平面小型化可调射频滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代无线通信的不断发展,在不同频段存在着大量无线通信业务,尤其是随着软件无线电技术的发展,迫切需要发展具有多频段覆盖能力且功能特性可重构的射频前端。射频滤波器是无线通信射频前端的重要组成部分,被广泛用于对频带以外射频信号的抑制,达到频带选择、抑制镜像干扰、降低接收机交调失真等目的。具有频率响应可重构特性的可调射频滤波器将是未来无线通信系统的重要支撑。
     本文首先回顾了近年来可调射频滤波器的发展。当前可调射频滤波器无源结构的构建主要依赖于分布式参数谐振器。面对电子器件朝向高性能、小型化发展的需求,本文基于亚波长谐振器开口谐振环SRR (Split ring resonator)与互补开口谐振环CSRR (Complementary split ring resonator),以及微带LC谐振器等平面小型化谐振结构,构建新型小型化射频带阻及带通滤波器,并研究其频率响应调控方法。
     在带阻滤波器方面,本文基于开口谐振环SRR及互补开口谐振环CSRR,研究新型带阻滤波器及其阻带调控方法,利用加载变容二极管的开口谐振环VLSRR(Varactor loaded split ring resonator)与共面波导耦合,成功设计出连续可调带阻滤波器;构建了加载CSRR的微带表面缺陷结构DMS (Defected microstrip structure),提出其半边电路结构,有效的降低其尺寸并提升了其通带特性,并基于此结构成功设计出1bit可调带阻滤波器。主要研究内容如下:
     (1)基于开口谐振环SRR,构建了一种共面波导加载SRR的带阻滤波器谐振结构。通过对其阻带调控机制的研究,利用变容二极管加载开口谐振环VLSRR,成功设计了2.19GHz~2.32GHz可调带阻滤波器。此结构中SRR采用磁耦合加载,具有良好的通频带宽和应用前景。
     (2)采用互补开口谐振环CSRR,构建了一种加载CSRR的微带表面缺陷结构,分析、优化了该结构带阻频率响应特性,建立了其等效电路分析模型,并提出了该微带表面缺陷结构的半边电路形式。相比原始结构该半边电路占用面积减半,且具有更小的到地电容,使得其通带性能得到提升并进一步降低了器件的尺寸。采用等效电路建模研究了该结构的阻带调控机理,提出了基于射频开关的阻带1bit可调机制,通过浮地电容与射频开关的引入,成功设计了一种具有宽带谐波抑制能力的小型化1bit2.5GHz-3GHz可调带阻滤波器。
     在带通滤波器方面,本文构建出基片集成波导SIW (Substrate integrated waveguide)表面加载CSRR的带通滤波器结构以及其半模基片集成波导HMSIW (Half-modesubstrate integrated waveguide)形式,提出了其通带调控方法,成功实现了具有可调通带特性的基片集成波导带通滤波器;构建了基于混合耦合的微带LC滤波器结构,研究了其通带调控方法,通过电耦合补偿带宽的方法,成功实现了恒定绝对带宽及恒定相对带宽可调带通滤波器。具体研究内容包括:
     (1)采用基片集成波导表面加载CSRR,在基片集成波导截止频率以下成功实现了通带,并进一步提出了其半模基片集成波导结构。通过等效电路建模研究了其频率响应的调控机制,提出了其通带调控方法,并通过机械开关、PIN二极管、变容二极管的引入,分别设计实现了lbit机械可调带通滤波器、1bit电可调带通滤波器、以及连续可调带通滤波器。此类滤波器具有较好的带内、带外特性以及较小的尺寸。
     (2)通过微带LC谐振器间的混合耦合,首先构建了一种二阶带通滤波器结构,研究了其频率调控机制,成功设计了基于混合耦合的电可调微带LC带通滤波器;并进一步构建了具有独立电耦合调控特性的混合耦合微带LC滤波器结构,研究了其带宽及通带的调控机制,通过电耦合补偿带宽的方法,提出了恒定绝对带宽和恒定相对带宽可调方案,基于变容二极管成功研制出微带LC形式恒定绝对带宽、恒定相对带宽可调带通滤波器;利用三阶微带LC滤波器结构,在其带外引入三个传输零点,改善了带外特性,并研究了其通带调控机制,利用变容二极管成功研制出具有宽带谐波抑制能力、良好频率选择性的三阶微带LC可调带通滤波器。
     本论文提出的各种新型滤波器结构及其设计方法在高性能、小型化可调滤波器设计上具有一定指导作用,同时本论文设计的各类滤波器还具有易于加工、成本低廉的特点,具有很强的实际应用前景。
With the development of modern wireless communication, various wireless communication services are available in different bands. Future multi-band/software defined radio systems require building multi-band and reconfigurable radio frequency (RF) front end. RF filters are the key to constitute the channel and reduce the interferences of radio systems. Tunable RF filters with reconfigurable frequency responses will be the essential components for future wireless communication systems.
     In chapter Ⅰ, recent developments on tunable filters are reviewed. At present, many tunable filters based on distributed resonators are researched. With the development of modern wireless communication systems, compact and integrated devices are required. In this dissertation, novel bandstop and bandpass filters based on sub-wavelength resonators, i.e. SRR (Split ring resonator), CSRR (Complementary split ring resonator) and microstrip LC resonators are presented, and the tunable mechanics are studied.
     Based on SRR and CSRR the bandstop filters are proposed, and the stopband tunable mechanics of the filters are studied. VLSRR (Varactor loaded split ring resonator) loaded CPW (Coplanar Waveguide) tunable bandstop filter is designed. DMS (Defected microstrip structure) with CSRR etched on the microstrip surface is studied, and the half circuit of the structure is proposed to build a more compact bandstop filter and a1-bit reconfigurable bandstop filter. The main contributions of the work on bandstop filters are listed as follows:
     (1) A novel tunable bandstop filter based on CPW loaded with SRR is presented. The unit cell of the bandstop filter is formed by etching single SRR on the CPW back substrate side, and the SRR can be excited by the CPW slot's magnetic field. Lumped equivalent circuit models are developed to analyze the frequency responses, and it shows that by loading the common cathode varactor diodes at the split region of the SRR outer ring, the resonant frequency of the bandstop filter can be electronically adjusted by tuning the reverse voltage of the varactor diodes.
     (2) Novel bandstop filters based on the defected microstrip structure with CSRR/half-CSRR etched on the microstrip surface are presented. By changing the configurations of the CSRR, varied stop-band and pass-band characteristics are observed, and half-CSRR is proposed to build a novel bandstop filter. A detailed explanation for the generation and variations of the stop-band and pass-band has been given. Lumped equivalent circuit analysis model is developed as well, and the frequency tuning capability of the bandstop filter is studied. It shows that the filter stopband can be reconfigured by the loading capacitance. A1-bit2.5GHz-3GHz reconfigurable bandstop filter with wide band harmonic suppression ability is designed based on the proposed novel bandstop filter loaded with floating capacitors.
