Nox4型NADPH氧化酶在TGF-β调节内皮细胞凋亡和表型分化中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     转化生长因子-β (TGF-β)在调节心血管生理和疾病中发挥多种作用,而其中重要的作用之一就是调节血管系统中的内皮细胞功能。TGF-β信号通路的失衡会导致胚胎血管发育的异常,而且TGF-β在出生后毛细血管新生中发挥重要的作用。除此之外,研究结果提示TGF-β能调节内皮细胞的增殖,凋亡,通透性变化和形态发生。有证据表明在有心血管疾病危险因素的患者中TGF-β血浆浓度是升高的,这些危险因素包括肥胖和糖尿病。而且,研究检测到患有先兆子痫的女性循环血中TGF-β的水平是升高的。在易患动脉粥样硬化的载脂蛋白E基因敲除小鼠中,TGF-β表达增加导致内皮细胞氧化应激和内皮功能紊乱。重要的是,TGF-β在内皮细胞中的生物学作用往往是矛盾的(或有保护作用或者是有害的),作用的不同取决于细胞的环境和细胞的类型。
     在内皮细胞中, TGF-β发挥作用主要由活化素受体样激酶1(ALK1)和ALK5两种膜受体介导。激活的ALK1受体磷酸化Smadl/5/8,然而ALK5的激活引起Smad2/3的磷酸化。这些活化的Smad蛋白与Smad4结合,作为一个转录激活复合物调节各种各样靶基因的表达,然而ALK1和ALK5的激活可能会引起不同的内皮细胞生物学效应。除这些经典信号途径外,最近研究提示NADPH氧化酶依赖的氧化还原机制或许介导了TGF-β生物学作用的调节。特别是,TGF-β特异性上调多种细胞中Nox4型NADPH氧化酶的表达。更重要的是,这些研究证实阻断Nox4的表达或功能抑制TGF-β对多种细胞功能的影响,提示Nox4在TGF-β信号通路中发挥重要的作用。
     多项证据表明TGF-β能引起不同类型内皮细胞的凋亡,然而TGF-β引起凋亡的信号机制还知之甚少。研究证实TGF-β引起肺毛细血管内皮细胞凋亡,这种作用依赖于ALK5-Smad2通路和下调抗凋亡基因Bcl-2和cFLIP。另一方面,多项研究指出p38丝裂原激活蛋白激酶(MAPK)介导了TGF-β引起的内皮细胞凋亡。然而,迄今为止鲜有研究表明TGF-β引起的内皮细胞凋亡涉及氧化还原依赖的信号途径。鉴于最近的结果显示活性氧簇(ROS)生成的增加或许在TGF-β引起的内皮细胞的凋亡中有重要作用,我们提出以下假设:Nox4依赖的氧化还原调节途径或许介导了TGF-β引起的内皮细胞的凋亡。
     研究目的
     1. TGF-β在内皮细胞凋亡中的作用
     2.Nox4氧化还原信号通路是否介导了TGF-β引起的内皮细胞凋亡
     3.MAPK信号通路在TGF-β引起内皮细胞凋亡中的作用及机制研究
     研究方法
     1.人内皮细胞培养
     人脐静脉内皮细胞HUVECs和永生化的人微细血管内皮细胞HMVECs购买自ATCC。细胞在含有5%胎牛血清的完全内皮细胞培养基(ECM)中培养,置于5%CO2,37℃条件的细胞培养箱中。待细胞长至融合时,用胰酶消化细胞进行传代培养,第3到6代之间的HUVECs用于实验。
     2.Caspase3/7活性测定
     培养在96孔板中的细胞经药物处理后,加入Caspase-Glo3/7试剂检测Caspase3/7活性。样品转移到白色96孔板中,用全波长扫描式多功能读数仪进行读板测定。
     3.蛋白质免疫印迹
     处理细胞后,用裂解液裂解细胞,提取细胞总蛋白,SDS-PAGE电泳分离蛋白样品,湿转法将蛋白转移到硝酸纤维素膜上,封闭后用特异性一抗4℃孵育过夜,然后二抗室温2小时。ECL化学发光液显影目的蛋白条带,LAS-4000化学发光仪检测。
     4. TUNEL法检测细胞凋亡
     末端脱氧核苷酸转移酶介导的dUTP缺口末端标记测定(TUNEL)法按照Millipore的步骤进行,其中标记的棕褐色为凋亡细胞的细胞核,绿色为正常细胞。随机取10个视野计数TUNEL阳性的细胞和总细胞数,TUNEL阳性细胞与总细胞的比值作为细胞凋亡率。
     5.ROS检测
     细胞内的ROS用DCFH-DA荧光染料检测,处理后的细胞加入DCFH-DA在37。C孵育20分钟并用激光共聚焦显微镜拍照留取图片,或者将DCFH-DA孵育的细胞悬液转移到96孔白板中检测荧光强度。
     6.线粒体膜电位(△ψm)的检测
     荧光探针JC-1用来检测线粒体膜电位的变化。药物处理后的细胞用JC-1进行染色,然后流式细胞术或者激光共聚焦显微镜检测红绿荧光的变化。
     7.Nox4干扰试验
     从备选的3条Nox4shRNA中挑选出干扰效率最高的一条进行实验,携带有Nox4shRNA和对照shRNA的慢病毒载体由上海吉玛公司构建。其中靶向Nox4的shRNA序列是5'GCTGTATATTGATGGTCCTTT3',对照shRNA序列为5'GGTGTCTTCGAATTTATGTCT3'。将慢病毒转染细胞48小时后进行后续实验。
     8.实时荧光定量PCR检测mRNA水平的表达
     TRIzol试剂提取处理细胞的总RNA,逆转录成cDNA,再用Taqman探针-引物体系进行PCR,18S作为管家基因检测:mRNA表达的相对变化。
     9.细胞免疫荧光法
     培养于Lab-Tek腔室玻片上的细胞固定后,加一抗和荧光二抗孵育,用DAPI复染细胞核,激光共聚焦显微镜拍照。
     10.统计学分析
     数据用均数±标准误表示,用SPSS18.0软件进行统计分析,非配对t检验或单因素方差分析(ANOVA)分别分析两组和多组数据,p<0.05认为有统计学意义。
     研究结果
     1. TGF-β引起人内皮细胞的凋亡反应
     用不同浓度的TGF-β刺激HUVECs24小时,发现TGF-β在浓度范围1ng/ml到20ng/ml时引起明显的caspase3/7活性增加和caspase3裂解。用lOng/ml TGF-β刺激HUVECs不同时间发现TGF-β引起的凋亡作用是随时间变化的,24和48小时效果最强。我们还选用了另一种内皮细胞HMVECs进行研究。用不同浓度的TGF-β刺激HMVECs24小时和用10ng/ml TGF-β刺激不同的时间发现,TGF-β以剂量依赖和时间依赖的方式引起HMVECs相似的凋亡反应。
     2. TGF-β引起内皮细胞凋亡是由ALK5受体介导的
     通过测定caspase3/7活性和蛋白质免疫印迹法检测caspase3裂解,我们发现TGF-β引起的内皮细胞的凋亡作用被ALK5的抑制剂SB431542所阻断。而且,结果显示TGF-β能引起内皮细胞线粒体膜电位的下降,这种作用也被SB431542所抑制。通过检测caspase3/7的活性,发现staurosporine引起的内皮细胞凋亡不能被SB431542所阻断,证明了SB431542在TGF-β凋亡作用中的特异性。
     3.TGF-β通过ROS引起内皮细胞凋亡
     TGF-β引起内皮细胞ROS生成增加,而且TGF-β引起的ROS增加被SB431542所抑制,说明TGF-β通过ALK5受体使细胞内ROS水平增加。两种ROS清除剂NAC和EUK-134均能阻断TGF-β引起的内皮细胞凋亡,而ROS清除剂本身有轻微的抗凋亡作用(无统计学意义)。
     4. TGF-β上调内皮细胞中Nox4的表达
     首先,用TGF-β刺激HUVECs发现TGF-β增加Nox4mRNA的表达和上调Nox4的蛋白表达水平。而加入ALK5受体抑制剂后,TGF-β上调Nox4表达的作用被抑制,说明TGF-β是通过ALK5受体激活引起Nox4转录和翻译水平的变化的。同时,我们用细胞免疫荧光的方法证实了TGF-β及ALK5对Nox4表达及分布的影响。Nox4不仅在胞浆中存在,还分布于细胞核中,TGF-β刺激后,胞浆和胞核中的Nox4都增加了。
     5.Nox4在TGF-β引起内皮细胞凋亡中的作用
     研究发现TGF-β引起的内皮细胞凋亡作用被Nox4shRNA所阻断,而本身Nox4shRNA没有明显的抗凋亡作用。用Nox4的抑制剂VAS2870预处理细胞后,发现VAS2870阻断了TGF-β对caspase3的激活,caspase3的裂解和线粒体膜电位的下降。
     6.MAPKs在TGF-β引起内皮细胞凋亡中的作用
     TGF-β刺激内皮细胞,p38的磷酸化增加,从12小时开始一直持续到48小时。相反,JNK的磷酸化水平只是在12小时一过性增高。我们用p38和JNK特异的激酶抑制剂预处理细胞,证明抑制p38通路能阻断TGF-β的致凋亡作用,而JNK抑制剂没有作用。为了进一步验证,我们用p38和JNK特异的siRNA干扰p38和JNK通路,发现结果与用激酶抑制剂相一致。
     7. TGF-β通过氧化还原信号途径激活MAPKs
     NAC预处理细胞后发现,NAC完全阻断了TGF-β引起的p38的磷酸化。然而,NAC本身则增加了JNK的磷酸化,而有NAC存在时TGF-β引起的JNK的磷酸化不明显。这些结果提示p38和JNK的激活都是氧化还原敏感的。而且,用VAS2870抑制Nox4的功能削弱了TGF-β引起的p38磷酸化水平的增加。不同于MAPKs,无论在基础状态,还是有NAC或VAS2870存在的条件下,TGF-β对Akt的磷酸化水平没有影响。
     结论
     1. TGF-β通过ALK5受体引起内皮细胞凋亡反应
     2. TGF-β通过增加Nox4表达和ROS的生成增加促进细胞凋亡
     3.p38介导了TGF-β引起的内皮细胞凋亡,并且是氧化还原依赖的
     研究背景
     ROS是生物系统中普遍存在的信号分子,ROS的来源主要是NADPH氧化酶。NADPH氧化酶(Nox)家族由7个成员组成,包括Noxl-5和Duox1、2,其中4种类型的NADPH氧化酶是血管系统中ROS的重要来源:Nox1, Nox2,Nox4和Nox5。NADPH氧化酶将电子从NADPH传递到氧分子从而产生ROS, ROS包括局部有效的超氧化物和作用持久的具有膜扩散特性的过氧化氢(H2O2)。Nox4与其他类型的NADPH氧化酶不同的是其在心血管组织中的高表达,独特的固有酶活性和主要产生ROS的类型是H2O2。
     Nox4是一个多效性的信号分子,具有多种功能,包括细胞凋亡、细胞生长、分化、血管新生和细胞骨架重构等。研究表明Nox4在很多心血管疾病中表达增加,比如粥样硬化、高血压、再狭窄、血管老化和纤维化等。最近越来越多的研究结果显示Nox4具有正反两方面的作用,由于Nox4过表达小鼠模型的成功建立,研究者得出了惊人的结果,Nox4实际上具有血管保护作用而非血管损伤作用。
     我们之前的研究表明在内皮细胞中Nox4表达的增加或许会通过激活ERK1/2MAPK通路增加内皮细胞增殖(认为是一个促进存活的作用)。因此在这项研究中,我们试图解释Nox4在调节内皮细胞凋亡和存活方面看似相反的作用。
     蛋白酪氨酸磷酸酶(PTPs)是ROS敏感的酶类,可以被ROS氧化而失去其酶活性。PTPs负调控多种受体酪氨酸激酶(RTKs),这些RTK的配体包括EGF、 IGF-1、PDGF和VEGF。PTP1B是第一个被提纯分离的经典型PTP,是2型糖尿病、肥胖和肿瘤的一个新的治疗靶点。PTEN作为一个重要的肿瘤抑制物也是一种PTP,研究发现其在大部分人类的肿瘤中突变。之前研究表明,PTPs通过去磷酸化磷脂酰肌醇(3,4,5)-三磷酸(PIP3)抑制Akt信号通路。我们在此部分探究PTPs及Akt是否参与了过表达Nox4对细胞凋亡的作用。
     研究目的
     1.过表达外源性Nox4在内皮细胞凋亡中的作用
     2.Akt通路及ERK1/2通路在过表达外源性Nox4抗内皮细胞凋亡中的作用
     3.PTPs是否参与了过表达外源性Nox4对Akt通路的激活及作用机制
     研究方法
     1.慢病毒或腺病毒过表达Nox4
     人类野生型Nox4的cDNA克隆购买自Origene,亚克隆到pLV.EX3d.P/neo-EF1A。表达Nox4或eGFP的慢病毒转染细胞,48小时之后进行后续实验。感谢Goldstein教授赠与的表达人野生型Nox4的腺病毒。
     2. Caspase3/7活性测定
     细胞经药物处理后,加入Caspase-Glo3/7试剂检测Caspase3/7活性。加入检测试剂的样品转移到白色96孔板中,读板测定。
     3.蛋白质免疫印迹
     裂解液裂解细胞,提取细胞总蛋白,SDS-PAGE电泳分离蛋白样品,将蛋白转移到硝酸纤维素膜上,封闭后一抗孵育过夜,然后二抗孵育2小时。ECL化学发光液显影目的蛋白条带,LAS-4000化学发光仪检测。
     4.细胞免疫荧光法
     培养于Lab-Tek腔室玻片上的细胞固定后,加一抗和荧光二抗孵育,用DAPI复染细胞核,激光共聚焦显微镜拍照。
     5.蛋白质免疫沉淀
     细胞裂解液预清洗之后,加入一抗和蛋白A或G琼脂糖珠进行孵育,然后通过离心去除琼脂糖珠。将蛋白样品通过SDS-PAGE电泳分离,转移到硝酸纤维素膜上,封闭后加一抗二抗孵育,最后化学发光检测蛋白条带。
     6.PTP1B活性测定
     处理细胞后,免疫沉淀获取PTP1B蛋白,用购买自Millipore的PTP比色试剂盒,按照说明书的方法检测PTP1B的活性。
     7.统计学分析
     数据用均数±标准误表示,用SPSS18.0软件进行统计分析,非配对t检验或单因素方差分析(ANOVA)分别分析两组和多组数据,p<0.05认为有统计学意义。
     研究结果
     1.过表达外源性Nox4对抗内皮细胞凋亡反应
     研究结果证实慢病毒或腺病毒过表达Nox4(vNox4)不仅抑制了内皮细胞的基础凋亡反应而且抑制了血清饥饿引起的内皮细胞凋亡,还减少了staurosporine导致的内皮细胞凋亡。另外,我们发现在内皮细胞中过表达Nox4后,再给予TGF-β刺激,并不能引起明显的凋亡反应。
     2.过表达外源性Nox4通过激活Akt发挥抗凋亡作用
     我们检测了vNox4对促进存活因子Akt和ERK1/2的作用,结果显示vNox4剂量依赖性增加Akt的磷酸化水平。但是,vNox4组与对照病毒组相比,并没有引起明显的ERK1/2激活。用Akt通路抑制剂Ⅶ或wortmannin处理细胞能明显减弱vNox4的抑制凋亡作用,而ERK1/2抑制剂U0126没有这种作用。我们也证实用特异性siRNA干扰Akt表达后部分阻断了vNox4的抗凋亡作用。鉴于TGF-β不影响Akt的磷酸化水平,以上数据提示vNox4对Akt的激活或许是内源性和过表达Nox4对凋亡反应作用不同的原因。
     3.过表达外源性Nox4与内源性Nox4亚细胞分布相同
     为了明确过表达Nox4和内源性Nox4是否存在亚细胞分布的不同,免疫荧光法检测过表达Nox4的细胞中Nox4的表达,发现其表达在胞浆和胞核中均增加,与之前TGF-β刺激后的反应相似,由此看来细胞分布不是过表达Nox4作用不同的原因。
     4. PTPs抑制剂对Akt磷酸化的影响
     为了研究vNox4激活Akt的信号机制,我们首先验证了两个涉及细胞内氧化还原信号途径的ROS敏感的PTP1B和PTEN受抑制之后是否影响Akt的磷酸化。实验结果表明PTP1B的抑制剂而非PTEN的抑制剂处理内皮细胞之后,Akt的磷酸化水平增加了。抑制PTP1B的作用类似于VEGF引起的作用,然而VEGF并没有在存在PTP1B抑制剂的条件下进一步增加Akt的磷酸化。相反,VEGF在存在和缺少PTEN抑制剂的条件下,对Akt有相似的激活作用。
     5. vNox4抑制PTP1B活性和增加VEGFR的激活
     为了进一步证明Nox4过表达对PTPIB功能的作用,我们检测了对照组细胞和Nox4过表达细胞免疫沉淀的PTPIB的磷酸酶活性,发现Nox4过表达抑制了PTPIB的活性。为了确定PTP1B活性的抑制是氧化还原敏感的,在所有样品中加入还原剂二硫苏糖醇(DTT),结果显示Nox4对PTP1B活性的影响被DTT阻断了。因为PTP1B是VEGF受体(VEGFR)信号途径的负调节因子,我们检测了vNox4和PTP1B抑制剂是否调节VEGFR2的磷酸化水平。免疫沉淀检测结果提示抑制PTP1B或者过表达Nox4均能增加VEGFR2的磷酸化。
     结论
     1.过表达外源性Nox4具有抗内皮细胞凋亡的作用
     2.Akt信号通路而非ERK1/2参与了Nox4的抗凋亡作用
     3.PTPs抑制Akt通路的激活
     4.过表达外源性Nox4通过抑制PTP1B的活性进而激活VEGFR
     研究背景
     细胞分化不仅是心血管的胚胎发育中一个重要的过程,而且在成年期也同样具有维持血管系统稳态的重要作用。内皮细胞动脉和静脉表型的错误界定会对循环系统的发育和功能造成严重的后果,比如在胚胎发育中的缺陷和死亡,另外还有动静脉畸形(AVM)。 AVM是遗传性毛细血管扩张症(HTT)的一个重要特点,而且脑动静脉畸形是导致年轻人颅内出血性中风的主要原因。人类和小鼠基因研究表明TGF-β信号通路在毛细血管新生中发挥重要作用,TGF-β信号通路组成成分的缺失会导致小鼠因为血管缺陷而胚胎死亡。以往研究发现TGF-β受体endoglin (TGF-β的辅助受体)或ALK1受体的缺失会导致类似于动静脉畸形血管异常的血管病理学改变,与HHT有关,这种病理变化往往伴随内皮细胞动静脉特异性的紊乱。
     间接的研究证据提示TGF-β信号通路或许参与了内皮细胞表型的特异性分化。在发育中,内皮细胞动脉和静脉的特异性分化是受严格转录调控的。某些细胞的标志物,比如酪氨酸激酶受体EphB4和其配体EphrinB2在细胞中特异性表达,EphrinB2主要在动脉内皮细胞中表达而EphB4主要在静脉内皮细胞中表达,这一对配体-受体被认为分别是动脉型内皮细胞和静脉型内皮细胞的标志物。
     静脉表型被认为是内皮细胞分化中的缺省状态,而Notch信号通路的激活(在VEGFA和sonic hedgehog的下游)注定细胞向动脉表型分化。进化上高度保守的Notch信号通路在哺乳动物中己发现4种Notch受体(Notch1-4)和5种Notch配体(Jagged1、2, DLL1、3、4),研究显示Notch信号通路在决定动脉细胞表型中发挥重要作用。细胞膜上的Notch配体与相邻细胞的受体结合,引起Y-分泌酶剪切跨膜受体形成Notch细胞内结构域(NICD),然后NICD从原来的受体上释放转位进入细胞核。进入细胞核的NICD与DNA结合蛋白CSL (RBP-Jκ/CBF1)和共同激活因子Mastermind-like (MAML)结合,激活下游靶基因HES和HEY家族的转录。
     有意思的是,越来越多的证据提示ROS介导的信号途径在干细胞或祖细胞分化中是一个重要的调节因子。但是,ROS在内皮细胞动静脉分化中的作用还知之甚少,因此,我们的研究的目的是探究TGF-β的氧化还原调节作用在内皮细胞动脉和静脉表型特异性变化中的潜在作用。
     研究目的
     1. TGF-β对内皮细胞动静脉标志物的影响
     2. TGF-β是否对Notch信号通路有作用
     3.氧化还原信号通路是否参与了TGF-β引起的内皮细胞表型变化
     研究方法
     1.实时荧光定量PCR检测mRNA表达
