong, M. Yang, and Z.-L. Cao, Conditions for the freezing phenomena of geometric measure of quantum discord for arbitrary two-qubit X states under non-dissipative dephasing noises, arXiv:1203.3356 (2012).
    [98]M. Piani, Problem with geometric discord, Phys. Rev. A 86,034101 (2012).
    [99]U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore,2008).
    [100]Y. Y. Liao and Y. N. Chen, Pure dephasing of double-quantum-dot charge qubits in freestanding slabs, Phys. Rev. B 81,153301 (2010).
    [101]D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, and A. Winter, Quantum Correlation without Classical Correlations, Phys. Rev. Lett.101,070502 (2008).
    [102]C. H. Bennett, A. Grudka, M. Horodecki, P. Horodecki, and R. Horodecki, Postulates for measures of genuine multipartite correlations, Phys. Rev. A 83, 012312 (2011).
    [103]G. L. Giorgi, B. Bellomo, F. Galve, and R. Zambrini, Genuine Quantum and Classical Correlations in Multipartite Systems, Phys. Rev. Lett.107,190501 (2011).
    [104]M. Okrasa and Z. Walczak, Quantum discord and multipartite correlations, Europhys. Lett.96,60003 (2011).
    [105]Ⅰ. Chakrabarty, P. Agrawal, and A. K. Pati, Quantum Dissension:Gener-alizing Quantum Discord for Three-Qubit States, Eur. Phys. J. D 65,605 (2011).
    [106]Y.-K. Bai, N. Zhang, M.-Y. Ye and Z. D. Wang, Exploring multipartite quan-tum correlations with the square of quantum discord, Phys. Rev. A 88,012123 (2013).
    [107]J. Zhou and H. Guo, Dynamics of tripartite geometric quantifiers of correla-tions in a quantum spin system, Phys. Rev. A 87,062315 (2013).
    [108]M. Ramzan, Decoherence dynamics of discord for multipartite quantum sys-tems, Eur. Phys. J. D 67,170 (2013).
    [109]J.-L. Guo and Y.-J. Mi, Dynamics of multipartite quantum correlations in the qubit-reservoir system, Eur. Phys. J. D 68,39 (2014).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700