     Novel bandpass filter is designed based on SIW embedded with CSRR, and the HMSIW (Half-mode substrate integrated waveguide) structure of the filter is proposed. The passband tunable mechanics of the HMSIW filter is studied, and tunable HMSIW filters are designed. Novel mixed coupled microstrip LC bandpass filters are presented, and the tunable mechanics of the structures are studied. Based on electric coupling coefficient compensation, a modified tunable circuit model with constant fractional/absolute bandwidth is presented. The main contributions of the work on bandpass filters are listed as follows:
     (1) CSRR loaded substrate integrated waveguide (SIW) and half mode substrate integrated waveguide (HMSIW) filters are proposed and their applications to mechanical and electrical tunable/switchable bandpass filters (BPF) are studied. Novel SIW and HMSIW loaded with coupled CSRR achieve forward electromagnetic wave transmission below the waveguide cutoff frequency. The half mode configuration of the proposed SIW bandpass filter is an opening structure, and the proposed HMSIW BPF is suitable to load with the control elements. The electric/magnetic coupling effects and frequency responses reconfigurable mechanics of the proposed HMSIW structure were studied based on lumped equivalent circuit model. By using floating capacitors with mechanical switches, PIN diodes and semiconductor varactor diodes loaded on the HMSIW resonators, a1-bit HMSIW mechanical tunable BPF,1-bit electrical tunable BPF, and an electrical continuous tunable BPF are demonstrated with good spurious suppression characteristics and excellent out of band rejection.
     (2) We propose and develop novel tunable BPF based on mixed coupled microstrip LC resonators. The equivalent circuit model of the proposed filter is presented. The filter can be reconfigured by tuning the capacitance of the LC resonators. A tunable BPF based on semiconductor varactor diode loaded microstrip LC resonators is demonstrated. Secondly, we propose and develop a novel microstrip LC filter and tunable BPFs with constant fractional/absolute bandwidth. The equivalent circuit model of the proposed microstrip LC filter is presented, and the tunable transmission coefficient of the microstrip LC filter is analyzed. It shows that the filter can be reconfigured by changing the capacitance of the LC resonators. Based on electric coupling coefficient compensation, a modified tunable circuit model with constant fractional/absolute bandwidth is presented. Finally, we propose and develop a novel3rd-order microstirp LC BPF, and three transmission zeros are obtained. The equivalent circuit model of the proposed filter is developed to study the filter's structure. It shows that the filters can be reconfigured by changing the capacitance of the microstrip LC resonators. For demonstration, semiconductor varactor diode loaded microstrip LC resonator has been adopted in our work to design the tunable filter.
引文
[1]HUR J, OCKGOO L, CHANG-HO L, et al. A Multi-Level and Multi-Band Class-D CMOS Power Amplifier for the LINC System in the Cognitive Radio Application [J]. IEEE Microwave and Wireless Components Letters,2010,20(6):352-4.
    [2]LIU W C, CHEN W R, WU C M. Printed double S-shaped monopole antenna for wideband and multiband operation of wireless communications [J]. IET Microwaves, Antennas and Propagation, 2004,151(6):473-6.
    [3]RAWAT K, HASHMI M S, GHANNOUCHI F M. Dual-Band RF Circuits and Components for Multi-Standard Software Defined Radios [J]. IEEE Circuits and Systems Magazine,2012,12(1): 12-32.
    [4]NEO W C E, YU L, XIAO-DONG L, et al. Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks [J]. IEEE Journal of Solid-State Circuits,2006,41 (9):2166-76.
    [5]MUECK M, PIIPPONEN A, KALLIOJA, et al. ETSI reconfigurable radio systems:status and future directions on software defined radio and cognitive radio standards [J]. IEEE Communications Magazine,2010,48(9):78-86.
    [6]ZHANG Q, SMIT G J M, SMIT L T, et al. A reconfigurable platform for cognitive radio; proceedings of the Mobile Technology,2005 2nd International Conference on Applications and Systems, Nov.2005[C].
    [7]O'DROMA M, MGEBRISHVILI N. Linearisation benefits for ultra-wideband amplifiers in SDR RF front-ends for reconfigurable radio environments; 2003 5th European Personal Mobile Communications Conference,22-25 April 2003,2003 [C].
    [8]DEJONGHE A, BOUGARD B, POLLIN S, et al. Green Reconfigurable Radio Systems [J]. IEEE Signal Processing Magazine,2007,24(3):90-101.
    [9]ZHANG Q, KOKKELER A B J, SMIT G J M. A Reconfigurable Radio Architecture for Cognitive Radio in Emergency Networks; 2006 The 9th European Conference on Wireless Technology,10-12 Sept.2006,2006 [C].
    [10]YI-MING C, SHENG-FUH C, CHENG-YU C, et al. A reconfigurable bandpass-bandstop filter based on varactor-loaded closed-ring resonators [Technical Committee] [J]. IEEE Microwave Magazine,2009,10(1):138-40.
    [11]REBEIZ G, ENTESARI K, REINES I, et al. Tuning in to RF MEMS [J]. IEEE Microwave Magazine, 2009,10(6):55-72.
    [12]PENG W, HUNTER I. Electronically Tunable Filters [J]. IEEE Microwave Magazine,2009,10(6): 46-54.
    [13]MANSOUR R. High-Q tunable dielectric resonator filters [J]. IEEE Microwave Magazine,2009, 10(6):84-98.
    [14]JIA-SHENG H. Reconfigurable planar filters [J]. IEEE Microwave Magazine,2009,10(6):73-83.
    [15]HYEON I J, JUNG T J, LIM S, et al. Package-Platformed Linear/Circular Polarization Reconfigurable Antenna Using an Integrated Silicon RF MEMS Switch [J]. ETRI Journal,2011, 33(5):802-5.
    [16]YOON W S, HAN S M, PYO S, et al. Reconfigurable Circularly Polarized Microstrip Antenna on a Slotted Ground [J]. ETRI Journal,2010,32(3):468-71.
    [17]GUSTAFSSON E M I, RUSU A, ISMAIL M. Design of a reconfigurable ADC for UWB/Bluetooth radios; proceedings of the Circuits and Systems and TAISA Conference,2008 NEWCAS-TAISA, 22-25 June 2008 [C].
    [18]NUZZO P, DE BERNARDINIS F, TERRENI P, et al. Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures [J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2008,55(6):1441-54.
    [19]CHANDRASHEKAR K, CORSI M, FATTARUSO J, et al. A 20-MS/s to 40-MS/s Reconfigurable Pipeline ADC Implemented With Parallel OTA Scaling [J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2010,57(8):602-6.
    [20]HENG Z, JUNHUA T, CHAO Z, et al. A 0.6-to-200MSPS speed reconfigurable and 1.9-to-27mW power scalable 10bit ADC; proceedings of the ESSCIRC (ESSCIRC),2011,12-16 Sept.2011,2011 [C].
    [21]TUTTLEBEE W H W. Software-defined radio:facets of a developing technology [J]. IEEE Personal Communications,1999,6(2):38-44.
    [22]MITOLA J. The software radio architecture [J]. IEEE Communications Magazine,1995,33(5): 26-38.
    [23]RICHARD R, GORE W. A Nonlinear Filter for Non-Gaussian Interference [J]. IEEE Transactions on Communications Systems,1963,11(4):436-43.