     TRIzol试剂提取细胞总RNA,逆转录成cDNA,再用Taqman探针-引物体系或SYBR Green法进行PCR, GAPDH或18S作为管家基因检测mRNA表达的相对变化。
     2.蛋白质免疫印迹
     裂解液裂解细胞,提取细胞总蛋白,测定蛋白浓度,SDS-PAGE电泳分离蛋白样品,将蛋白转移到硝酸纤维素膜上,封闭后用一抗、二抗孵育。ECL化学发光液显影目的蛋白条带,LAS-4000化学发光仪检测。
     3.细胞免疫荧光法
     生长于Lab-Tek腔室玻片上的细胞处理后固定,加一抗和荧光二抗孵育,用DAPI复染细胞核,激光共聚焦显微镜拍照。
     4.细胞核蛋白和胞浆蛋白的分离提取
     收集处理的内皮细胞,提取细胞的细胞核和细胞浆蛋白,SDS-PAGE电泳分离蛋白,进行western blot的后续操作,检验NICD的核转位情况。
     5.统计学分析
     数据用均数±标准误表示,用SPSS18.0软件进行统计分析,非配对t检验或单因素方差分析(ANOVA)分别分析两组和多组数据,p<0.05认为有统计学意义。
     研究结果
     1. TGF-β刺激HUVECs表达动脉标志物
     TGF-β上调动脉标志物EphrinB2的表达,而对静脉标志物EphB4的mRNA水平没有显著作用。TGF-β没有显著影响EphrinB2的蛋白水平。
     2. TGF-β增加Notch受体和配体及靶基因的表达
     检测不同Notch信号通路基因表达谱的变化,包括Notch受体(Notch1和Notch4)、Notch配体(Jagged1和DLL4)和Notch的靶基因(HEY1),结果显示TGF-β增加上述Notch信号通路标志物的表达。我们又用western blot验证了TGF-β对DLL4、Notchl和Jagged1的蛋白表达量的影响,结果与基因表达相似。
     3. TGF-β增加NICD的表达和促进核转位
     TGF-β处理增加了NICD的蛋白表达,并且用免疫荧光和蛋白质免疫印迹的方法证明TGF-β引起NICD的核转位,提示TGF-β激活了Notch信号通路。
     4. TGF-β未影响HMVECs的动静脉标志物的表达
     研究结果显示TGF-β对动脉标志物表达的影响是细胞特异性的,因为我们并没有观察到TGF-β对HMVECs的EphrinB2、EphB4、Notch1、Notch4、Jagged1或HEY1的表达有明显影响。
     5. TGF-β增加动脉标志物的表达是氧化还原依赖的
     在NAC存在的条件下,TGF-β与对照组相比,对动脉标志物表达没有显著的作用。我们发现应用外源性H202模拟了TGF-β对动脉标志物表达的作用。重要的是,我们发现在转染了慢病毒Nox4shRNA的内皮细胞中,TGF-β对Notch1、 Jagged1、HEY1和EphrinB2表达的影响减弱了。
     结论
     1. TGF-β细胞特异性刺激HUVECs向动脉表型转化
     2. TGF-β激活Notch信号通路
     3. TGF-β对内皮细胞的动脉型分化作用是氧化还原依赖的
Background
     Transforming growth factor-β (TGF-β) has pleiotropic effects in regulating cardiovascular physiology and disease, while one of the major targets of TGF-P in the vasculature is endothelial cells. Disruption of TGF-P signaling in endothelial cells results in impaired vascular development in the embryo, and TGF-P also has pivotal roles in postnatal angiogenesis. In addition, TGF-β has been implicated in modulating endothelial cell proliferation, apoptosis, permeability and morphogenesis. There is evidence that TGF-P concentration in the plasma is elevated in patients with risk factors of cardiovascular disease, including obesity and diabetes. Moreover, an increased level of circulating TGF-P was found in women with preeclampsia. In atherosclerosis-prone apolipoprotein(E)-deficient mice, systemic elevation of TGF-β expression induced endothelial oxidative stress and dysfunction. Remarkably, the biological effects of TGF-P in endothelial cells are often dichotomous (either protective or detrimental), depending on the cellular context and the type of endothelial cells involved.
     In endothelial cells, TGF-β-induced effects are mainly mediated by the membrane receptors activin receptor-like kinase (ALK)1and ALK5. Stimulation of the ALK1receptor phosphorylates Smadl/5/8, while stimulation of ALK5triggers phosphorylation of Smad2/3. These activated Smad proteins then work together with Smad4as a transcriptional activating complex to regulate the expression of various target genes, while activation of ALK1and ALK5may induce distinct cellular effects in endothelium. In addition to these canonical signaling pathways, emerging evidence suggests that NADPH oxidase-dependent redox mechanisms may also be involved in mediating the biological actions of TGF-β. In particular, TGF-P specifically upregulates expression of the Nox4type of NADPH oxidase in a variety of cells (including vascular cells). More importantly, these studies have demonstrated that blockade of Nox4expression or function inhibits TGF-β-induced effects on multiple cell functions, indicating a pivotal role of Nox4in TGF-β signaling.
     Several lines of evidence have shown that TGF-β can trigger an apoptotic response in different types of endothelial cells. However, the signaling mechanisms underlying this action of TGF-β are poorly understood. Lu et al. demonstrated that TGF-β-induced apoptosis in pulmonary microvascular endothelial cells was dependent on the ALK5-Smad2pathway and subsequent downregulation of the antiapoptotic genes Bcl-2and cFLIP. On the other hand, several studies have pointed to a critical role of activation of the p38mitogen-activated protein kinase (MAPK) in mediating TGF-β-induced endothelial apoptosis. Nevertheless, so far there is little information about whether TGF-β-induced apoptosis in endothelial cells involves redox-dependent signaling mechanisms. In light of some recent results showing that increased reactive oxygen species (ROS) production may have a prominent role in promoting cell apoptosis in response to TGF-β, we hypothesize that Nox4-dependent redox regulation may mediate TGF-P-induced endothelial cell apoptosis.
     Objectives
     1. To investigate the effect of TGF-β on endothelial apoptosis
     2. To clarify whether Nox4and redox signaling mediate TGF-β-induced endothelial apoptosis
     3. To explore the mechanisms of TGF-β-induced endothelial apoptosis and role of MAPKs
     Materials and Methods
     1. Cell culture
     HUVECs and immortalized HMVECs were purchased from the American Type Culture Collection (ATCC). Cells were cultured in complete endothelial cell medium (ECM) containing5%fetal bovine serum in a humidified incubator with5%CO2at37℃. HUVECs used for the experiments were between passages3and6.
     2. Caspase3/7activity assay
     Cells seeded in96-well plates were incubated with the Caspase-Glo3/7substrate reagent. The samples were transferred to a white-walled plate and the luminescence signal was measured in a Varioskan Flash plate reader.
     3. Western blot analysis
     Cells were homogenized in lysis buffer after stimulation, then protein samples were separated by SDS-PAGE and electro-transferred to nitrocellulose membranes. The membrane was blocked with5%nonfat milk and incubated with specific primary antibodies. Secondary HRP-conjugated antibodies were developed with ECL Prime reagents and detected with a LAS-4000luminescent image analyzer.
     4. TUNEL labeling
     TUNEL was performed using ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit (Merck Millipore) following the manufacturer's protocol. The number of TUNEL-positive cells were counted and averaged across10random fields from4independent experiments each.
     5. ROS measurement
     Intracellular ROS was measured with DCFH-DAnfluorescence. Cells were incubated with DCFH-DA at37℃for20min. After staining, cells were detected with a laser-scanning confocal microscope or transferred to a96-well white-walled plate to detect the fluorescent signal with a Varioskan Flash plate reader.
     6. Measurement of mitochondrial membrane potential (△Ψm)
     The fluorescent probe JC-1was used to determine changes in△Ψm. Cells were stained with JC-1and analyzed by either flow cytometry or confocal microscopy. Decreased△Ψm is reflected by the decrease in red fluorescence (dye accumulated in mitochondria).
     7. Nox4interference
     Lentiviral vectors carrying a shRNA targeting human Nox4were purchased from GenePharma (Shanghai, China). The targeting sequence for Nox4was5'GCTGTATATTGATGGTCCTTT3'.A scrambled sequence of5'GGTGTCTTCGAATTTATGTCT3'was used as control. Experiments were performed48hr after transfection
     8. Real-time PCR
     Total RNA was extracted with TRIzol reagent and reverse transcripted to cDNA. Real-time PCR was performed using predesigned Taqman probe-primer sets and18S was used as house keeping gene.
     9. Immunofluorescence
     Cells cultured on Lab-Tek chamber slides were fixed and then incubated with primary antibodies and Alexa Fluor594-conjugated secondary antibodies. After counter staining with DAPI, cells were photographed using a confocal microscope.
     10. Statistical analysis
     Data are presented as mean±standard error of the mean (SEM). Data analysis was performed with unpaired t-test or one-way analysis of variance (ANOVA) using SPSS18.0software. P<0.05was considered as statistically significant.
     Results
     1. TGF-P induces a moderate apoptotic response in human endothelial cells
     We found that TGF-β significantly increased caspase3/7activity and triggered caspase3cleavage from lng/ml to20ng/ml (Figure1B). We further demonstrated that the effects of TGF-β on apoptosis were time-dependent, with the strongest effects being observed at24and48hr. To confirm our findings in HUVECs, we treated HMVECs with TGF-β and showed that TGF-P induced similar apoptotic reactions in a dose-and time-dependent manner.