    [24]ABIDI A A. The Path to the Software-Defined Radio Receiver [J]. IEEE Journal of Solid-State Circuits,2007,42(5):954-66.
    [25]CHYUEN-WEI A, YUANJIN Z, CHUN-HUAT H. A Multi-band CMOS Low Noise Amplifier for Multi-standard Wireless Receivers; IEEE International Symposium on the Circuits and Systems (ISCAS 2007),27-30 May 2007,2007 [C].
    [26]ANDERSSON S, RAMZAN R, DABROWSKI J, et al. Multiband direct RF-sampling receiver front-end for WLAN in 0.13um CMOS; 2007 18th European Conference on the Circuit Theory and Design,27-30 Aug.2007,2007 [C].
    [27]SARWANA S, KIRICHENKO D E, DOTSENKO V V, et al. Multi-Band Digital-RF Receiver [J]. IEEE Transactions on Applied Superconductivity,2011,21(3):677-80.
    [28]DO-HOON K, KYU-MIN K, CHUNGYONG L. A multi-band OFDM ultra-wideband SoC in 90 nm CMOS technology [J]. IEEE Transactions on Consumer Electronics,2011,57(3):1064-70.
    [29]WENXING T, JIA-SHENG H. Varactor-Tuned Dual-Mode Bandpass Filters [J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(8):2213-9.
    [30]PENG WEN W, HUNTER I C. A New Class of Low-Loss High-Linearity Electronically Reconfigurable Microwave Filter [J]. IEEE Transactions on Microwave Theory and Techniques, 2008,56(8):1945-53.
    [31]李玲玉,童富,杨月寒et al. MEMS可变电容的研究现状及进展[J].微纳电子技术,2008,05):287-92.
    [32]ZINE-EL-ABIDINE I, OKONIEWSKI M, MCRORY J. RF MEMS tunable inductor; proceedings of the IEEE Microw, Radar Wireless Conf, F,2004 [C].
    [33]TIGGELMAN M P J, REIMANN K, VAN RIJS F, et al. On the Trade-Off Between Quality Factor and Tuning Ratio in Tunable High-Frequency Capacitors [J]. IEEE Transactions on Electron Devices, 2009,56(9):2128-36.
    [34]YEH J A, CHANG C A, CHIH-CHENG C, et al. Microwave characteristics of liquid-crystal tunable capacitors [J]. IEEE Electron Device Letters,2005,26(7):451-3.
    [35]FANG D-M, YUAN Q, LI X-H, et al. Electrostatically driven tunable radio frequency inductor [J]. Microsystem Technologies,2010,16(12):2119-22.
    [36]STIBER S. Electronically Tunable Circuit Elements [J]. IRE Transactions on Military Electronics, 1960, MIL-4(4):527-32.
    [37]SEKAR V, ENTESARI K. Inductively-loaded RF MEMS reconfigurable filters [J]. International Journal of RF and Microwave Computer-Aided Engineering,2009,19(6):692-700.
    [38]LUGO C, JR., PAPAPOLYMEROU J. Six-state reconfigurable filter structure for antenna based systems [J]. IEEE Transactions on Antennas and Propagation,2006,54(2):479-83.
    [39]ROY M K, KALMAR C, NEURGAONKAR R R, et al. A highly tunable radio frequency filter using bulk ferroelectric materials; 2004 14th IEEE International Symposium on the Applications of Ferroelectrics (ISAF-04),23-27 Aug.2004,2004 [C].
    [40]ZHENGZHENG W, SHIM Y, RAIS-ZADEH M. Miniaturized UWB Filters Integrated With Tunable Notch Filters Using a Silicon-Based Integrated Passive Device Technology [J]. IEEE Transactions on Microwave Theory and Techniques,2012,60(3):518-27.
    [41]YUK K Y, FOULADI S, RAMER R, et al. RF MEMS Switchable Interdigital Bandpass Filter [J]. IEEE Microwave and Wireless Components Letters,2012,22(1):44-6.
    [42]TAE-CHANG L, SEONG-JONG C, JAE-YEONG P. Ultracompact UHF Tunable Filter Embedded Into Multilayered Organic Packaging Substrate [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology,2012,2(1):46-52.
    [43]POPOV M A, MURTHY D V B, ZAVISLYAK I V, et al. Magnetic field tunable 18-36 GHz dielectric bandpass filter [J]. Electronics Letters,2012,48(2):98-9.
    [44]JOSHI H, SIGMARSSON H H, SUNGWOOK M, et al. High Q Narrow-Band Tunable Filters with Controllable Bandwidth [J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(12): 3525-33.
    [45]JOSHI H, SIGMARSSON H H, SUNGWOOK M, et al. High Q fully reconfigurable tunable bandpass filters [J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(12): 3525-33.
    [46]JUSEOP L, NAGLICH E J, CHAPPELL W J. Frequency Response Control in Frequency-Tunable Bandstop Filters [J]. IEEE Microwave and Wireless Components Letters,2010,20(12):669-71.
    [47]LIU X, KATEHI L P B, CHAPPELL W J, et al. Power Handling of Electrostatic MEMS Evanescent-Mode (EVA) Tunable Bandpass Filters [J]. IEEE Transactions on Microwave Theory and Techniques,2012,60(2):270-83.
    [48]MOON S, SIGMARSSON H H, JOSHI H, et al. Substrate Integrated Evanescent-Mode Cavity Filter With a 3.5 to 1 Tuning Ratio [J]. IEEE Microwave and Wireless Components Letters,2010,20(8): 450-2.
    [49]NAGLICH E J, JUSEOP L, PEROULIS D, et al. A Tunable Bandpass-to-Bandstop Reconfigurable Filter With Independent Bandwidths and Tunable Response Shape [J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(12):3770-9.
    [50]NAGLICH E J, LEE J, PEROULIS D, et al. Bandpass-Bandstop Filter Cascade Performance Over Wide Frequency Tuning Ranges [J]. IEEE Transactions on Microwave Theory and Techniques,2010, 58(12):3945-53.
    [51]NAGLICH E J, LEE J, PEROULIS D, et al. Extended Passband Bandstop Filter Cascade With Continuous 0.85-6.6-GHz Coverage [J]. IEEE Transactions on Microwave Theory and Techniques, 2012,60(1):21-30.
    [52]NAGLICH E J, LEE J, PEROULIS D, et al. Switchless Tunable Bandstop-to-All-Pass Reconfigurable Filter [J]. IEEE Transactions on Microwave Theory and Techniques,2012,60(5): 1258-65.
    [53]XIAOGUANG L, KATEHI L P B, CHAPPELL W J, et al. High-Q Tunable Microwave Cavity Resonators and Filters Using SOI-Based RF MEMS Tuners [J]. Journal of Microelectromechanical Systems,2010,19(4):774-84.
    [54]XUN G, MARGOMENOS A, BOSUI L, et al. Precision fabrication techniques and analysis on high-Q evanescent-mode resonators and filters of different geometries [J]. IEEE Transactions on Microwave Theory and Techniques,2004,52(11):2557-66.
    [55]SANG-JUNE P, REBEIZ G M. Low-Loss Two-Pole Tunable Filters With Three Different Predefined Bandwidth Characteristics [J]. IEEE Transactions on Microwave Theory and Techniques, May 2008, 56(5):1137-48.
    [56]EL-TANANI M A, REBEIZ G M. A Two-Pole Two-Zero Tunable Filter With Improved Linearity [J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(4):830-9.
    [57]EL-TANANI M A, REBEIZ G M. Corrugated Microstrip Coupled Lines for Constant Absolute Bandwidth Tunable Filters [J]. IEEE Transactions on Microwave Theory and Techniques,2010, 58(4):956-63.
    [58]CHIOU Y C, REBEIZ G M. A Tunable Three-Pole 1.5-2.2-GHz Bandpass Filter With Bandwidth and Transmission Zero Control [J]. IEEE Transactions on Microwave Theory and Techniques,2011, 59(11):2872-8.
    [59]CHIOU Y C, REBEIZ G M. A Quasi Elliptic Function 1.75-2.25 GHz 3-Pole Bandpass Filter With Bandwidth Control [J]. IEEE Transactions on Microwave Theory and Techniques, Feb.2012,60(2): 244-9.
    [60]CHENG C C, REBEIZ G M. High-Q 4-6-GHz Suspended Stripline RF MEMS Tunable Filter With Bandwidth Control [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(10): 2469-76.
    [61]YI-CHYUN C, REBEIZ G M. A Tunable Three-Pole 1.5–2.2-GHz Bandpass Filter With Bandwidth and Transmission Zero Control [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(11):2872-8.
    [62]YI-CHYUN C, REBEIZ G M. A Quasi Elliptic Function 1.75–2.25 GHz 3-Pole Bandpass Filter With Bandwidth Control [J]. IEEE Transactions on Microwave Theory and Techniques,2012, 60(2):244-9.
    [63]SEKAR V, ARMENDARIZ M, ENTESARI K. A 1.2-1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(4): 866-76.
    [64]SEKAR V, ENTESARI K. A Half-Mode Substrate-Integrated-Waveguide Tunable Filter Using Packaged RF MEMS Switches [J]. IEEE Microwave and Wireless Component Letters, Jul.2012, 22(7):336-8.
    [65]PENDRY J, HOLDEN A, ROBBINS D, et al. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-84.
    [66]SMITH D R, PADILLA W J, VIER D C, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity [J]. Physics Review Letter,2000,84(4184-7.
    [67]SMITH D R, VIER D C, KROLL N, et al. Direct calculation of permeability and permittivity for a left-handed metamaterial [J]. Applied Physics Letters,2000,77(14):2246-8.
    [68]SHELBY R A, SMITH D R, NEMAT-NASSER S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial [J]. Applied Physics Letters,2001,78(4): 489-91.
    [69]SHELBY R A, SMITH D R, SCHULTZ S. Experimental Verification of a Negative Index of Refraction [J]. Science,2001,292(77-9.
    [70]MAKIMOTO M. Microstrip-line split-ring resonators and their application to bandpass filters [J]. Electron Commun Jpn 2, Electron,1989,72(5):104-13.
    [71]GIL I, BONACHE J, GARCIA-GARCIA J, et al. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators [J]. IEEE Transactions on Microwave Theory and Techniques, 2006,54(6):2665-74.
    [72]BAENA J D, BONACHE J, MARTIN F, et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(4):1451-61.
    [73]BONACHE J, GIL I, GARCIA-GARCIA J, et al. Novel microstrip bandpass filters based on complementary split-ring resonators [J]. IEEE Transactions on Microwave Theory and Techniques, 2006,54(1):265-71.
    [74]GIL I, GARCIA-GARCIA J, BONACHE J, et al. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies [J]. Electronics Letters,2004,40(21):1347-8.
    [75]BILOTTI F, TOSCANO A, VEGNI L. Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples [J]. IEEE Transactions on Antennas and Propagation,2007,55(8):2258-67.
    [76]JIAFU W, SHAOBO Q, ZHUO X, et al. A controllable magnetic metamaterial:split-ring resonator with rotated inner ring [J]. IEEE Transactions on Antennas and Propagation,2008,56(7):2018-22.
    [77]MARQUES R, MESA F, MARTEL J, et al. Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments [J]. IEEE Transactions on Antennas and Propagation,2003,51(10):2572-81.
    [78]WANG J, QU S, ZHANG J, et al. A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators [J]. Progress In Electromagnetics Research Letters,2009, 6(35?5.
    [79]VELEZ A, BONACHE J, MARTIN F. Metamaterial transmission lines with tunable phase and characteristic impedance based on complementary split ring resonators [J]. Microwave and Optical Technology Letters,2009,51(8):1966-70.
    [80]GENC A, BAKTUR R. A tunable bandpass filter based on varactor loaded split-ring resonators [J]. Microwave and Optical Technology Letters,2009,51(10):2394-6.
    [81]EKMEKCI E, TOPALLI K, AKIN T, et al. A tunable multi-band metamaterial design using micro-split SRR structures [J]. Optics Express,2009,17(18):16046-58.
    [82]BOUYGE D, CRUNTEANU A, ORLIANGES J C, et al. Reconfigurable bandpass filter based on split ring resonators and vanadium dioxide (VO2) microwave switches; proceedings of the 2009 Asia Pacific Microwave Conference (APMC 2009), Singapore, Singapore, F 7-10 December,2009 [C]. IEEE.
    [83]VELEZ A, BONACHE J, MARTIN F. Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines [J]. IEEE Microwave and Wireless Components Letters,2008,18(1):28-30.
    [84]LEI K, QIAN Z, HONGJIE Z, et al. Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods [J]. Optics Express,2008,16(12):8825-34.
    [85]KANG L, ZHAO Q, ZHAO H, et al. Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires [J]. Optics Express,2008,16(22):17269-75.
    [86]HO L, WON-SEOK J, SANG-HO L, et al. A tunable notch resonator based on varactor-loaded complementary split-ring resonators; proceedings of the 2008 IEEE International Workshop on Antenna Technology, Chiba, Japan, F 4-6 March,2008 [C]. IEEE.
    [87]HAND T, CUMMER S. Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings [J]. Journal of Applied Physics,2008,103(066105.
    [88]BOULAIS K A, RULE D W, SIMMONS S, et al. Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulating GaAs [J]. Applied Physics Letters,2008,93(4): 043518-1---3.
    [89]AI F, BAI Y, XU F, et al. Research on the tunable left-handed properties of split-ring resonator with ferrite substrate [J]. Acta Physica Sinica,2008,57(7):4189-94.
    [90]ZHANG F-L, ZHAO X-P. Tunable split ring resonator and its effect [J]. Acta Physica Sinica,2007,56(8):4661-7.
    [91]SHIOZAKI R F, HENN E A L, MAGALHAES K M F,et al. Tunable eletro-optical modulators based on a split-ring resonator [J]. Review of Scientific Instruments,2007,78(1):16103-1---3.
    [92]AYDIN K, OZBAY E. Capacitor-loaded split ring resonators as tunable metamaterial components [J]. Journal of Applied Physics,2007,101(2):24911.
    [93]XIAO Y, SU D, WANG Y, et al. The Laminating Tunable Notch Filter with Single Split Ring Resonator; The 2006 4th Asia-Pacific Conference on the Environmental Electromagnetics,2006 [C].