     2. TGF-β-induced apoptosis is dependent on ALK5
     Treatment with SB431542abolished the apoptotic response induced by TGF-p as indicated by caspase3/7activation and caspase3cleavage. Moreover, we showed that SB431542also prevented the collapse of mitochondrial membrane potential (△Ψm) in response to TGF-P as measured with JC-1staining. Moreover, we confirmed that SB431542had no effects on staurosporine-induced apoptosis.
     3. ROS mediates TGF-p-induced apoptosis
     TGF-P treatment enhanced intracellular ROS production in HUVECs, and this effect could be blocked by SB431542. We preincubated the cells with antioxidant compounds NAC (N-acetyl-L-cysteine) or EUK-134and showed that both NAC and EUK-134abrogated TGF-β-induced caspase3/7activation.
     4. TGF-P increases the expression of Nox4in mRNA and protein level
     We found that Nox4expression was increased by TGF-P in a time-and concentration-dependent manner as measured by real-time PCR and western blot, which was blocked by SB431542. Immunofluorescence experiments confirmed that TGF-β increased the abundance of Nox4protein, both in the nuclei and in the cytosol, and this effect was also blocked by SB431542.
     5. Nox4mediates TGF-β-induced endothelial apoptosis
     It was revealed that Nox4gene silencing blunted TGF-β-induced apoptosis, as determined by caspase3/7activity. To further confirm the results, we treated the cells with the pharmacological Nox inhibitor VAS2870, and showed that VAS2870also blocked caspase3/7activation, caspase3cleavage and disruption of△Ψm induced by TGF-p.
     6. Role of MAPKs in TGF-β-induced endothelial apoptosis
     TGF-P treatment increased phosphorylation of p38from12hr to48hr as compared to untreated cells. In contrast, phosphorylation of JNK was only transiently increased around12hr. We treated the cells with specific p38or JNK kinase inhibitors and demonstrated that inhibition of the p38pathway with SB202190blocked the proapoptotic effects of TGF-β, whereas the JNK Inhibitor II had no significant effects. We further confirmed these results by knocking down p38and JNK expression with specific siRNAs.
     7. TGF-β activates MAPKs in a redox-sensitive manner
     We found that NAC completely blocked the effect of TGF-p on p38phosphorylation. However, NAC per se somehow increased the basal level of JNK phosphorylation, while the effect of TGF-P on JNK phosphorylation in the presence of NAC was not significant, indicating that activation of both p38and JNK were redox sensitive. Moreover, we showed that inhibition of the Nox4function with VAS2870diminished TGF-β-induced p38phosphorylation. In contrast to MAPKs, TGF-P had no effects on Akt phosphorylation either under the basal condition or in the presence of NAC or VAS2870.
     Conclusions
     1. TGF-P induces endothelial cell apoptosis through ALK5receptor
     2. Nox4and redox signaling mediate TGF-β-induced endothelial apoptosis
     3. TGF-P induces endothelial apoptosis through p38MAPK in a redox-dependent manner.
     Background
     ROS are molecules existing widely in biological systems, and accumulating evidence has identified that NADPH oxidase is the major source of ROS generation in vasculature. The catalytic subunit of the NADPH oxidase family consists of seven members, namely Nox1-5and Duox1and2. Noxl, Nox2, Nox4and Nox5are four main members in vasculature with Nox4and Nox2predominant in endothelial cells. The enzymes transfer electrons from NADPH to molecular oxygen, producing ROS consisting of locally effective superoxide and/or the relatively long-lasting and membrane-diffusible ROS hydrogen peroxide (H2O2). Nox4differs from other NADPH oxidase isoforms by its abundant expression in vascular tissues and constitutive activity.
     Nox4type NADPH oxidase has multiple regulatory functions including apoptosis, cell growth, differentiation, angiogenesis and cytoskeletal remodeling. Nox4expression is increased in many cardiovascular diseases, such as atherosclerosis, hypertension, restenosis, vascular aging and fibrosis. Recently, more and more studies have revealed its controversial functions, and many researches indicate Nox4as a protective factor in cardiovascular systems since the model of gene-modified mice with Nox4overexpression successfully established.
     Moreover, our previous studies in endothelial cells suggest that increased Nox4expression may enhance cell proliferation (presumably a prosurvival effect) via activating the ERK1/2MAPK pathway. In the present study, therefore, we also attempted to reconcile these seemingly paradoxical effects of Nox4in modulating endothelial cell apoptosis and survival.
     Protein tyrosine phosphatases (PTPs) are sensitive to ROS and can be oxidized to lose their activities. PTPs negatively regulate receptor tyrosine kinases (RTKs), including receptors of some growth factors such as EGF, IGF-1, PDGF and VEGF. PTP1B, belonging to the classical PTPs, is the first isolated PTP in its pure form and it is a treatment target for type2diabetes, obesity and cancer.PTEN is a hallmark of cancer suppressor which is commonly found mutant in most human tumor cells. PTPs negatively regulate Akt signaling by dephosphorylating phosphatidylinositol (3,4,5)-trisphosphate (PIP3). In this part, we will explore whether PTPs and (or) Akt participate Nox4-induced anti-apoptotic effect.
     Objectives
     1. To explore role of Nox4overexpression in endothelial apoptosis
     2. To evaluate whether Akt or ERK1/2signaling pathway mediates the anti-apoptotic effect of Nox4in endothelial cells
     3. To investigate the mechanisms of Nox4-stimulated Akt activation and the role of PTPs
     Materials and Methods
     1. Nox4overexpression by viral vectors
     A cDNA clone of human wild type Nox4was purchased from Origene and subcloned into pLV.EX3d.P/neo-EF1A. Experiments were performed48hr after transfection with lentiviruses expressing human Nox4or eGFP (control). Adenoviruses expressing wild type human Nox4were gifts from Dr Goldstein.
     2. Caspase3/7activity assay
     Cells seeded in96-well plates were incubated with the Caspase-Glo3/7substrate reagent. The samples were transferred to a white-walled plate and the luminescence signal was measured in a Varioskan Flash plate reader.
     3. Western blot analysis
     Cells were homogenized in lysis buffer after stimulation, then protein samples were separated by SDS-PAGE and electro-transferred to nitrocellulose membranes. The membrane was blocked with5%nonfat milk and incubated with specific primary antibodies. Secondary HRP-conjugated antibodies were developed with ECL Prime reagents and detected with a LAS-4000luminescent image analyzer.
     4. Immunofluorescence
     Cells cultured on Lab-Tek chamber slides were fixed and then incubated with primary antibodies and Alexa Fluor594-conjugated secondary antibodies. After counter staining with DAPI, cells were photographed using a confocal microscope.
     5. Immunoprecipitation
     Cell lysates were precleared and incubated with antibody and protein A or G agarose bead slurry. The beads were washed and protein samples were separated by SDS-PAGE and the following procedures were taken as western blot.
     6. PTP1B activity assay
     PTP1B activity was measured in immunoprecipitated PTP1B protein samples using a PTP colorimetric assay kit from Millipore according to the manufacturer's instruction.
     7. Statistical analysis
     Data are presented as mean±SEM. Data analysis was performed with unpaired t-test or one-way ANOVA using SPSS18.0software. P<0.05was considered as statistically significant.
     Results
     1. Nox4overexpression is protective against endothelial apoptosis
     We demonstrated that lentivirus-mediated Nox4overexpression (vNox4) suppressed both of the basal level of and serum starvation-induced apoptosis in HUVECs. In addition, we showed that overexpression of Nox4(using adenovirus) also reduced the apoptosis induced by staurosporine. TGF-β failed to induce endothelial apoptosis following Nox4overexpression.
     2. vNox4inhibits endothelial apoptosis through Akt activation
     We showed that phosphorylation of Akt was dose-dependently increased by vNox4treatment. However, vNox4had no significant effects on ERK1/2phosphorylation. Treatment with Akt Inhibitor ⅧIor wortmannin significantly attenuated the antiapoptotic effects of vNox4, whereas treatment with U0126produced no effects. We also confirmed that knocking down of Akt with siRNA partially blocked the inhibitory effects of vNox4on apoptosis.
     3. Subcellular distribution of Nox4between ectopic and endogenous Nox4
     We performed immunofluorescence in vNox4-treated cells and found that vNox4increased the Nox4protein level in both of the cytoplasm and nuclei, a pattern that was similar to that following TGF-β treatment.
     4. PTP1B inhibitor stimulates Akt activation
     We demonstrated that treatment with PTP1B inhibitor, but not PTEN inhibitor, increased Akt phosphorylation in resting endothelial cells. This effect of PTP1B inhibition was comparable to that induced by vascular endothelial growth factor (VEGF), while VEGF did not further increase Akt phosphorylation in the presence of PTP1B inhibitor. In contrast, VEGF similarly induced Akt phosphorylation in the absence and presence of the PTEN inhibitor.
     5. vNox4suppresses PTP1B activity and enhances VEGFR activation
     We showed that Nox4overexpression suppressed PTP1B activity, an effect that was abolished by the reducing agent DTT. Immunoprecipitation with anti-VEGFR2or anti-phospho-tyrosine followed by western blot analysis revealed that inhibition of PTP1B or overexpression of Nox4enhanced VEGFR2phosphorylation. Similar to the effects on Akt phosphorylation, VEGF only increased the basal level of VEGFR2phosphorylation, but had smaller effects on VEGFR2phosphorylation in the presence of vNox4or PTP1B inhibitor.
     Conclusions
     1. Ectopic Nox4overexpression protects against endothelial apoptosis
     2. Akt signaling mediates ectopic Nox4inhibition of endothelial apoptosis
     3. The inhibitor of PTP1B stimulates Akt activation
     4. Ectopic Nox4enhances VEGFR activation through suppressing PTP1B activity
     Background
     Cellular differentiation is not only an important progress in cardiovascular embryonic development but also found in adulthood to maintain the homeostasis of vasculatures. Misidentification of arterial or venous endothelial cell fate would cause drastic consequences of the circulatory system in the development and function. Despite arterial and venous disturbing would bring about deficiency and lethality in embryonic development, arteriovenous malformation (AVM) is one characteristic of hereditary hemorrhagic telangiectasia (HHT) and AVM in the brain is the mainly leading cause of intracranial hemorrhagic stroke, particularly in younger people.
     TGF-β signaling pathway is reported to play important roles in angiogenesis and mice deficient for components of TGF-β signaling display embryonic lethalities due to vascular defects. People have shown that lack of endoglin (an accessory receptor of TGF-β) or ALK1results in vascular pathologies resembling AVM related to HHT, which are accompanied by disturbance of arterial and venous specificities.
     Indirect evidence indicates that TGF-P signaling may have impacts on the specification of endothelial phenotypes. Specification of arterial or venous type of endothelium during development is under strict transcriptional control. In the cardiovascular system, EphrinB2expression is restricted to the arteries and its receptor EphB4is predominantly expressed in venous endothelial cells. This pair of ligand-receptor has been used as markers of arterial and venous endothelial cells respectively.
     It is thought that venous phenotype is the default state during endothelial differentiation, while activation of the Notch signaling pathway (which is downstream of vascular endothelial growth factor A and sonic hedgehog) is obligatory for arterial differentiation. The evolutionarily conserved Notch signaling pathway consists of four Notch receptors (Notch1-4) and five Notch ligands (Jagged1,2and DLL1,3,4) in mammals. Cell-bound ligand initiates Notch signaling and triggers y-secretase to cleave the transmembrane receptor. The Notch intracellular domain (NICD) is then released from the receptor and translocates into the nucleus in association with the DNA-binding protein CSL (RBP-Jκ/CBF1) and the coactivator Mastermind-like (MAML) to activate target genes transcription such as HES and HEY families.
     Interestingly, mounting evidence indicates that ROS-mediated signaling is an important regulator of stem or progenitor cell differentiation. However, little is known about the effects of ROS on arterial-venous specification of endothelial cells. Therefore, the aim of this part is to explore the potential involvement of TGF-β-induced redox regulation in changes of the arterial and venous phenotype specification of endothelial cells.
     Objectives
     1. To investigate the effect of TGF-β on expression of arterial and venous markers
     2. To study whether TGF-β influences Notch signaling pathway
     3. To explore role of redox signaling in TGF-β-inducedarterial phenotypic switch
     Materials and Methods
     1. Real-time PCR
     Total RNA was extracted with TRIzol reagent and reverse transcripted to cDNA. Real-time PCR was performed using predesigned Taqman probe-primer sets or SYBR Green method and GAPDH or18S was used as house keeping gene.
     2. Western blot analysis
     Cells were homogenized in lysis buffer after stimulation, then protein samples were separated by SDS-PAGE and electro-transferred to nitrocellulose membranes. The membrane was blocked with5%nonfat milk and incubated with specific primary antibodies. Secondary HRP-conjugated antibodies were developed with ECL Prime reagents and detected with a LAS-4000luminescent image analyzer.
     3. Immunofluorescence
     Cells cultured on Lab-Tek chamber slides were fixed and then incubated with primary antibodies and Alexa Fluor594-conjugated secondary antibodies. After counter staining with DAPI, cells were photographed using a confocal microscope.
     4. Nuclear and cytoplasmic protein extraction and western blot
     Cells were harvested after treatment with TGF-β, nuclear and cytoplasmic protein was obtained using Nuclear and Cytoplasmic Protein Extraction Kit from Beyotime Company. Then western blot was performed to detect the nuclear translocation of NICD.
     5. Statistical analysis
     Data are presented as mean±EM. Unpaired t-test or one-way ANOVA was performed to analyze data. p<0.05was considered as statistically significant.
     Results
     1. TGF-β stimulates expression of arterial markers in HUVECs
     TGF-β upregulated expression of the arterial marker EphrinB2, but had no effects on expression of the venous maker EphB4.We did not observe a significant change in the EphrinB2protein level.
     2. TGF-β activates Notch signaling pathway
     TGF-β significantly increased the expression levels of Notch receptors (Notchl and Notch4) and ligands (Jaggedl and DLL4), and the Notch target gene (HEY1) in mRNA level. The increased expression of DLL4, Notchl and Jaggedl were also confirmed with western blot.
     3. TGF-β increases NICD production and nuclear translocation
     TGF-β treatment increased the amount of NICD, and stimulated nuclear translocation of NICD as detected with immunofluorescence and western blot of nuclear and cytoplasmic protein, indicating an enhanced Notch signaling.
     4. The effect of TGF-P on arterial switch is cell-specific
     In HMVECs, we did not observe any significant effects of TGF-β on EphrinB2, EphB4, Notchl, Notch4, Jagged1or HEY1, indicating that the effects of TGF-β on expression of the arterial markers were cell type-specific.
     5. TGF-β-induced arterial marker expression is redox dependent
     We demonstrated that in the presence of NAC, the effects of TGF-P on arterial marker expression were all diminished. Consistently, we found that application of exogenous H2O2mimicked the effects of TGF-β on expression of the arterial markers. Importantly, we demonstrated that TGF-β-induced effects on expression of Notchl, Jaggedl, HEY1and EphrinB2were diminished in cells pre-treated with the lentivirus expressing Nox4shRNA.