    [94]SHADRIVOV I V, MORRISON S K, KIVSHAR Y S. Tunable split-ring resonators for nonlinear negative-index metamaterials [J]. Optics Express,2006,14(20):
    [95]CENK C, SONDAS A, ERDEMLI Y. Tunable split ring resonator microstrip filter design, Mediterranean Microwave Symposium,2006 [C].
    [96]GIL I, BONACHE J, GARCIA-GARCIA J, et al. Tunable split rings resonators for reconfigurable metamaterial transmission lines,2005 European Microwave Conference, Paris, France,2005 [C].
    [97]PING Y, EKNOYAN O, TAYLOR H F. Polarisation-independent tunable bandpass filter utilising symmetric branch beam splitters [J]. Electronics Letters,2004,40(15):960-2.
    [98]SELVANAYAGAM M, ELEFTHERIADES G V. A Compact Printed Antenna With an Embedded Double-Tuned Metamaterial Matching Network [J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2354-61.
    [99]HAMDI A, KOUKI A B, SAMET A. Leaky coplanar waveguide antenna with tunable beamwidth and radiation angle using composite right/left-handed materials; proceedings of the 2009 Third International Conference on Quantum, Nano and Micro Technologies (ICQNM 2009), Cancun, Mexico, F 1-7 February,2009 [C]. IEEE.
    [100]KIVSHAR Y S. Nonlinear and tunable metamaterials [J]. Proc SPIE-Int Soc Opt Eng,2009, 7392(739217 (8 pp.)-(8 pp.).
    [101]GIL I, BONACHE J, GARCIA-GARCIA J, et al. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators [J]. IEEE Transactions on Microwave Theory and Techniques, Jun.2006,54(6):2665-74.
    [102]SENIOR D E, CHENG X, YOON Y K. Electrically Tunable Evanescent Mode Half-Mode Substrate-Integrated-Waveguide Resonators [J]. IEEE Microwave and Wireless Component Letters, Mar.2012,22(3):123-5.
    [103]中国科学院物理研究所205组.钇铁石榴石谐振子电调滤波器.科学出版社,1972.
    [104]殷连生,顾仲如.用于卫星地面接收机的一种电调滤波器[J].现代雷达,1988,06):66-71.
    [105]徐志成,郭永健.侧壁耦合多倍频程磁调带通滤波器[J].浙江大学学报,1986,02):
    [106]张礼科,任淑伦.YIG调谐滤波器——振荡器集成统调组件[J].磁性材料及器件,1983,04):11-5.
    [107]沈觉涟,张鹏翔,莫育俊.正交环耦合YIG电调滤波器设计分析[J].物理学报,1976,06):465-71.
    [108]黄漪.采用微带线环形谐振腔的变容二极管电调带通滤波器[J].现代雷达,1989,02):108-10.
    [109]XIU YIN Z, QUAN X. High-Selectivity Tunable Bandpass Filters With Harmonic Suppression [J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(4):964-9.
    [110]LI Y C, XUE Q. Tunable Balanced Bandpass Filter With Constant Bandwidth and High Common-Mode Suppression [J]. IEEE Transactions on Microwave Theory and Techniques, Oct. 2011,59(10):2452-60.
    [111]CHEN J X, SHI J, BAO Z H, et al. Tunable and Switchable Bandpass Filters Using Slot-Line Resonators [J]. Progress in Electromagnetics Research,2011,111(25-41.
    [112]ZHANG X Y, CHAN C H, XUE Q, et al. RF Tunable Bandstop Filters With Constant Bandwidth Based on a Doublet Configuration [J]. IEEE Transaction on Industral Electronics, Feb.2012,59(2): 1257-65.
    [113]ZHANG X Y, ZHANG Y B, WANG X Y, et al. TUNABLE BANDPASS FILTER WITH CONTINUOUSLY-TUNED CENTER FREQUENCY AND BANDWIDTH [J]. Journal of Electromagnetic Waves and Applications,2012,26(8-9):1048-58.
    [114]ZHANG N B, DENG Z L, SHU C, et al. Design and Analysis of a Tunable Bandpass Filter Employing RF MEMS Capacitors [J]. IEEE Electron Device Letters, Oct.2011,32(10):1460-2.
    [115]WEI F, CHEN L, SHI X W, et al. Compact UWB bandpass filter with tunable notch band based on folded SIR [J]. Electronics Letters,2011,47(22):1229-30.
    [116]WEI F, CHEN L, SHI X W, et al. UWB BANDPASS FILTER WITH ONE TUNABLE NOTCH-BAND BASED ON DGS [J]. Journal of Electromagnetic Waves and Applications,2012, 26(5-6):673-80.
    [117]LIU B, WEI F, ZHANG H, et al. A TUNABLE BANDPASS FILTER WITH SWITCHABLE BANDWIDTH [J]. Journal of Electromagnetic Waves and Applications,2011,25(2-3):223-32.
    [118]LIU B, WEI F, WU Q Y, et al. A TUNABLE BANDPASS FILTER WITH CONSTANT ABSOLUTE BANDWIDTH [J]. Journal of Electromagnetic Waves and Applications,2011,25(11-12):1596-604.
    [119]GUO X L, JIN Y. Miniature and tunable millimeter-wave lowpass filter with MEMS switch [J]. Solid-State Electron,2011,63(1):145-8.
    [120]CHEN J X, BAO Z H, XU C, et al. UNIPLANAR TUNABLE BANDPASS FILTER USING CENTRALLY-LOADED SLOT-LINE RESONATOR [J]. Microwave and Optical Technology Letters,2010,52(12):2805-7.
    [121]XUE R F, YUAN B, MAO J, et al. HF high power electronically tunable helical resonator filter [J]. International Journal of Electronics,2006,93(4):269-75.
    [122]JIANG L, CHANGZHI L, WANZHAO C, et al. A Tunable Microstrip Bandpass Filter With Two Independently Adjustable Transmission Zeros [J]. IEEE Microwave and Wireless Components Letters,2011,21(2):74-6.
    [123]YANG G M, OBI O, WEN G Y, et al. Design of Tunable Bandpass Filters With Ferrite Sandwich Materials by Using a Piezoelectric Transducer [J]. IEEE Transaction on Magnitics,2011,47(10): 3732-5.
    [124]JIANG H, LACROIX B, CHOI K, et al. Ka- and U-Band Tunable Bandpass Filters Using Ferroelectric Capacitors [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(12): 3068-75.
    [125]WANG X H, WANG B Z, ZHANG H L, et al. A tunable bandstop resonator based on a compact slotted ground structure [J]. IEEE Transactions on Microwave Theory and Techniques,2007,55(9): 1912-8.
    [126]YU Y W, ZHU J, SHI Y, et al. A 12-16 GHz microelectromechanical system-switchable bandpass filter [J]. Journal of Microelectromechanical Systems,2012,22(7):
    [127]XIANG Q Y, FENG Q Y, HUANG X G. Half-mode substrate integrated waveguide (HMSIW) filters and its application to tunable filters [J]. Journal of Electromagnetic Waves and Applications, Oct. 2011,25(14-15):2043-53.
    [128]XIANG Q Y, FENG Q Y, HUANG X G, et al. Substrate integrated waveguide filters and mechanical/electrical reconfigurable half-mode substrate integrated waveguide filters [J]. Journal of Electromagnetic Waves and Applications, Sep.2012,26(13):1756-66.
    [129]XIANG Q Y, FENG Q Y, HUANG X G. A Novel Microstrip Bandstop Filter and its Application to Reconfigurable Filter [J]. Journal of Electromagnetic Waves and Applications,2012,26(8-9): 1039-47.
    [130]HUANG X, FENG Q, XIANG Q. Bandpass Filter With Tunable Bandwidth Using Quadruple-Mode Stub-Loaded Resonator [J]. IEEE Microwave and Wireless Component Letters, Apr.2012,22(4): 176-8.
    [131]MITOLA Ⅲ J, MAGUIRE JR G Q. Cognitive radio:making software radios more personal [J]. IEEE Personal Communications,1999,6(4):13-8.
    [132]GARCIA-GARCIA J, MARTIN F, FALCONE F, et al. Microwave filters with improved stopband based on sub-wavelength resonators [J]. IEEE Transactions on Microwave Theory and Techniques, 2005,53(6):1997-2006.
    [133]MARTIN F, BONACHE J, FALCONE F, et al. Split ring resonator-based left-handed coplanar waveguide [J]. Applied Physics Letters,2003,83(22):4652-4.
    [134]MARTIN F, FALCONE F, BONACHE J, et al. Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators [J]. IEEE Microwave and Wireless Components Letters, 2003,13(12):511-3.
    [135]SIMONS R N, SIMONS. Coplanar waveguide circuits, components, and systems [M]. Wiley Online Library,2001.
    [136]HAND T, CUMMER S. Characterization of tunable metamaterial elements using MEMS switches [J]. IEEE Antennas Wirel Propag Lett,2007,6(401-4.
    [137]RADKOVSKAYA A, SHAMONIN M, STEVENS C, et al. Resonant frequencies of a combination of split rings:Experimental, analytical and numerical study [J]. Microwave and Optical Technology Letters,2005,46(5):473-6.
    [138]XIAN QI L, TIE JUN C. Controlling the Bandwidth of Split Ring Resonators [J]. IEEE Microwave and Wireless Components Letters,2008,18(4):245-7.
    [139]PATEL C D, REBEIZ G M. High-Q 3b/4b RF MEMS Digitally Tunable Capacitors for 0.8-3 GHz Applications [J]. IEEE Microwave and Wireless Components Letters,2012,22(8):394-6.
    [140]RUMSEY I, PIKET-MAY M, KELLY P K. Photonic bandgap structures used as filters in microstrip circuits [J]. IEEE Microw Guided Wave Lett,1998,8(10):336-8.
    [141]MAO S G, CHEN M Y. A novel periodic electromagnetic bandgap structure for finite-width conductor-backed coplanar waveguides [J]. IEEE Microwave and Wireless Components Letters, 2001,11(6):261-3.
    [142]AHN D, PARK J S, KIM C S, et al. A design of the low-pass filter using the novel microstrip defected ground structure [J]. IEEE Transactions on Microwave Theory and Techniques,2001,49(1): 86-93.
    [143]FALCONE F, LOPETEGI T, BAENA J D, et al. Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators [J]. IEEE Microwave and Wireless Components Letters,2004,14(6):280-2.
    [144]BONACHE J, GIL I, GARCIA-GARCIA J, et al. Split rings resonators:key particles for microwave device design; 2005 Spanish Conference on Electron Devices,2005 [C].
    [145]ABID A, HU Z. Sharp cut-off, miniaturized metamaterial binomial microstrip low-pass filter [J]. Microwave and Optical Technology Letters,2007,49(10):2406-9.
    [146]ALI A, HU Z. Microstrip patch antenna incorporating negative permittivity metamaterial for harmonic suppression, The Second European Conference on Antennas and Propagation, Edinburgh, United kingdom,2007 [C].
    [147]BONACHE J, SISO G, GIL M, et al. Application of Composite Right/Left Handed (CRLH) Transmission Lines based on Complementary Split Ring Resonators (CSRRs) to the Design of Dual-Band Microwave Components [J]. IEEE Microwave and Wireless Components Letters,2008, 18(8):524-6.
    [148]AZNAR F, VELEZ A, BONACHE J, et al. Compact lowpass filters with very sharp transition bands based on open complementary split ring resonators [J]. Electronics Letters,2009,45(6):316-7.
    [149]JIAN-QIANG G, QING-XIN C. Synthesis of resonant-type CRLH transmission lines based on CSRR with dual-band behavior; International Conference on Microwave and Millimeter Wave Technology (ICMMT 2008),21-24 April 2008 [C].
    [150]ZHANG Q L, YIN W Y, HE S, et al. Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators [J]. Progress In Electromagnetics Research, 2011,111(419-32.
    [151]PARK W Y, LIM S. Bandwidth Tunable and Compact Band-Pass Filter (BPF) Using Complementary Split Ring Resonators (CSRRS) on Substrate Integrated Waveguide (SIW) [J]. Journal of Electromagnetic Waves and Applications,24,2010,17(18):2407-17.
    [152]YUAN DAN D, TAO Y, ITOH T. Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators and Its Applications to Miniaturized Waveguide Filters [J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(9):2211-23.
    [153]FU S H, TONG C M. A novel CSRR-based defected ground structure with dual-bandgap characteristics [J]. Microwave and Optical Technology Letters,2009,51(12):2908-10.
    [154]WU G L, MU W, DAI X W, et al. Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS [J]. Progress In Electromagnetics Research,2008, 78(17-24.
    [155]GENG J P, LI J, JIN R H, et al. The development of curved microstrip antenna with defected ground structure [J]. Progress In Electromagnetics Research,2009,98(53-73.
    [156]KAZEROONI M, CHELDAVI A, KAMAREI M. Unit length parameters, transition sharpness and level of radiation in defected microstrip structure (DMS) and defected ground structure (DGS) interconnections [J]. Progress in Electromagnetics Research,2009,10(93-102.
    [157]ZHANG S, XIAO J, LI Y. Novel microstrip band-stop filters based on complementary split ring resonators [J]. Microwave journal,2006,49(11):
    [158]LA D, LU Y, SUN S, et al. A novel compact bandstop filter using defected microstrip structure [J]. Microwave and Optical Technology Letters,2011,53(2):433-5.
    [159]LIU H W, ZHANG Z C, WANG S, et al. Compact dual-band bandpass filter using defected microstrip structure for GPS and WLAN applications [J]. Electronics Letters,2010,46(21):1444-5.
    [160]NASER-MOGHADASI M, ALAMOLHODA M, RAHMATI B. Spurious-response suppression in microstrip Parallel-Coupled bandpass filters by using Defected Microstrip Structures [J]. IEICE Electronics Express,2010,8(2):70-5.
    [161]GHALIBAFAN J, FALLAHZADEH S, KOMJ ANI N, et al. Design of a Compact Hairpin Filter with Spurious Suppression [J]. Journal of Electromagnetic Waves and Applications,2011,25(7):1059-67.