     Conclusions
     1. TGF-β induces endothelial cell arterial phenotypic switch in a cell-specific manner
     2. TGF-P activates Notch signaling pathway in HUVECs
     3. Redox signaling mediates TGF-β-induced arterial phenotypic switch of HUVECs
引文
[1]B.E. Sumpio, J.T. Riley, A. Dardik, Cells in focus:endothelial cell, The international journal of biochemistry & cell biology,34 (2002) 1508-1512.
    [2]C.J. Marshall, R.L. Moore, P. Thorogood, P.M. Brickell, C. Kinnon, A.J. Thrasher, Detailed characterization of the human aorta-gonad-mesonephros region reveals morphological polarity resembling a hematopoietic stromal layer, Developmental dynamics:an official publication of the American Association of Anatomists,215 (1999) 139-147.
    [3]E. Arciniegas, L. Ponce, Y. Hartt, A. Graterol, R.G. Carlini, Intimal thickening involves transdifferentiation of embryonic endothelial cells, The Anatomical record, 258 (2000) 47-57.
    [4]D.B. Cines, E.S. Pollak, C.A. Buck, J. Loscalzo, G.A. Zimmerman, R.P. McEver, J.S. Pober, T.M. Wick, B.A. Konkle, B.S. Schwartz, E.S. Barnathan, K.R. McCrae, B.A. Hug, A.M. Schmidt, D.M. Stern, Endothelial cells in physiology and in the pathophysiology of vascular disorders, Blood,91 (1998) 3527-3561.
    [5]J.E. Deanfield, J.P. Halcox, T.J. Rabelink, Endothelial function and dysfunction: testing and clinical relevance, Circulation,115 (2007) 1285-1295.
    [6]D.V. Krysko, T. Vanden Berghe, K. D'Herde, P. Vandenabeele, Apoptosis and necrosis:detection, discrimination and phagocytosis, Methods,44 (2008) 205-221.
    [7]J.F. Kerr, A.H. Wyllie, A.R. Currie, Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics, British journal of cancer,26 (1972) 239-257.
    [8]L.P. Erwig, P.M. Henson, Clearance of apoptotic cells by phagocytes, Cell death and differentiation,15 (2008) 243-250.
    [9]J. Savill, V. Fadok, Corpse clearance defines the meaning of cell death, Nature, 407 (2000) 784-788.
    [10]T.C. Somervaille, D.C. Linch, A. Khwaja, Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax, Blood,98 (2001) 1374-1381.
    [11]S. Fulda, K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy, Oncogene,25 (2006) 4798-4811.
    [12]S. Launay, O. Hermine, M. Fontenay, G Kroemer, E. Solary, C. Garrido, Vital functions for lethal caspases, Oncogene,24 (2005) 5137-5148.
    [13]G.M. Cohen, Caspases:the executioners of apoptosis, The Biochemical journal, 326 (Pt1) (1997) 1-16.
    [14]S.B. Bratton, G.M. Cohen, Apoptotic death sensor:an organelle's alter ego?, Trends in pharmacological sciences,22 (2001) 306-315.
    [15]GP. McStay, GS. Salvesen, D.R. Green, Overlapping cleavage motif selectivity of caspases:implications for analysis of apoptotic pathways, Cell death and differentiation,15 (2008) 322-331.
    [16]W.C. Earnshaw, L.M. Martins, S.H. Kaufmann, Mammalian caspases:structure, activation, substrates, and functions during apoptosis, Annual review of biochemistry, 68(1999)383-424.
    [17]D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell,100 (2000) 57-70.
    [18]R.S. Whelan, V. Kaplinskiy, R.N. Kitsis, Cell death in the pathogenesis of heart disease:mechanisms and significance, Annual review of physiology,72 (2010) 19-44.
    [19]P. Carmeliet, Mechanisms of angiogenesis and arteriogenesis, Nature medicine,6 (2000) 389-395.
    [20]C.M. Scull, I. Tabas, Mechanisms of ER stress-induced apoptosis in atherosclerosis, Arteriosclerosis, thrombosis, and vascular biology,31 (2011) 2792-2797.
    [21]C. Jung, P. Sorensson, N. Saleh, H. Arheden, L. Ryden, J. Pernow, Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction, Atherosclerosis,221 (2012) 226-231.
    [22]N. Singh, E. Van Craeyveld, M. Tjwa, A. Ciarka, J. Emmerechts, W. Droogne, S.C. Gordts, V. Carlier, F. Jacobs, S. Fieuws, J. Vanhaecke, J. Van Cleemput, B. De Geest, Circulating apoptotic endothelial cells and apoptotic endothelial microparticles independently predict the presence of cardiac allograft vasculopathy, Journal of the American College of Cardiology,60 (2012) 324-331.
    [23]R. Sun, Y. Zhang, Q. Lv, B. Liu, M. Jin, W. Zhang, Q. He, M. Deng, X. Liu, G. Li, Y. Li, G. Zhou, P. Xie, X. Xie, J. Hu, Z. Duan, Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha), The Journal of biological chemistry,286 (2011) 15918-15928.
    [24]H.L. Moses, E.L. Branum, J.A. Proper, R.A. Robinson, Transforming growth factor production by chemically transformed cells, Cancer research,41 (1981) 2842-2848.
    [25]A.B. Roberts, L.C. Lamb, D.L. Newton, M.B. Sporn, J.E. De Larco, G.J. Todaro, Transforming growth factors:isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction, Proceedings of the National Academy of Sciences of the United States of America,77 (1980) 3494-3498.
    [26]R. Derynck, J.A. Jarrett, E.Y. Chen, D.H. Eaton, J.R. Bell, R.K. Assoian, A.B. Roberts, M.B. Sporn, D.V. Goeddel, Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells, Nature,316 (1985) 701-705.
    [27]K.J. Gordon, GC. Blobe, Role of transforming growth factor-beta superfamily signaling pathways in human disease, Biochimica et biophysica acta,1782 (2008) 197-228.
    [28]GC. Blobe, W.P. Schiemann, H.F. Lodish, Role of transforming growth factor beta in human disease, The New England journal of medicine,342 (2000) 1350-1358.
    [29]F.A. Millan, F. Denhez, P. Kondaiah, R.J. Akhurst, Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo,Development,111 (1991) 131-143.
    [30]M.Y. Wu, C.S. Hill, Tgf-beta superfamily signaling in embryonic development and homeostasis, Developmental cell,16 (2009) 329-343.
    [31]M. Shi, J. Zhu, R. Wang, X. Chen, L. Mi, T. Walz, T.A. Springer, Latent TGF-beta structure and activation, Nature,474 (2011) 343-349.
    [32]J.F. Santibanez, M. Quintanilla, C. Bernabeu, TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions, Clinical science,121 (2011)233-251.
    [33]C.E. Gatza, S.Y. Oh, G.C. Blobe, Roles for the type III TGF-beta receptor in human cancer, Cellular signalling,22 (2010) 1163-1174.
    [34]Y. Shi, J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus, Cell,113 (2003) 685-700.
    [35]R.J. Akhurst, A. Hata, Targeting the TGFbeta signalling pathway in disease, Nature reviews. Drug discovery,11 (2012) 790-811.
    [36]C.H. Heldin, A. Moustakas, Role of Smads in TGFbeta signaling, Cell and tissue research,347 (2012) 21-36.
    [37]T. Seki, K.H. Hong, S.P. Oh, Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development, Laboratory investigation; a journal of technical methods and pathology,86 (2006) 116-129.
    [38]X. Guo, X.F. Wang, Signaling cross-talk between TGF-beta/BMP and other pathways, Cell research,19 (2009) 71-88.
    [39]M.E. Engel, M.A. McDonnell, B.K. Law, H.L. Moses, Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription, The Journal of biological chemistry,274 (1999) 37413-37420.
    [40]L. Yu, M.C. Hebert, YE. Zhang, TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses, The EMBO journal,21 (2002) 3749-3759.
    [41]YE. Zhang, Non-Smad pathways in TGF-beta signaling, Cell research,19 (2009) 128-139.
    [42]M.K. Lee, C. Pardoux, M.C. Hall, P.S. Lee, D. Warburton, J. Qing, S.M. Smith, R. Derynck, TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA, The EMBO journal,26 (2007) 3957-3967.
    [43]S. Edlund, M. Landstrom, C.H. Heldin, P. Aspenstrom, Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA, Molecular biology of the cell,13 (2002) 902-914.
    [44]S.C. Hubchak, E.E. Sparks, T. Hayashida, H.W. Schnaper, Racl promotes TGF-beta-stimulated mesangial cell type I collagen expression through a PI3K/Akt-dependent mechanism, American journal of physiology. Renal physiology, 297 (2009) F1316-1323.
    [45]L. Zhang, F. Zhou, P. ten Dijke, Signaling interplay between transforming growth factor-beta receptor and PI3K/AKT pathways in cancer, Trends in biochemical sciences,38 (2013) 612-620.
    [46]S. Senturk, M. Mumcuoglu,O. Gursoy-Yuzugullu, B. Cingoz, K.C. Akcali, M. Ozturk, Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth, Hepatology,52 (2010) 966-974.
    [47]R.M. Kortlever, J.H. Nijwening, R. Bernards, Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity, The Journal of biological chemistry,283 (2008) 24308-24313.
    [48]M.J. Pollman, L. Naumovski, GH. Gibbons, Vascular cell apoptosis:cell type-specific modulation by transforming growth factor-betal in endothelial cells versus smooth muscle cells, Circulation,99 (1999) 2019-2026.
    [49]J.K. Lin, C.K. Chou, In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor beta 1, Cancer research,52 (1992) 385-388.
    [50]G.M. Wildey, S. Patil, P.H. Howe, Smad3 potentiates transforming growth factor beta (TGFbeta)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes, The Journal of biological chemistry,278 (2003) 18069-18077.
    [51]T. Teramoto, A. Kiss, S.S. Thorgeirsson, Induction of p53 and Bax during TGF-beta 1 initiated apoptosis in rat liver epithelial cells, Biochemical and biophysical research communications,251 (1998) 56-60.
    [52]C. Freathy, D.G. Brown, R.A. Roberts, K. Cain, Transforming growth factor-beta(l) induces apoptosis in rat FaO hepatoma cells via cytochrome c release and oligomerization of Apaf-1 to form a approximately 700-kd apoptosome caspase-processing complex, Hepatology,32 (2000) 750-760.
    [53]B.C. Kim, M. Mamura, K.S. Choi, B. Calabretta, S.J. Kim, Transforming growth factor beta 1 induces apoptosis through cleavage of BAD in a Smad3-dependent mechanism in FaO hepatoma cells, Molecular and cellular biology,22 (2002) 1369-1378.
    [54]GJ. Inman, M.J. Allday, Apoptosis induced by TGF-beta 1 in Burkitt's lymphoma cells is caspase 8 dependent but is death receptor independent, Journal of immunology, 165(2000)2500-2510.
    [55]S.G. Kim, H.S. Jong, T.Y. Kim, J.W. Lee, N.K. Kim, S.H. Hong, Y.J. Bang, Transforming growth factor-beta 1 induces apoptosis through Fas ligand-independent activation of the Fas death pathway in human gastric SNU-620 carcinoma cells, Molecular biology of the cell,15 (2004) 420-434.
    [56]E. Chalaux, T. Lopez-Rovira, J.L. Rosa, G Pons, L.M. Boxer, R. Bartrons, F. Ventura, A zinc-finger transcription factor induced by TGF-beta promotes apoptotic cell death in epithelial MvlLu cells, FEBS letters,457 (1999) 478-482.
    [57]J.D. Noti, A.K. Johnson, J.D. Dillon, The zinc finger transcription factor transforming growth factor beta-inducible early gene-1 confers myeloid-specific activation of the leukocyte integrin CD11d promoter, The Journal of biological chemistry,279 (2004) 26948-26958.
    [58]R. Perlman, W.P. Schiemann, M.W. Brooks, H.F. Lodish, R.A. Weinberg, TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation, Nature cell biology,3 (2001) 708-714.
    [59]R. Muromoto, T. Yamamoto, T. Yumioka, Y. Sekine, K. Sugiyama, K. Shimoda, K. Oritani, T. Matsuda, Daxx enhances Fas-mediated apoptosis in a murine pro-B cell line, BAF3, FEBS letters,540 (2003) 223-228.
    [60]Y. Gottfried, A. Rotem, R. Lotan, H. Steller, S. Larisch, The mitochondrial ARTS protein promotes apoptosis through targeting XIAP, The EMBO journal,23 (2004) 1627-1635.
    [61]C.W. Jang, C.H. Chen, C.C. Chen, J.Y. Chen, Y.H. Su, R.H. Chen, TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase, Nature cell biology,4 (2002) 51-58.
    [62]S. Chen, R.J. Lechleider, Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line, Circulation research,94 (2004) 1195-1202.
    [63]S. Einheber, M.J. Hannocks, C.N. Metz, D.B. Rifkin, J.L. Salzer, Transforming growth factor-beta 1 regulates axon/Schwann cell interactions, The Journal of cell biology,129 (1995) 443-458.
    [64]R. Nishimura, K. Hata, T. Matsubara, M. Wakabayashi, T. Yoneda, Regulation of bone and cartilage development by network between BMP signalling and transcription factors, Journal of biochemistry,151 (2012) 247-254.
    [65]G. Chen, C. Deng, Y.P. Li, TGF-beta and BMP signaling in osteoblast differentiation and bone formation, International journal of biological sciences,8 (2012) 272-288.
    [66]L. Choy, R. Derynck, Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function, The Journal of biological chemistry, 278(2003)9609-9619.
    [67]H.P. Naber, Y. Drabsch, B.E. Snaar-Jagalska, P. ten Dijke, T. van Laar, Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion, Biochemical and biophysical research communications,435 (2013)58-63.
    [68]N. Honda, M. Jinnin, I. Kajihara, T. Makino, K. Makino, S. Masuguchi, S. Fukushima, Y. Okamoto, M. Hasegawa, M. Fujimoto, H. Ihn, TGF-beta-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts, Journal of immunology,188 (2012)3323-3331.
    [69]Y.W. Wang, N.H. Liou, J.H. Cherng, S.J. Chang, K.H. Ma, E. Fu, J.C. Liu, N.T. Dai, siRNA-Targeting Transforming Growth Factor-beta Type I Receptor Reduces Wound Scarring and Extracellular Matrix Deposition of Scar Tissue, The Journal of investigative dermatology, (2014).
    [70]R. Samarakoon, J.M. Overstreet, S.P. Higgins, P.J. Higgins, TGF-betal--> SMAD/p53/USF2 --> PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis, Cell and tissue research,347 (2012) 117-128.
    [71]A. Bianchi, M.E. Gervasi, A. Bakin, Role of beta5-integrin in epithelial-mesenchymal transition in response to TGF-beta, Cell cycle,9 (2010) 1647-1659.
    [72]E. Pardali, P. Ten Dijke, TGFbeta signaling and cardiovascular diseases, International journal of biological sciences,8 (2012) 195-213.
    [73]P. Corti, S. Young, C.Y. Chen, M.J. Patrick, E.R. Rochon, K. Pekkan, B.L. Roman, Interaction between alkl and blood flow in the development of arteriovenous malformations, Development,138 (2011) 1573-1582.
    [74]M. Oshima, H. Oshima, M.M. Taketo, TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis, Developmental biology,179 (1996) 297-302.
    [75]H.M. Arthur, J. Ure, A.J. Smith, G. Renforth, D.I. Wilson, E. Torsney, R. Charlton, D.V. Parums, T. Jowett, D.A. Marchuk, J. Burn, A.G Diamond, Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development, Developmental biology,217 (2000) 42-53.
    [76]Q. Lu, B. Patel, E.O. Harrington, S. Rounds, Transforming growth factor-betal causes pulmonary micro vascular endothelial cell apoptosis via ALK5, American journal of physiology. Lung cellular and molecular physiology,296 (2009) L825-838.
    [77]K.M. Hyman, G Seghezzi, G. Pintucci, G. Stellari, J.H. Kim, E.A. Grossi, A.C. Galloway, P. Mignatti, Transforming growth factor-betal induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase, Surgery, 132(2002)173-179.
    [78]G Ferrari, G Pintucci, G. Seghezzi, K. Hyman, A.C. Galloway, P. Mignatti, VEGF, a prosurvival factor, acts in concert with TGF-betal to induce endothelial cell apoptosis, Proceedings of the National Academy of Sciences of the United States of America,103 (2006) 17260-17265.
    [79]H.E. Boudreau, B.W. Casterline, B. Rada, A. Korzeniowska, T.L. Leto, Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells, Free radical biology & medicine,53 (2012) 1489-1499.
    [80]E.C. Chan, H.M. Peshavariya, GS. Liu, F. Jiang, S.Y. Lim, G.J. Dusting, Nox4 modulates collagen production stimulated by transforming growth factor betal in vivo and in vitro, Biochemical and biophysical research communications,430 (2013) 918-925.
    [81]F. Jiang, GS. Liu, GJ. Dusting, E.C. Chan, NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses, Redox biology,2 (2014) 267-272.
    [82]S.R. Datla, H. Peshavariya, GJ. Dusting, K. Mahadev, B.J. Goldstein, F. Jiang, Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro, Arteriosclerosis, thrombosis, and vascular biology,27 (2007) 2319-2324.
    [83]H.M. Peshavariya, E.C. Chan, G.S. Liu, F. Jiang, G.J. Dusting, Transforming growth factor-betal requires NADPH oxidase 4 for angiogenesis in vitro and in vivo, Journal of cellular and molecular medicine, (2014).
    [84]I. Carmona-Cuenca, C. Roncero, P. Sancho, L. Caja, N. Fausto, M. Fernandez, I. Fabregat, Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity, Journal of hepatology,49 (2008) 965-976.
    [85]K. Bedard, K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiological reviews,87 (2007) 245-313.
    [86]D. Marino, C. Dunand, A. Puppo, N. Pauly, A burst of plant NADPH oxidases, Trends in plant science,17 (2012) 9-15.
    [87]T. Kawahara, J.D. Lambeth, Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes, BMC evolutionary biology,7 (2007) 178.
    [88]H. Sumimoto, Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species, The FEBS journal,275 (2008) 3249-3277.
    [89]P.V. Vignais, The superoxide-generating NADPH oxidase:structural aspects and activation mechanism, Cellular and molecular life sciences:CMLS,59 (2002) 1428-1459.
    [90]K. Apel, H. Hirt, Reactive oxygen species:metabolism, oxidative stress, and signal transduction, Annual review of plant biology,55 (2004) 373-399.
    [91]J. Nordberg, E.S. Arner, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system, Free radical biology & medicine,31 (2001) 1287-1312.
    [92]J.L. Rains, S.K. Jain, Oxidative stress, insulin signaling, and diabetes, Free radical biology & medicine,50 (2011) 567-575.
    [93]K.J. Barnham, C.L. Masters, A.I. Bush, Neurodegenerative diseases and oxidative stress, Nature reviews. Drug discovery,3 (2004) 205-214.
    [94]J.E. Klaunig, L.M. Kamendulis, B.A. Hocevar, Oxidative stress and oxidative damage in carcinogenesis, Toxicologic pathology,38 (2010) 96-109.
    [95]R. Lee, M. Margaritis, K.M. Channon, C. Antoniades, Evaluating oxidative stress in human cardiovascular disease:methodological aspects and considerations, Current medicinal chemistry,19 (2012) 2504-2520.
    [96]Y. Taniyama, K.K. Griendling, Reactive oxygen species in the vasculature: molecular and cellular mechanisms, Hypertension,42 (2003) 1075-1081.
    [97]S. Mitra, A. Deshmukh, R. Sachdeva, J. Lu, J.L. Mehta, Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy, The American journal of the medical sciences,342 (2011) 135-142.
    [98]M.L. Circu, T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis, Free radical biology & medicine,48 (2010) 749-762.
    [99]C. Peng, J. Ma, X. Gao, P. Tian, W. Li, L. Zhang, High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a, PloS one,8 (2013) e79739.
    [100]A.B. Roberts, M.A. Anzano, L.C. Lamb, J.M. Smith, M.B. Sporn, New class of transforming growth factors potentiated by epidermal growth factor:isolation from non-neoplastic tissues, Proceedings of the National Academy of Sciences of the United States of America,78 (1981) 5339-5343.
    [101]M. Bottner, K. Krieglstein, K. Unsicker, The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions, Journal of neurochemistry,75 (2000) 2227-2240.
    [102]C.L. Mummery, Transforming growth factor beta and mouse development, Microscopy research and technique,52 (2001) 374-386.
    [103]N. Dunker, K. Krieglstein, Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis, European journal of biochemistry/FEBS,267 (2000) 6982-6988.
    [104]Q. Lu, Transforming growth factor-betal protects against pulmonary artery endothelial cell apoptosis via ALK5, American journal of physiology. Lung cellular and molecular physiology,295 (2008) L123-133.
    [105]F. Vinals, J. Pouyssegur, Transforming growth factor betal (TGF-betal) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling, Molecular and cellular biology,21 (2001)7218-7230.
    [106]C. Li, R. Issa, P. Kumar, I.N. Hampson, J.M. Lopez-Novoa, C. Bernabeu, S. Kumar, CD 105 prevents apoptosis in hypoxic endothelial cells, Journal of cell science, 116(2003)2677-2685.
    [107]V.T. Solovyan, J. Keski-Oja, Apoptosis of human endothelial cells is accompanied by proteolytic processing of latent TGF-beta binding proteins and activation of TGF-beta, Cell death and differentiation,12 (2005) 815-826.
    [108]V. Leksa, S. Godar, H.B. Schiller, E. Fuertbauer, A. Muhammad, K. Slezakova, V. Horejsi, P. Steinlein, U.H. Weidle, B.R. Binder, H. Stockinger, TGF-beta-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen, Journal of cell science,118 (2005) 4577-4586.
    [109]T. Tsukada, K. Eguchi, K. Migita, Y. Kawabe, A. Kawakami, N. Matsuoka, H. Takashima, A. Mizokami, S. Nagataki, Transforming growth factor beta 1 induces apoptotic cell death in cultured human umbilical vein endothelial cells with down-regulated expression of bcl-2, Biochemical and biophysical research communications,210 (1995) 1076-1082.
    [110]Q. Yan, E.H. Sage, Transforming growth factor-betal induces apoptotic cell death in cultured retinal endothelial cells but not pericytes:association with decreased expression of p21wafl/cipl, Journal of cellular biochemistry,70 (1998) 70-83.
    [111]E.D. Crawford, J.A. Wells, Caspase substrates and cellular remodeling, Annual review of biochemistry,80 (2011) 1055-1087.
    [112]H. Khalil, M.J. Bertrand, P. Vandenabeele, C. Widmann, Caspase-3 and RasGAP:a stress-sensing survival/demise switch, Trends in cell biology,24 (2014) 83-89.
    [113]N.N. Danial, S.J. Korsmeyer, Cell death:critical control points, Cell,116 (2004) 205-219.
    [114]M. Zeddou, B. Relic, O. Malaise, E. Charlier, A. Desoroux, Y. Beguin, D. de Seny, M.G Malaise, Differential signalling through ALK-1 and ALK-5 regulates leptin expression in mesenchymal stem cells, Stem cells and development,21 (2012) 1948-1955.
    [115]N. Imaizumi, Y. Monnier, M. Hegi, R.O. Mirimanoff, C. Ruegg, Radiotherapy suppresses angiogenesis in mice through TGF-betaRI/ALK5-dependent inhibition of endothelial cell sprouting, PloS one,5 (2010) e11084.
    [116]F. Tian, A.X. Zhou, A.M. Smits, E. Larsson, M.J. Goumans, C.H. Heldin, J. Boren, L.M. Akyurek, Endothelial cells are activated during hypoxia via endoglin/ALK-1/SMAD1/5 signaling in vivo and in vitro, Biochemical and biophysical research communications,392 (2010) 283-288.
    [117]F. Lebrin, M. Deckers, P. Bertolino, P. Ten Dijke, TGF-beta receptor function in the endothelium, Cardiovascular research,65 (2005) 599-608.
    [118]T. Ota, M. Fujii, T. Sugizaki, M. Ishii, K. Miyazawa, H. Aburatani, K. Miyazono, Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells, Journal of cellular physiology,193 (2002) 299-318.
    [119]A. Mahmood, L. Harkness, H.D. Schroder, B.M. Abdallah, M. Kassem, Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542, Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research,25 (2010) 1216-1233.
    [120]I. Carmona-Cuenca, B. Herrera, J.J. Ventura, C. Roncero, M. Fernandez, I. Fabregat, EGF blocks NADPH oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death, Journal of cellular physiology, 207 (2006) 322-330.
    [121]L.C. Spender, M.J. Carter, D.I. O'Brien, L.J. Clark, J. Yu, E.M. Michalak, L. Happo, M.S. Cragg, G.J. Inman, Transforming growth factor-beta directly induces p53-up-regulated modulator of apoptosis (PUMA) during the rapid induction of apoptosis in myc-driven B-cell lymphomas, The Journal of biological chemistry,288 (2013)5198-5209.
    [122]C.C. Franklin, M.E. Rosenfeld-Franklin, C. White, T.J. Kavanagh, N. Fausto, TGFbetal-induced suppression of glutathione antioxidant defenses in hepatocytes: caspase-dependent post-translational and caspase-independent transcriptional regulatory mechanisms, FASEB journal:official publication of the Federation of American Societies for Experimental Biology,17 (2003) 1535-1537.
    [123]B. Herrera, A.M. Alvarez, A. Sanchez, M. Fernandez, C. Roncero, M. Benito, I. Fabregat, Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes, FASEB journal:official publication of the Federation of American Societies for Experimental Biology,15(2001)741-751.
    [124]B. Herrera, M. Fernandez, A.M. Alvarez, C. Roncero, M. Benito, J. Gil, I. Fabregat, Activation of caspases occurs downstream from radical oxygen species production, Bcl-xL down-regulation, and early cytochrome C release in apoptosis induced by transforming growth factor beta in rat fetal hepatocytes, Hepatology,34 (2001) 548-556.
    [125]B. Herrera, M.M. Murillo, A. Alvarez-Barrientos, J. Beltran, M. Fernandez, I. Fabregat, Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes, Free radical biology & medicine,36 (2004) 16-26.
    [126]R. Reinehr, S. Becker, A. Eberle, S. Grether-Beck, D. Haussinger, Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis, The Journal of biological chemistry,280 (2005) 27179-27194.
    [127]Y.S. Kim, M.J. Morgan, S. Choksi, Z.G. Liu, TNF-induced activation of the Noxl NADPH oxidase and its role in the induction of necrotic cell death, Molecular cell,26 (2007) 675-687.
    [128]R.J. McKallip, W. Jia, J. Schlomer, J.W. Warren, P.S. Nagarkatti, M. Nagarkatti, Cannabidiol-induced apoptosis in human leukemia cells:A novel role of cannabidiol in the regulation of p22phox and Nox4 expression, Molecular pharmacology,70 (2006) 897-908.
    [129]E. Pedruzzi, C. Guichard, V. Ollivier, F. Driss, M. Fay, C. Prunet, J.C. Marie, C. Pouzet, M. Samadi, C. Elbim, Y. O'Dowd, M. Bens, A. Vandewalle, M.A. Gougerot-Pocidalo, G. Lizard, E. Ogier-Denis, NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells, Molecular and cellular biology,24 (2004) 10703-10717.
    [130]P. Palozza, S. Serini, S. Verdecchia, M. Ameruso, S. Trombino, N. Picci, G Monego, F.O. Ranelletti, Redox regulation of 7-ketocholesterol-induced apoptosis by beta-carotene in human macrophages, Free radical biology & medicine,42 (2007) 1579-1590.
    [131]E.C. Vaquero, M. Edderkaoui, S.J. Pandol, I. Gukovsky, A.S. Gukovskaya, Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells, The Journal of biological·chemistry,279 (2004) 34643-34654.
    [132]T. Mochizuki, S. Furuta, J. Mitsushita, W.H. Shang, M. Ito, Y. Yokoo, M. Yamaura, S. Ishizone, J. Nakayama, A. Konagai, K. Hirose, K. Kiyosawa, T. Kamata, Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells, Oncogene,25 (2006) 3699-3707.
    [133]K.D. Martyn, L.M. Frederick, K. von Loehneysen, M.C. Dinauer, U.G Knaus, Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases, Cellular signalling,18 (2006) 69-82.
    [134]A. Sturrock, B. Cahill, K. Norman, T.P. Huecksteadt, K. Hill, K. Sanders, S.V. Karwande, J.C. Stringham, D.A. Bull, M. Gleich, T.P. Kennedy, J.R. Hoidal, Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells, American journal of physiology. Lung cellular and molecular physiology,290 (2006) L661-L673.
    [135]I. Cucoranu, R. Clempus, A. Dikalova, P.J. Phelan, S. Ariyan, S. Dikalov, D. Sorescu, NAD(P)H oxidase 4 mediates transforming growth factor-betal-induced differentiation of cardiac fibroblasts into myofibroblasts, Circulation research,97 (2005) 900-907.
    [136]S. Carnesecchi, C. Deffert, Y. Donati, O. Basset, B. Hinz, O. Preynat-Seauve, C. Guichard, J.L. Arbiser, B. Banfi, J.C. Pache, C. Barazzone-Argiroffo, K.H. Krause, A key role for NOX4 in epithelial cell death during development of lung fibrosis, Antioxidants & redox signaling,15 (2011) 607-619.
    [137]W. Cheng, R. Zhang, C. Yao, L. He, K. Jia, B. Yang, P. Du, H. Zhuang, J. Chen, Z. Liu, X. Ding, Z. Hua, A Critical Role of Fas-Associated Protein with Death Domain Phosphorylation in Intracellular Reactive Oxygen Species Homeostasis and Aging, Antioxidants & redox signaling, (2014).