    [162]FALLAHZADEH S, BAHRAMI H, AKBARZADEH A, et al. High-Isolation Dual-Frequency Operation Patch Antenna Using Spiral Defected Microstrip Structure [J]. IEEE Antennas and Wireless Propagation Letters,2010,9(122-4.
    [163]HONG J S. Couplings of asynchronously tuned coupled microwave resonators [J]. IET Microwaves, Antennas and Propagation,2000,147(5):354-8.
    [164]WU B, SU T, LI B, et al. Design of tubular filter based on curve-fitting method [J]. Journal of Electromagnetic Waves and Applications,2006,20(8):1071-80.
    [165]F.SHIGEKI. Waveguide line. Feb.1994.-
    [166]PILOTO A J, LEAHY K A, FLANICK B A, et al. Waveguide filters having a layered dielectric structure.1995-.
    [167]HIROKAWA J, ANDO M. Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates [J]. IEEE Transactions on Antennas and Propagation,1998,46(5): 625-30.
    [168]UCHIMURA H, TAKENOSHITA T, FUJII M. Development of a "laminated waveguide" [J]. IEEE Transactions on Microwave Theory and Techniques,1998,46(12):2438-43.
    [169]CASSIVI Y, PERREGRINI L, ARCIONI P, et al. Dispersion characteristics of substrate integrated rectangular waveguide [J]. IEEE Microwave and Wireless Components Letters,2002,12(9):333-5.
    [170]XU F, ZHANG Y, HONG W, et al. Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(11):2221-7.
    [171]XU F, WU K. Guided-wave and leakage characteristics of substrate integrated waveguide [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(1):66-73.
    [172]YAN L, HONG W, WU K, et al. Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines [J]. IET Microwaves, Antennas and Propagation, Feb.2005,152(1):35-42..
    [173]XU F, WU K, HONG W. Domain decomposition FDTD algorithm combined with numerical TL calibration technique and its application in parameter extraction of substrate integrated circuits [J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(1):329-38.
    [174]TSENG C H, CHU T H. Measurement of frequency-dependent equivalent width of substrate integrated waveguide [J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(4): 1431-7.
    [175]YU R, ZAKI A, GIPPRICH J, et al. LTCC wide-band ridge-waveguide bandpass filters [J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(9):1836-40.
    [176]RONG Y, ZAKI K A, HAGEMAN M, et al. Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters [J]. IEEE Transactions on Microwave Theory and Techniques,1999, 47(12):2317-24.
    [177]RUIZ-CRUZ J A, SABBAGH M, ZAKI K A, et al. Canonical ridge waveguide filters in LTCC or metallic resonators [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(1): 174-82.
    [178]RUIZ-CRUZ J A, ZHANG Y, ZAKI K A, et al. Ultra-wideband LTCC ridge waveguide filters [J]. IEEE Microwave and Wireless Components Letters,2007,17(2):115-7.
    [179]CHOI S T, YANG K S, TOKUDA K, et al. A V-band planar narrow bandpass filter using a new type integrated waveguide transition [J]. IEEE Microwave and Wireless Components Letters,2004,14(12): 545-7.
    [180]HAO Z C, HONG W, CHEN X P, et al. Multilayered substrate integrated waveguide (MSIW) elliptic filter [J]. IEEE Microwave and Wireless Components Letters,2005,15(2):95-7.
    [181]CHEN X, HONG W, CUI T, et al. Substrate integrated waveguide (SIW) linear phase filter [J]. IEEE Microwave and Wireless Components Letters,2005,15(11):787-9.
    [182]CHEN X P, WU K. Substrate integrated waveguide cross-coupled filter with negative coupling structure [J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(1):142-9.
    [183]POTELON B, FAVENNEC J F, QUENDO C, et al. Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling [J]. IEEE Microwave and Wireless Components Letters, 2008,18(9):596-8.
    [184]MIRA F, MATEU J, COGOLLOS S, et al. Design of ultra-wideband substrate integrated waveguide (SIW) filters in zigzag topology [J]. IEEE Microwave and Wireless Components Letters,2009,19(5): 281-3.
    [185]STEPHENS D, YOUNG P R, ROBERTSON I D. Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(12):3832-8.
    [186]ZHANG Y L, HONG W, WU K, et al. Novel substrate integrated waveguide cavity filter with defected ground structure [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(4): 1280-7.
    [187]HAO Z, HONG W, CHEN J, et al. Single-layer substrate integrated waveguide directional couplers, [J]. IET Microwaves, Antennas and Propagation, Oct.2006,153(5):426-431.
    [188]DJERAFI T, WU K. Super-compact substrate integrated waveguide cruciform directional coupler [J]. IEEE Microwave and Wireless Components Letters,2007,17(11):757-9.
    [189]SONG K, FAN Y, ZHANG Y. Eight-way substrate integrated waveguide power divider with low insertion loss [J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(6):1473-7.
    [190]SONG K, FAN Y, ZHOU X. X-band broadband substrate integrated rectangular waveguide power divider [J]. Electronics Letters,2008,44(3):211-3.
    [191]ZHANG Z Y, WU K. A broadband substrate integrated waveguide (SIW) planar balun [J]. IEEE Microwave and Wireless Components Letters,2007,17(12):843-5.
    [192]SELLAL K, TALBI L, DENIDNI T, et al. Design and implementation of a substrate integrated waveguide phase shifter [J]. IET Microwaves, Antennas & Propagation,2008,2(2):194-9.
    [193]D'ORAZIO W, WU K, HELSZAJN J. A substrate integrated waveguide degree-2 circulator [J]. IEEE Microwave and Wireless Components Letters,2004,14(5):207-9.
    [194]D'ORAZIO W, WU K. Substrate-integrated-waveguide circulators suitable for millimeter-wave integration [J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(10):3675-80.
    [195]XU X, BOSISIO R G, WU K. A new six-port junction based on substrate integrated waveguide technology [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(7):2267-73.
    [196]MOLDOVAN E, BOSISIO R G, WU K. W-band multiport substrate-integrated waveguide circuits [J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(2):625-32.
    [197]LUO G Q, HONG W, HAO Z C, et al. Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology [J]. IEEE Transactions on Antennas and Propagation,2005,53(12):4035-43.
    [198]LUO G Q, HONG W, TANG H J, et al. Triband frequency selective surface with periodic cell perturbation [J]. IEEE Microwave and Wireless Components Letters,2007,17(6):436-8.
    [199]LUO G Q, HONG W, LAI Q H, et al. Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response [J]. IEEE Transactions on Microwave Theory and Techniques,2007,55(12):2481-7.
    [200]YAN L, HONG W, HUA G, et al. Simulation and experiment on SIW slot array antennas [J]. IEEE Microwave and Wireless Components Letters,2004,14(9):446-8.
    [201]LUO G Q, HU Z F, DONG L X, et al. Planar slot antenna backed by substrate integrated waveguide cavity [J]. IEEE Antennas and Wireless Propagation Letters,2008,7(236-9.
    [202]CHENG Y J, HONG W, WU K, et al. Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications [J]. IEEE Transactions on Antennas and Propagation, 2008,56(8):2504-13.