    [138]J.J. Kim, S.B. Lee, J.K. Park, YD. Yoo, TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romol and Bcl-X(L), Cell death and differentiation,17 (2010) 1420-1434.
    [139]E. Weinberg, T. Maymon, M. Weinreb, AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFalpha production and oxidative stress, Journal of molecular endocrinology,52 (2014) 67-76.
    [140]P. Sancho, J. Mainez, E. Crosas-Molist, C. Roncero, C.M. Fernandez-Rodriguez, F. Pinedo, H. Huber, R. Eferl, W. Mikulits, I. Fabregat, NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development, PloS one,7 (2012) e45285.
    [141]L. Hecker, R. Vittal, T. Jones, R. Jagirdar, T.R. Luckhardt, J.C. Horowitz, S. Pennathur, F.J. Martinez, V.J. Thannickal, NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury, Nature medicine,15 (2009) 1077-1081.
    [142]P.D. Ray, B.W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cellular signalling,24 (2012) 981-990.
    [143]A.C. Chen, P.R. Arany, Y.Y. Huang, E.M. Tomkinson, S.K. Sharma, G.B. Kharkwal, T. Saleem, D. Mooney, F.E. Yull, T.S. Blackwell, M.R. Hamblin, Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts, PloS one,6 (2011) e22453.
    [144]H.U. Simon, A. Haj-Yehia, F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis:an international journal on programmed cell death,5(2000)415-418.
    [145]Y. Son, S. Kim, H.T. Chung, H.O. Pae, Reactive oxygen species in the activation of MAP kinases, Methods in enzymology,528 (2013) 27-48.
    [146]G. Ferrari, V. Terushkin, M.J. Wolff, X. Zhang, C. Valacca, P. Poggio, G. Pintucci, P. Mignatti, TGF-betal induces endothelial cell apoptosis by shifting VEGF activation of p38(MAPK) from the prosurvival p38beta to proapoptotic p38alpha, Molecular cancer research:MCR,10 (2012) 605-614.
    [147]S. Edlund, S. Bu, N. Schuster, P. Aspenstrom, R. Heuchel, N.E. Heldin, P. ten Dijke, C.H. Heldin, M. Landstrom, Transforming growth factor-betal (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3, Molecular biology of the cell,14 (2003) 529-544.
    [148]H.T. Ha Thi, H.S. Lim, J. Kim, Y.M. Kim, H.Y. Kim, S. Hong, Transcriptional and post-translational regulation of Bim is essential for TGF-beta and TNF-alpha-induced apoptosis of gastric cancer cell, Biochimica et biophysica acta, 1830(2013)3584-3592.
    [149]H.S. Park, H.J. Hwang, G.Y. Kim, H.J. Cha, W.J. Kim, N.D. Kim, Y.H. Yoo, Y.H. Choi, Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family, Marine drugs,11 (2013) 2347-2364.
    [150]D. Wakeman, J. Guo, J.A. Santos, W.S. Wandu, J.E. Schneider, M.E. McMellen, J.A. Leinicke, C.R. Erwin, B.W. Warner, p38 MAPK regulates Bax activity and apoptosis in enterocytes at baseline and after intestinal resection, American journal of physiology. Gastrointestinal and liver physiology,302 (2012) G997-1005.
    [151]J.M. Hardwick, Y.B. Chen, E.A. Jonas, Multipolar functions of BCL-2 proteins link energetics to apoptosis, Trends in cell biology,22 (2012) 318-328.
    [152]C. Goettsch, W. Goettsch, G. Muller, J. Seebach, H.J. Schnittler, H. Morawietz, Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells, Biochemical and biophysical research communications,380 (2009) 355-360.
    [153]M. Taniike, O. Yamaguchi, I. Tsujimoto, S. Hikoso, T. Takeda, A. Nakai, S. Omiya, I. Mizote, Y. Nakano, Y. Higuchi, Y. Matsumura, K. Nishida, H. Ichijo, M. Hori, K. Otsu, Apoptosis signal-regulating kinase 1/p38 signaling pathway negatively regulates physiological hypertrophy, Circulation,117 (2008) 545-552.
    [154]A. Van Laethem, K. Nys, S. Van Kelst, S. Claerhout, H. Ichijo, J.R. Vandenheede, M. Garmyn, P. Agostinis, Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes, Free radical biology & medicine,41 (2006) 1361-1371.
    [1]J. Nordberg, E.S. Arner, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system, Free radical biology & medicine,31 (2001) 1287-1312.
    [2]R. Lee, M. Margaritis, K.M. Channon, C. Antoniades, Evaluating oxidative stress in human cardiovascular disease:methodological aspects and considerations, Current medicinal chemistry,19 (2012) 2504-2520.
    [3]S. Yusuf, G. Dagenais, J. Pogue, J. Bosch, P. Sleight, Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators, The New England journal of medicine,342 (2000) 154-160.
    [4]H.D. Sesso, J.E. Buring, W.G. Christen, T. Kurth, C. Belanger, J. MacFadyen, V. Bubes, J.E. Manson, R.J. Glynn, J.M. Gaziano, Vitamins E and C in the prevention of cardiovascular disease in men:the Physicians'Health Study II randomized controlled trial, JAMA:the journal of the American Medical Association,300 (2008) 2123-2133.
    [5]J.M. Li, A.M. Shah, Endothelial cell superoxide generation:regulation and relevance for cardiovascular pathophysiology, American journal of physiology. Regulatory, integrative and comparative physiology,287 (2004) R1014-1030.
    [6]K. Bedard, K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiological reviews,87 (2007) 245-313.
    [7]G.R. Drummond, S. Selemidis, K.K. Griendling, C.G. Sobey, Combating oxidative stress in vascular disease:NADPH oxidases as therapeutic targets, Nature reviews. Drug discovery,10 (2011) 453-471.
    [8]R.P. Brandes, J. Kreuzer, Vascular NADPH oxidases:molecular mechanisms of activation, Cardiovascular research,65 (2005) 16-27.
    [9]B. Lassegue, K.K. Griendling, NADPH oxidases:functions and pathologies in the vasculature, Arteriosclerosis, thrombosis, and vascular biology,30 (2010) 653-661.
    [10]H. Sumimoto, Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species, The FEBS journal,275 (2008) 3249-3277.
    [11]J. Aguirre, J.D. Lambeth, Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals, Free radical biology & medicine,49 (2010) 1342-1353.
    [12]K. Bedard, B. Lardy, K.H. Krause, NOX family NADPH oxidases:not just in mammals, Biochimie,89 (2007) 1107-1112.
    [13]T. Kawahara, M.T. Quinn, J.D. Lambeth, Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes, BMC evolutionary biology,7 (2007) 109.
    [14]K.D. Martyn, L.M. Frederick, K. von Loehneysen, M.C. Dinauer, U.G. Knaus, Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases, Cellular signalling,18 (2006) 69-82.
    [15]L. Serrander, L. Cartier, K. Bedard, B. Banfi, B. Lardy, O. Plastre, A. Sienkiewicz, L. Forro, W. Schlegel, K.H. Krause, NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation, The Biochemical journal,406 (2007) 105-114.
    [16]A.N. Lyle, N.N. Deshpande, Y. Taniyama, B. Seidel-Rogol, L. Pounkova, P. Du, C. Papaharalambus, B. Lassegue, K.K. Griendling, Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells, Circulation research,105 (2009) 249-259.
    [17]E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R.D. Appel, A. Bairoch, ExPASy:The proteomics server for in-depth protein knowledge and analysis, Nucleic acids research,31 (2003) 3784-3788.
    [18]K. Mahadev, H. Motoshima, X. Wu, J.M. Ruddy, R.S. Arnold, G. Cheng, J.D. Lambeth, B.J. Goldstein, The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction, Molecular and cellular biology,24 (2004) 1844-1854.
    [19]G Cheng, Z. Cao, X. Xu, E.G. van Meir, J.D. Lambeth, Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5, Gene,269 (2001) 131-140.
    [20]A. Shiose, J. Kuroda, K. Tsuruya, M. Hirai, H. Hirakata, S. Naito, M. Hattori, Y. Sakaki, H. Sumimoto, A novel superoxide-producing NAD(P)H oxidase in kidney, The Journal of biological chemistry,276 (2001) 1417-1423.
    [21]P. Goyal, N. Weissmann, F. Rose, F. Grimminger, H.J. Schafers, W. Seeger, J. Hanze, Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells, Biochemical and biophysical research communications,329 (2005) 32-39.
    [22]K. von Lohneysen, D. Noack, M.R. Wood, J.S. Friedman, U.G. Knaus, Structural insights into Nox4 and Nox2:motifs involved in function and cellular localization, Molecular and cellular biology,30 (2010) 961-975.
    [23]A. Salmeen, B.O. Park, T. Meyer, The NADPH oxidases NOX4 and DUOX2 regulate cell cycle entry via a p53-dependent pathway, Oncogene,29 (2010) 4473.4484.
    [24]S. Li, S.S. Tabar, V. Malec, B.G. Eul, W. Klepetko, N. Weissmann, F. Grimminger, W. Seeger, F. Rose, J. Hanze, NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts, Antioxidants & redox signaling,10 (2008) 1687-1698.
    [25]S. Ismail, A. Sturrock, P. Wu, B. Cahill, K. Norman, T. Huecksteadt, K. Sanders, T. Kennedy, J. Hoidal, NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells:the role of autocrine production of transforming growth factor-{beta} 1 and insulin-like growth factor binding protein-3, American journal of physiology. Lung cellular and molecular physiology,296 (2009) L489-499.
    [26]S.R. Datla, H. Peshavariya, G.J. Dusting, K. Mahadev, B.J. Goldstein, F. Jiang, Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro, Arteriosclerosis, thrombosis, and vascular biology,27 (2007) 2319-2324.
    [27]Y.D. Schilder, E.H. Heiss, D. Schachner, J. Ziegler, G. Reznicek, D. Sorescu, V.M. Dirsch, NADPH oxidases 1 and 4 mediate cellular senescence induced by resveratrol in human endothelial cells, Free radical biology & medicine,46 (2009) 1598-1606.
    [28]E. Pedruzzi, C. Guichard, V. Ollivier, F. Driss, M. Fay, C. Prunet, J.C. Marie, C. Pouzet, M. Samadi, C. Elbim, Y. O'Dowd, M. Bens, A. Vandewalle, M.A. Gougerot-Pocidalo, G. Lizard, E. Ogier-Denis, NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells, Molecular and cellular biology,24 (2004) 10703-10717.
    [29]T. Mochizuki, S. Furuta, J. Mitsushita, W.H. Shang, M. Ito, Y. Yokoo, M. Yamaura, S. Ishizone, J. Nakayama, A. Konagai, K. Hirose, K. Kiyosawa, T. Kamata, Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells, Oncogene,25 (2006) 3699-3707.
    [30]N. Tobar, J. Guerrero, P.C. Smith, J. Martinez, NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration, British journal of cancer,103 (2010) 1040-1047.
    [31]D. Meng, D.D. Lv, J. Fang, Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells, Cardiovascular research,80 (2008) 299-308.
    [32]J. Li, M. Stouffs, L. Serrander, B. Banfi, E. Bettiol, Y. Charnay, K. Steger, K.H. Krause, M.E. Jaconi, The NADPH oxidase NOX4 drives cardiac differentiation:Role in regulating cardiac transcription factors and MAP kinase activation, Molecular biology of the cell,17 (2006) 3978-3988.
    [33]I. Cucoranu, R. Clempus, A. Dikalova, P.J. Phelan, S. Ariyan, S. Dikalov, D. Sorescu, NAD(P)H oxidase 4 mediates transforming growth factor-betal-induced differentiation of cardiac fibroblasts into myofibroblasts, Circulation research,97 (2005) 900-907.
    [34]R.E. Clempus, D. Sorescu, A.E. Dikalova, L. Pounkova, P. Jo, G.P. Sorescu, H.H. Schmidt, B. Lassegue, K.K. Griendling, Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype, Arteriosclerosis, thrombosis, and vascular biology,27 (2007) 42-48.
    [35]A.C. Montezano, D. Burger, G.S. Ceravolo, H. Yusuf, M. Montero, R.M. Touyz, Novel Nox homologues in the vasculature:focusing on Nox4 and Nox5, Clinical science,120(2011)131-141.
    [36]Y. Fu, Y. Zhang, Z. Wang, L. Wang, X. Wei, B. Zhang, Z. Wen, H. Fang, Q. Pang, F. Yi, Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy, American journal of nephrology,32 (2010) 581-589.
    [37]A. Jaulmes, P. Sansilvestri-Morel, G. Rolland-Valognes, F. Bernhardt, R. Gaertner, B.P. Lockhart, A. Cordi, M. Wierzbicki, A. Rupin, TJ. Verbeuren, Nox4 mediates the expression of plasminogen activator inhibitor-1 via p38 MAPK pathway in cultured human endothelial cells, Thrombosis research,124 (2009) 439-446.
    [38]R.F. Wu, Z. Ma, D.P. Myers, L.S. Terada, HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases, The Journal of biological chemistry,282 (2007) 37412-37419.
    [39]T. Ago, T. Kitazono, H. Ooboshi, T. Iyama, Y.H. Han, J. Takada, M. Wakisaka, S. Ibayashi, H. Utsumi, M. Iida, Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase, Circulation,109 (2004) 227-233.
    [40]B. Lassegue, R.E. Clempus, Vascular NAD(P)H oxidases:specific features, expression, and regulation, American journal of physiology. Regulatory, integrative and comparative physiology,285 (2003) R227-297.
    [41]M.J. Haurani, M.E. Cifuentes, A.D. Shepard, P.J. Pagano, Nox4 oxidase overexpression specifically decreases endogenous Nox4 mRNA and inhibits angiotensin Ⅱ-induced adventitial myofibroblast migration, Hypertension,52 (2008) 143-149.
    [42]S.H. Ellmark, G.J. Dusting, M.N. Fui, N. Guzzo-Pernell, G.R. Drummond, The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle, Cardiovascular research,65 (2005) 495-504.
    [43]S. Basuroy, D. Tcheranova, S. Bhattacharya, C.W. Leffler, H. Parfenova, Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-alpha-induced apoptosis, American journal of physiology. Cell physiology,300 (2011) C256-265.
    [44]T. Djordjevic, R.S. BelAiba, S. Bonello, J. Pfeilschifter, J. Hess, A. Gorlach, Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells, Arteriosclerosis, thrombosis, and vascular biology,25 (2005)519-525.
    [45]K. Schroder, M. Zhang, S. Benkhoff, A. Mieth, R. Pliquett, J. Kosowski, C. Kruse, P. Luedike, U.R. Michaelis, N. Weissmann, S. Dimmeler, A.M. Shah, R.P. Brandes, Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase, Circulation research,110 (2012) 1217-1225.
    [46]H. Peshavariya, G.J. Dusting, F. Jiang, L.R. Halmos, C.G. Sobey, GR. Drummond, S. Selemidis, NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival, Naunyn-Schmiedeberg's archives of pharmacology, 380 (2009) 193-204.
    [47]P. Cohen, The regulation of protein function by multisite phosphorylation-a 25 year update, Trends in biochemical sciences,25 (2000) 596-601.
    [48]N.K. Tonks, Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction, The FEBS journal,280 (2013) 346-378.
    [49]M.A. Lemmon, J. Schlessinger, Cell signaling by receptor tyrosine kinases, Cell, 141(2010)1117-1134.
    [50]Z.Y. Zhang, Protein-tyrosine phosphatases:biological function, structural characteristics, and mechanism of catalysis, Critical reviews in biochemistry and molecular biology,33 (1998) 1-52.
    [51]F. Bohmer, S. Szedlacsek, L. Tabernero, A. Ostman, J. den Hertog, Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis, The FEBS journal,280 (2013) 413-431.
    [52]S.C. Yip, S. Cotteret, J. Chernoff, Sumoylated protein tyrosine phosphatase 1B localizes to the inner nuclear membrane and regulates the tyrosine phosphorylation of emerin, Journal of cell science,125 (2012) 310-316.
    [53]C. Klomsiri, P.A. Karplus, L.B. Poole, Cysteine-based redox switches in enzymes, Antioxidants & redox signaling,14 (2011) 1065-1077.
    [54]C. Blanchetot, M. Chagnon, N. Dube, M. Halle, M.L. Tremblay, Substrate-trapping techniques in the identification of cellular PTP targets, Methods, 35 (2005) 44-53.
    [55]M. Feldhammer, N. Uetani, D. Miranda-Saavedra, M.L. Tremblay, PTP1B:a simple enzyme for a complex world, Critical reviews in biochemistry and molecular biology,48 (2013) 430-445.
    [56]D. Barford, A.J. Flint, N.K. Tonks, Crystal structure of human protein tyrosine phosphatase 1B, Science,263 (1994) 1397-1404.
    [57]Z.Y. Zhang, Protein tyrosine phosphatases:structure and function, substrate specificity, and inhibitor development, Annual review of pharmacology and toxicology,42 (2002) 209-234.
    [58]A. Bourdeau, N. Dube, M.L. Tremblay, Cytoplasmic protein tyrosine phosphatases, regulation and function:the roles of PTP1B and TC-PTP, Current opinion in cell biology,17 (2005) 203-209.
    [59]S. Dadke, J. Chernoff, Interaction of protein tyrosine phosphatase (PTP) 1B with its substrates is influenced by two distinct binding domains, The Biochemical journal, 364 (2002) 377-383.
    [60]C.O. Arregui, A. Gonzalez, J.E. Burdisso, A.E. Gonzalez Wusener, Protein tyrosine phosphatase PTP1B in cell adhesion and migration, Cell adhesion & migration,7 (2013) 418-423.
    [61]T. Tiganis, PTP1B and TCPTP--nonredundant phosphatases in insulin signaling and glucose homeostasis, The FEBS journal,280 (2013) 445-458.
    [62]A.J. Barr, Protein tyrosine phosphatases as drug targets:strategies and challenges of inhibitor development, Future medicinal chemistry,2 (2010) 1563-1576.
    [63]B.J. Goldstein, Protein-tyrosine phosphatase 1B (PTP1B):a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance, Current drug targets. Immune, endocrine and metabolic disorders,1 (2001) 265-275.
    [64]V. Sangwan, J. Abella, A. Lai, N. Bertos, M. Stuible, M.L. Tremblay, M. Park, Protein-tyrosine phosphatase 1B modulates early endosome fusion and trafficking of Met and epidermal growth factor receptors, The Journal of biological chemistry,286 (2011)45000-45013.
    [65]M. Dagnell, J. Frijhoff, I. Pader, M. Augsten, B. Boivin, J. Xu, P.K. Mandal, N.K. Tonks, C. Hellberg, M. Conrad, E.S. Arner, A. Ostman, Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-beta receptor tyrosine kinase signaling, Proceedings of the National Academy of Sciences of the United States of America,110 (2013) 13398-13403.
    [66]D. Alvira, R. Naughton, L. Bhatt, S. Tedesco, W.D. Landry, T.G Cotter, Inhibition of protein-tyrosine phosphatase 1B (PTP1B) mediates ubiquitination and degradation of Bcr-Abl protein, The Journal of biological chemistry,286 (2011) 32313-32323.
    [67]L. Lessard, M. Stuible, M.L. Tremblay, The two faces of PTP1B in cancer, Biochimica et biophysica acta,1804 (2010) 613-619.
    [68]S. Zhu, J.D. Bjorge, D.J. Fujita, PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation, Cancer research,67 (2007) 10129-10137.
    [69]N. Dube, M.L. Tremblay, Beyond the metabolic function of PTP1B, Cell cycle,3 (2004) 550-553.
    [70]N. Krishnan, C. Fu, D.J. Pappin, N.K. Tonks, H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response, Science signaling,4 (2011) ra86.
    [71]J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S.I. Wang, J. Puc, C. Miliaresis, L. Rodgers, R. McCombie, S.H. Bigner, B.C. Giovanella, M. Ittmann, B. Tycko, H. Hibshoosh, M.H. Wigler, R. Parsons, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer, Science,275 (1997) 1943-1947.
    [72]D.M. Li, H. Sun, TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta, Cancer research,57 (1997) 2124-2129.
    [73]P.A. Steck, M.A. Pershouse, S.A. Jasser, W.K. Yung, H. Lin, A.H. Ligon, L.A. Langford, M.L. Baumgard, T. Hattier, T. Davis, C. Frye, R. Hu, B. Swedlund, D.H. Teng, S.V. Tavtigian, Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers, Nature genetics, 15(1997)356-362.
    [74]T.L. Yuan, L.C. Cantley, PI3K pathway alterations in cancer:variations on a theme, Oncogene,27 (2008) 5497-5510.
    [75]M. Raftopoulou, S. Etienne-Manneville, A. Self, S. Nicholls, A. Hall, Regulation of cell migration by the C2 domain of the tumor suppressor PTEN, Science,303 (2004)1179-1181.
    [76]S.Y. Wang, H.L. Hao, K. Deng, Y. Li, Z.Y. Cheng, C. Lv, Z.M. Liu, J. Yang, L. Pan, Expression levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and focal adhesion kinase in patients with multiple myeloma and their relationship to clinical stage and extramedullary infiltration, Leukemia & lymphoma, 53(2012)1162-1168.
    [77]T.J. Abouantoun, R.C. Castellino, T.J. MacDonald, Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells, Journal of neuro-oncology,101 (2011) 215-226.
    [78]M.S. Song, L. Salmena, P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor, Nature reviews. Molecular cell biology,13 (2012) 283-296.
    [79]W.H. Shen, A.S. Balajee, J. Wang, H. Wu, C. Eng, P.P. Pandolfi, Y. Yin, Essential role for nuclear PTEN in maintaining chromosomal integrity, Cell,128 (2007) 157-170.
    [80]H.J. Forman, J.M. Fukuto, M. Torres, Redox signaling:thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers, American journal of physiology. Cell physiology,287 (2004) C246-256.
    [81]S. Sivaramakrishnan, K. Keerthi, K.S. Gates, A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) activity, Journal of the American Chemical Society,127 (2005) 10830-10831.
    [82]D. Barford, A.K. Das, M.P. Egloff, The structure and mechanism of protein phosphatases:insights into catalysis and regulation, Annual review of biophysics and biomolecular structure,27 (1998) 133-164.
    [83]P. Chiarugi, P. Cirri, Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction, Trends in biochemical sciences,28 (2003) 509-514.
    [84]S.R. Lee, K.S. Yang, J. Kwon, C. Lee, W. Jeong, S.G. Rhee, Reversible inactivation of the tumor suppressor PTEN by H2O2, The Journal of biological chemistry,277 (2002) 20336-20342.
    [85]C.L. Bonifant, J.S. Kim, T. Waldman, NHERFs, NEP, MAGUKs, and more: interactions that regulate PTEN, Journal of cellular biochemistry,102 (2007) 878-885.
    [86]J.K. Lee, M. Edderkaoui, P. Truong, I. Ohno, K.T. Jang, A. Berti, S.J. Pandol, A.S. Gukovskaya, NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases, Gastroenterology,133 (2007) 1637-1648.
    [87]J. Kwon, S.R. Lee, K.S. Yang, Y. Ahn, Y.J. Kim, E.R. Stadtman, S.G. Rhee, Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors, Proceedings of the National Academy of Sciences of the United States of America,101 (2004) 16419-16424.
    [88]M.R. Junttila, S.P. Li, J. Westermarck, Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival, FASEB journal:official publication of the Federation of American Societies for Experimental Biology,22 (2008) 954-965.
    [89]R. Ray, C.E. Murdoch, M. Wang, C.X. Santos, M. Zhang, S. Alom-Ruiz, N. Anilkumar, A. Ouattara, A.C. Cave, S.J. Walker, D.J. Grieve; R.L. Charles, P. Eaton, A.C. Brewer, A.M. Shah, Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo, Arteriosclerosis, thrombosis, and vascular biology, 31(2011)1368-1376.
    [90]A.C. Brewer, T.V. Murray, M. Arno, M. Zhang, N.P. Anilkumar, G.E. Mann, A.M. Shah, Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo, Free radical biology & medicine,51 (2011) 205-215.
    [91]Y. Gorin, J.M. Ricono, N.H. Kim, B. Bhandari, GG. Choudhury, H.E. Abboud, Nox4 mediates angiotensin Ⅱ-induced activation of Akt/protein kinase B in mesangial cells, American journal of physiology. Renal physiology,285 (2003) F219-229.
    [92]M. Edderkaoui, C. Nitsche, L. Zheng, S.J. Pandol, I. Gukovsky, A.S. Gukovskaya, NADPH oxidase activation in pancreatic cancer cells is mediated through Akt-dependent up-regulation of p22phox, The Journal of biological chemistry, 286(2011)7779-7787.
    [93]C.E. Schreiner, M. Kumerz, J. Gesslbauer, D. Schachner, H. Joa, T. Erker, A.G. Atanasov, E.H. Heiss, V.M. Dirsch, Resveratrol blocks Akt activation in angiotensin II-or EGF-stimulated vascular smooth muscle cells in a redox-independent manner, Cardiovascular research,90 (2011) 140-147.
    [94]P.A. Suwanabol, S.M. Seedial, F. Zhang, X. Shi, Y. Si, B. Liu, K.C. Kent, TGF-beta and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells, American journal of physiology. Heart and circulatory physiology,302 (2012) H2211-2219.
    [95]J.J. Kattla, R.M. Carew, M. Heljic, C. Godson, D.P. Brazil, Protein kinase B/Akt activity is involved in renal TGF-betal-driven epithelial-mesenchymal transition in vitro and in vivo, American journal of physiology. Renal physiology,295 (2008) F215-225.
    [96]M.L. Circu, T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis, Free radical biology & medicine,48 (2010) 749-762.
    [97]N.S. Zinkevich, D.D. Gutterman, ROS-induced ROS release in vascular biology: redox-redox signaling, American journal of physiology. Heart and circulatory physiology,301 (2011) H647-653.
    [98]S. Yousefi, D.R. Green, K. Blaser, H.U. Simon, Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils, Proceedings of the National Academy of Sciences of the United States of America,91 (1994) 10868-10872.
    [99]K. Irani, Oxidant signaling in vascular cell growth, death, and survival:a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling, Circulation research,87 (2000) 179-183.
    [100]F. Jiang, Y. Zhang, G.J. Dusting, NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair, Pharmacological reviews,63 (2011) 218-242.
    [101]Y. Nakamura, N. Patrushev, H. Inomata, D. Mehta, N. Urao, H.W. Kim, M. Razvi, V. Kini, K. Mahadev, B.J. Goldstein, R. McKinney, T. Fukai, M. Ushio-Fukai, Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells, Circulation research,102 (2008) 1182-1191.
    [102]D. Meng, A. Mei, J. Liu, X. Kang, X. Shi, R. Qian, S. Chen, NADPH oxidase 4 mediates insulin-stimulated HIF-1 alpha and VEGF expression, and angiogenesis in vitro, PloS one,7 (2012) e48393.
    [103]S. Zhang, D. Yu, PI(3)king apart PTEN's role in cancer, Clinical cancer research:an official journal of the American Association for Cancer Research,16 (2010) 4325-4330.
    [104]A. Carracedo, P.P. Pandolfi, The PTEN-PI3K pathway:of feedbacks and cross-talks, Oncogene,27 (2008) 5527-5541.
    [105]N.K. Tonks, Redox redux:revisiting PTPs and the control of cell signaling, Cell, 121 (2005) 667-670.
    [1]W. Risau, I. Flamme, Vasculogenesis, Annual review of cell and developmental biology,11(1995)73-91.
    [2]C.J. Drake, J.E. Hungerford, C.D. Little, Morphogenesis of the first blood vessels, Annals of the New York Academy of Sciences,857 (1998) 155-179.
    [3]A. Eichmann, L. Yuan, D. Moyon, F. Lenoble, L. Pardanaud, C. Breant, Vascular development:from precursor cells to branched arterial and venous networks, The International journal of developmental biology,49 (2005) 259-267.
    [4]E. Bazigou, T. Makinen, Flow control in our vessels:vascular valves make sure there is no way back, Cellular and molecular life sciences:CMLS,70 (2013) 1055-1066.
    [5]F. le Noble, D. Moyon, L. Pardanaud, L. Yuan, V. Djonov, R. Matthijsen, C. Breant, V. Fleury,. A. Eichmann, Flow regulates arterial-venous differentiation in the chick embryo yolk sac, Development,131 (2004) 361-375.
    [6]T. Masumura, K. Yamamoto, N. Shimizu, S. Obi, J. Ando, Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways, Arteriosclerosis, thrombosis, and vascular biology, 29(2009)2125-2131.
    [7]R.H. Adams, Molecular control of arterial-venous blood vessel identity, Journal of anatomy,202 (2003) 105-112.
    [8]M.R. Swift, B.M. Weinstein, Arterial-venous specification during development, Circulation research,104 (2009) 576-588.
    [9]T. Kume, Specification of arterial, venous, and lymphatic endothelial cells during embryonic development, Histology and histopathology,25 (2010) 637-646.
    [10]P. Goichberg, Y. Bai, D. D'Amario, J. Ferreira-Martins, C. Fiorini, H. Zheng, S. Signore, F. del Monte, S. Ottolenghi, D.A. D'Alessandro, R.E. Michler, T. Hosoda, P. Anversa, J. Kajstura, M. Rota, A. Leri, The ephrin A1-EphA2 system promotes cardiac stem cell migration after infarction, Circulation research,108 (2011) 1071-1083.
    [11]J.J. Overman, A.N. Clarkson, I.B. Wanner, W.T. Overman, I. Eckstein, J.L. Maguire, I.D. Dinov, A.W. Toga, S.T. Carmichael, A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke, Proceedings of the National Academy of Sciences of the United States of America,109 (2012) E2230-2239.
    [12]H. Hirai, Y. Maru, K. Hagiwara, J. Nishida, F. Takaku, A novel putative tyrosine kinase receptor encoded by the eph gene, Science,238 (1987) 1717-1720.