    [203]CHEN P, HONG W, KUAI Z, et al. A multibeam antenna based on substrate integrated waveguide technology for MIMO wireless communications [J]. IEEE Transactions on Antennas and Propagation, 2009,57(6):1813-21.
    [204]CASSIVI Y, WU K. Low cost microwave oscillator using substrate integrated waveguide cavity [J]. IEEE Microwave and Wireless Components Letters,2003,13(2):48-50.
    [205]ZHONG C, XU J, YU Z, et al. Ka-Band Substrate IntegratedWaveguide Gunn Oscillator [J]. IEEE Microwave and Wireless Components Letters,2008,18(7):461-3.
    [206]CHEN J X, HONG W, HAO Z C, et al. Development of a low cost microwave mixer using a broad-band substrate integrated waveguide (SIW) coupler [J]. IEEE Microwave and Wireless Components Letters,2006,16(2):84-6.
    [207]ABDOLHAMIDI M, SHAHABADI M. X-band substrate integrated waveguide amplifier [J]. IEEE Microwave and Wireless Components Letters,2008,18(12):815-7.
    [208]SAMANTA K, STEPHENS D, ROBERTSON I.60 GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter [J]. Electronics Letters,2006,42(12):701-2.
    [209]SAMANTA K, STEPHENS D, ROBERTSON I. Design and performance of a 60-GHz multi-chip module receiver employing substrate integrated waveguides [J]. IET Microwaves, Antennas & Propagation,2007,1(5):961-7.
    [210]LI Z, WU K.24-GHz frequency-modulation continuous-wave radar front-end system-on-substrate [J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(2):278-85.
    [211]GRIGOROPOULOS N, SANZ-IZQUIERDO B, YOUNG P R. Substrate integrated folded waveguides (SIFW) and filters [J]. IEEE Microwave and Wireless Components Letters,2005,15(12): 829-31.
    [212]ALOTAIBI S K, HONG J S. Novel substrate integrated folded waveguide filter [J]. Microwave and Optical Technology Letters,2008,50(4):1111-4.
    [213]LIU B, HONG W, WANG Y Q, et al. Half mode substrate integrated waveguide (HMSIW) 3-dB coupler [J]. IEEE Microwave and Wireless Components Letters,2007,17(1):22-4.
    [214]WANG Y, HONG W, DONG Y, et al. Half mode substrate integrated waveguide (HMSIW) bandpass filter [J]. IEEE Microwave and Wireless Components Letters,2007,17(4):265-7.
    [215]ZHAI G H, HONG W, WU K, et al. Folded half mode substrate integrated waveguide 3 dB coupler [J]. IEEE Microwave and Wireless Components Letters,2008,18(8):512-4.
    [216]CRAVEN G F, MOK C. The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic [J]. IEEE Transactions on Microwave Theory and Techniques,1971, 19(3):295-308.
    [217]ESTEBAN J, CAMACHO-PENALOSA C, PAGE J E, et al. Simulation of negative permittivity and negative permeability by means of evanescent waveguide modes-theory and experiment [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(4):1506-14.
    [218]TIE JUN C, XIAN QI L, QIANG C, et al. Experiments on evanescent-wave amplification and transmission using metamaterial structures [J]. Physical Review B,2006,73(24):245119-1---8.
    [219]QIANG C, TIE JUN C. Realization of Left-Handed Transmission Structures Using the Substrate Integrated Waveguide Technology; International Symposium on Biophotonics, Nanophotonics and Metamaterials,2006 [C].
    [220]HONG J S. Couplings of asynchronously tuned coupled microwave resonators [J]. IET Microwaves Antennas and Propagation,2000,147(5):354-8.
    [221]ZHENG Y L, SAZEGAR M, MAUNE H, et al. Compact Substrate Integrated Waveguide Tunable Filter Based on Ferroelectric Ceramics [J]. IEEE Microwave and Wireless Component Letters, Sep. 2011,21(9):477-9.
    [222]BYUNG-WOOK K, SANG-WON Y. Varactor-tuned combline bandpass filter using step-impedance microstrip lines [J]. IEEE Transactions on Microwave Theory and Techniques, Apr.2004,52(4): 1279-83.
    [223]LEE J, SARABANDI K. An Analytic Design Method for Microstrip Tunable Filters [J]. IEEE Transactions on Microwave Theory and Techniques, Jul.2008,56(7):1699-706.
    [224]PISTONO E, FERRARI P, DUVILLARET L, et al. Hybrid Narrow-Band Tunable Bandpass Filter Based on Varactor Loaded Electromagnetic-Bandgap Coplanar Waveguides [J]. IEEE Transactions on Microwave Theory and Techniques, Aug.2005,53(8):2506-14.
    [225]VELEZ A, BONACHE J, MARTIN F. Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines [J]. IEEE Microwave and Wireless Component Letters, Jan.2008,18(1):28-30.
    [226]ENTESARI K, OBEIDAT K, BROWN A R, et al. A 25-75MHz RF MEMS Tunable Filter [J]. IEEE Transactions on Microwave Theory and Techniques, Nov.2007,55(11):2399-405.
    [227]PALEGO C, POTHIER A, CRUNTEANU A, et al. A Two-Pole Lumped-Element Programmable Filter With MEMS Pseudodigital Capacitor Banks [J]. IEEE Transactions on Microwave Theory and Techniques, Mar.2008,56(3):729-35.
    [228]HONG J S. Microstrip filters for RF/microwave applications.2nd ed.:John Wiley & Sons,2011.
    [229]DAWEI Z, GUO-CHUN L, CHIEN-FU S, et al. Narrowband lumped-element microstrip filters using capacitively-loaded inductors [J]. IEEE Transactions on Microwave Theory and Techniques, Dec. 1995,43(12):3030-6.
    [230]TAO Y, CHUNGUANG L, FEI L, et al. A Novel Quasi-Elliptic HTS Filter With Group-Delay Equalization Using Compact Quasi-Lumped Element Resonators in VHF Band [J]. IEEE Transactions on Applied Superconductivity, Apr.2009,19(2):69-75.
    [231]ZHANG-CHENG H, JIA-SHENG H. Ultra-Wideband Bandpass Filter Using Multilayer Liquid-Crystal-Polymer Technology [J]. IEEE Transactions on Microwave Theory and Techniques, Sep.2008,56(9):2095-100.
    [232]XIU YIN Z, QUAN X, CHI HOU C, et al. Low-Loss Frequency-Agile Bandpass Filters With Controllable Bandwidth and Suppressed Second Harmonic [J]. IEEE Transactions on Microwave Theory and Techniques, Jun.2010,58(6):1557-64.
    [233]EL-TANANI M A, REBEIZ G M. Corrugated Microstrip Coupled Lines for Constant Absolute Bandwidth Tunable Filters [J]. IEEE Transactions on Microwave Theory and Techniques, Apr.2010, 58(4):956-63.
    [234]K. C. GUPTA R G, I. BAHL, AND P. BHARTIS. Microstrip Lines and Slotlines. Boston, MA:Artech House,1996.
    [235]RADMANESH M M. Radio frequency and microwave electronics illustrated. Prentice Hall,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700