    [13]T.D. Bartley, R.W. Hunt, A.A. Welcher, W.J. Boyle, V.P. Parker, R.A. Lindberg, H.S. Lu, A.M. Colombero, R.L. Elliott, B.A. Guthrie, et al., B61 is a ligand for the ECK receptor protein-tyrosine kinase, Nature,368 (1994) 558-560.
    [14]J.P. Himanen, D.B. Nikolov, Eph signaling:a structural view, Trends in neurosciences,26 (2003) 46-51.
    [15]N.W. Gale, S.J. Holland, D.M. Valenzuela, A. Flenniken, L. Pan, T.E. Ryan, M. Henkemeyer, K. Strebhardt, H. Hirai, D.G. Wilkinson, T. Pawson, S. Davis, GD. Yancopoulos, Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis, Neuron,17 (1996) 9-19.
    [16]J.P. Himanen, M.J. Chumley; M. Lackmann, C. Li, W.A. Barton, P.D. Jeffrey, C. Vearing, D. Geleick, D.A. Feldheim, A.W. Boyd, M. Henkemeyer, D.B. Nikolov, Repelling class discrimination:ephrin-A5 binds to and activates EphB2 receptor signaling, Nature neuroscience,7 (2004) 501-509.
    [17]A. Poliakov, M. Cotrina, D.G. Wilkinson, Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly, Developmental cell,7 (2004) 465-480.
    [18]K.K. Murai, E.B. Pasquale,'Eph'ective signaling:forward, reverse and crosstalk, Journal of cell science,116 (2003) 2823-2832.
    [19]D.G. Wilkinson, Multiple roles of EPH receptors and ephrins in neural development, Nature reviews. Neuroscience,2 (2001) 155-164.
    [20]S. Elowe, S.J. Holland, S. Kulkarni, T. Pawson, Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction, Molecular and cellular biology,21 (2001)7429-7441.
    [21]K.O. Lai, Y. Chen, H.M. Po, K.C. Lok, K. Gong, N.Y. Ip, Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signaling in muscle: implications in the regulation of acetylcholinesterase expression, The Journal of biological chemistry,279 (2004) 13383-13392.
    [22]E.B. Pasquale, Eph receptors and ephrins in cancer:bidirectional signalling and beyond, Nature reviews. Cancer,10 (2010) 165-180.
    [23]J. Zhang, S. Hughes, Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system, The Journal of pathology,208 (2006) 453-461.
    [24]R. Klein, Eph/ephrin signalling during development, Development,139 (2012) 4105-4109.
    [25]M.E. Pitulescu, R.H. Adams, Eph/ephrin molecules--a hub for signaling and endocytosis, Genes & development,24 (2010) 2480-2492.
    [26]T.J. Martin, E.H. Allan, P.W. Ho, J.H. Gooi, J.M. Quinn, M.T. Gillespie, V. Krasnoperov, N.A. Sims, Communication between ephrinB2 and EphB4 within the osteoblast lineage, Advances in experimental medicine and biology,658 (2010) 51-60.
    [27]S.S. Gerety, D.J. Anderson, Cardiovascular ephrinB2 function is essential for embryonic angiogenesis, Development,129 (2002) 1397-1410.
    [28]L.T. Krebs, C. Starling, A.V. Chervonsky, T. Gridley, Notchl activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants, Genesis,48 (2010) 146-150.
    [29]M. Morgan, M. Winder, Haemodynamics of arteriovenous malformations of the brain and consequences of resection:a review, Journal of clinical neuroscience official journal of the Neurosurgical Society of Australasia,8 (2001) 216-224.
    [30]A.S. Liu, J.B. Mulliken, D. Zurakowski, S.J. Fishman, A.K. Greene, Extracranial arteriovenous malformations:natural progression and recurrence after treatment, Plastic and reconstructive surgery,125 (2010) 1185-1194.
    [31]P. Corti, S. Young, C.Y. Chen, M.J. Patrick, E.R. Rochon, K. Pekkan, B.L. Roman, Interaction between alkl and blood flow in the development of arteriovenous malformations, Development,138 (2011) 1573-1582.
    [32]B.E. Zacharia, K.A. Vaughan, A. Jacoby, Z.L. Hickman, D. Bodmer, E.S. Connolly, Jr., Management of ruptured brain arterio venous malformations, Current atherosclerosis reports,14 (2012) 335-342.
    [33]S. Al-Saleh, A. Dragulescu, D. Manson, F. Golding, J. Traubici, M. Mei-Zahav, I.B. Maclusky, M.E. Faughnan, S. Carpenter, F. Ratjen, Utility of contrast echocardiography for pulmonary arteriovenous malformation screening in pediatric hereditary hemorrhagic telangiectasia, The Journal of pediatrics,160 (2012) 1039-1043 e1031.
    [34]R.C. Anderson, M.M. McDowell, C.P. Kellner, G. Appelboom, S.S. Bruce, I.S. Kotchetkov, R. Haque, N.A. Feldstein, E.S. Connolly, R.A. Solomon, P.M. Meyers, S.D. Lavine, Arteriovenous malformation-associated aneurysms in the pediatric population, Journal of neurosurgery. Pediatrics,9 (2012) 11-16.
    [35]C. Stapf, J.P. Mohr, J.H. Choi, A. Hartmann, H. Mast, Invasive treatment of unruptured brain arteriovenous malformations is experimental therapy, Current opinion in neurology,19 (2006) 63-68.
    [36]I.M. Braverman, A. Keh, B.S. Jacobson, Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia, The Journal of investigative dermatology,95 (1990) 422-427.
    [37]J.C. Horton, Arteriovenous malformations of the brain, The New England journal of medicine,357 (2007) 1774-1775; author reply 1775.
    [38]S. Mullan, S. Mojtahedi, D.L. Johnson, R.L. Macdonald, Embryological basis of some aspects of cerebral vascular fistulas and malformations, Journal of neurosurgery, 85 (1996) 1-8.
    [39]P.A. Murphy, M.T. Lam, X. Wu, T.N. Kim, S.M. Vartanian, A.W. Bollen, T.R. Carlson, R.A. Wang, Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice, Proceedings of the National Academy of Sciences of the United States of America,105 (2008) 10901-10906.
    [40]P.A. Murphy, T.N. Kim, G. Lu, A.W. Bollen, C.B. Schaffer, R.A. Wang, Notch4 normalization reduces blood vessel size in arteriovenous malformations, Science translational medicine,4 (2012) 117ra118.
    [41]J. Kitajewski, Arteriovenous malformations in five dimensions, Science translational medicine,4 (2012) 117fs113.
    [42]T.R. Carlson, Y. Yan, X. Wu, M.T. Lam, G.L. Tang, L.J. Beverly, L.M. Messina, A.J. Capobianco, Z. Werb, R. Wang, Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice, Proceedings of the National Academy of Sciences of the United States of America,102 (2005) 9884-9889.
    [43]K.G Guruharsha, M.W. Kankel, S. Artavanis-Tsakonas, The Notch signalling system:recent insights into the complexity of a conserved pathway, Nature reviews. Genetics,13 (2012) 654-666.
    [44]N. Villa, L. Walker, C.E. Lindsell, J. Gasson, M.L. Iruela-Arispe, G. Weinmaster, Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels, Mechanisms of development,108 (2001) 161-164.
    [45]O.L. Mohr, Character Changes Caused by Mutation of an Entire Region of a Chromosome in Drosophila, Genetics,4 (1919) 275-282.
    [46]R. Le Borgne, A. Bardin, F. Schweisguth, The roles of receptor and ligand endocytosis in regulating Notch signaling, Development,132 (2005) 1751-1762.
    [47]C. Roca, R.H. Adams, Regulation of vascular morphogenesis by Notch signaling, Genes & development,21 (2007) 2511-2524.
    [48]S.J. Bray, Notch signalling:a simple pathway becomes complex, Nature reviews. Molecular cell biology,7 (2006) 678-689.
    [49]G.D. Hurlbut, M.W. Kankel, R.J. Lake, S. Artavanis-Tsakonas, Crossing paths with Notch in the hyper-network, Current opinion in cell biology,19 (2007) 166-175.
    [50]E.C. Lai, Protein degradation:four E3s for the notch pathway, Current biology CB,12 (2002) R74-78.
    [51]H. Kurooka, K. Kuroda, T. Honjo, Roles of the ankyrin repeats and C-terminal region of the mouse notchl intracellular region, Nucleic acids research,26 (1998) 5448-5455.
    [52]L.M. Christian, The ADAM family:Insights into Notch proteolysis, Fly,6 (2012) 30-34.
    [53]E. Six, D. Ndiaye, Y. Laabi, C. Brou, N. Gupta-Rossi, A. Israel, F. Logeat, The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase, Proceedings of the National Academy of Sciences of the United States of America,100 (2003) 7638-7643.
    [54]M.J. LaVoie, D.J. Selkoe, The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments, The Journal of biological chemistry,278 (2003) 34427-34437.
    [55]T. Iso, L. Kedes, Y. Hamamori, HES and HERP families:multiple effectors of the Notch signaling pathway, Journal of cellular physiology,194 (2003) 237-255.
    [56]T. Borggrefe, F. Oswald, The Notch signaling pathway:transcriptional regulation at Notch target genes, Cellular and molecular life sciences:CMLS,66 (2009) 1631-1646.
    [57]Y. Tang, S. Urs, L. Liaw, Hairy-related transcription factors inhibit Notch-induced smooth muscle alpha-actin expression by interfering with Notch intracellular domain/CBF-1 complex interaction with the CBF-1-binding site, Circulation research,102 (2008) 661-668.
    [58]T. Gridley, Notch signaling in vascular development and physiology, Development,134 (2007) 2709-2718.
    [59]D. Stojanov, D. Grozdanovic, S. Petrovic, D. Benedeto-Stojanov, I. Stefanovic, N. Stojanovic, D.N. Ilic, De novo mutation in the NOTCH3 gene causing CADASIL, Bosnian journal of basic medical sciences/Udruzenje basicnih mediciniskih znanosti = Association of Basic Medical Sciences,14 (2014) 48-50.
    [60]T.P. Zhong, S. Childs, J.P. Leu, M.C. Fishman, Gridlock signalling pathway fashions the first embryonic artery, Nature,414 (2001) 216-220.
    [61]E.C. Lai, Notch signaling:control of cell communication and cell fate, Development,131 (2004)965-973.
    [62]A. Duarte, M. Hirashima, R. Benedito, A. Trindade, P. Diniz, E. Bekman, L. Costa, D. Henrique, J. Rossant, Dosage-sensitive requirement for mouse D114 in artery development, Genes & development,18 (2004) 2474-2478.
    [63]V.J. Hoglund, M.W. Majesky, Patterning the artery wall by lateral induction of Notch signaling, Circulation,125 (2012) 212-215.
    [64]I. Sorensen, R.H. Adams, A. Gossler, DLL 1-mediated Notch activation regulates endothelial identity in mouse fetal arteries, Blood,113 (2009) 5680-5688.
    [65]L.J. Manderfield, F.A. High, K.A. Engleka, F. Liu, L. Li, S. Rentschler, J.A. Epstein, Notch activation of Jagged 1 contributes to the assembly of the arterial wall, Circulation,125 (2012) 314-323.
    [66]C. Ruhrberg, Growing and shaping the vascular tree:multiple roles for VEGF, BioEssays:news and reviews in molecular, cellular and developmental biology,25 (2003) 1052-1060.
    [67]N.D. Lawson, A.M. Vogel, B.M. Weinstein, sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation, Developmental cell,3 (2002) 127-136.
    [68]R.N. Wilkinson, M.J. Koudijs, R.K. Patient, P.W. Ingham, S. Schulte-Merker, F.J. van Eeden, Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish, Blood,120 (2012) 477-488.
    [69]L.K. Phng, H. Gerhardt, Angiogenesis:a team effort coordinated by notch, Developmental cell,16 (2009) 196-208.
    [70]M. Corada, D. Nyqvist, F. Orsenigo, A. Caprini, C. Giampietro, M.M. Taketo, M.L. Iruela-Arispe, R.H. Adams, E. Dejana, The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating D114/Notch signaling, Developmental cell,18 (2010) 938-949.
    [71]A. Blokzijl, C. Dahlqvist, E. Reissmann, A. Falk, A. Moliner, U. Lendahl, C.F. Ibanez, Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3, The Journal of cell biology, 163(2003)723-728.
    [72]T. Takizawa, W. Ochiai, K. Nakashima, T. Taga, Enhanced gene activation by Notch and BMP signaling cross-talk, Nucleic acids research,31 (2003) 5723-5731.
    [73]J. Zavadil, L. Cermak, N. Soto-Nieves, E.P. Bottinger, Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition, The EMBO journal,23 (2004) 1155-1165.
    [74]H. Niimi, K. Pardali, M. Vanlandewijck, C.H. Heldin, A. Moustakas, Notch signaling is necessary for epithelial growth arrest by TGF-beta, The Journal of cell biology,176 (2007) 695-707.
    [75]P. Rao, T. Kadesch, The intracellular form of notch blocks transforming growth factor beta-mediated growth arrest in Mv1Lu epithelial cells, Molecular and cellular biology,23 (2003) 6694-6701.
    [76]F. Itoh, S. Itoh, M.J. Goumans, G Valdimarsdottir, T. Iso, G.P. Dotto, Y. Hamamori, L. Kedes, M. Kato, P. ten Dijke Pt, Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells, The EMBO journal, 23(2004)541-551.
    [77]S. Kennard, H. Liu, B. Lilly, Transforming growth factor-beta (TGF-β1) down-regulates Notch3 in fibroblasts to promote smooth muscle gene expression, The Journal of biological chemistry,283 (2008) 1324-1333.
    [78]M.J. Goumans, C. Mummery, Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice, The International journal of developmental biology,44 (2000) 253-265.
    [79]R.L. Carvalho, F. Itoh, M.J. Goumans, F. Lebrin, M. Kato, S. Takahashi, M. Ema, S. Itoh, M. van Rooijen, P. Bertolino, P. Ten Dijke, C.L. Mummery, Compensatory signalling induced in the yolk sac vasculature by deletion of TGFbeta receptors in mice, Journal of cell science,120 (2007) 4269-4277.
    [80]Y. Lan, B. Liu, H. Yao, F. Li, T. Weng, G. Yang, W. Li, X. Cheng, N. Mao, X. Yang, Essential role of endothelial Smad4 in vascular remodeling and integrity, Molecular and cellular biology,27 (2007) 7683-7692.
    [81]H. Chang, A. Zwijsen, H. Vogel, D. Huylebroeck, M.M. Matzuk, Smad5 is essential for left-right asymmetry in mice, Developmental biology,219 (2000) 71-78.
    [82]K.M. Galvin, M.J. Donovan, C.A. Lynch, R.I. Meyer, R.J. Paul, J.N. Lorenz, V. Fairchild-Huntress, K.L. Dixon, J.H. Dunmore, M.A. Gimbrone, Jr., D. Falb, D. Huszar, A role for smad6 in development and homeostasis of the cardiovascular system, Nature genetics,24 (2000) 171-174.
    [83]Q. Chen, H. Chen, D. Zheng, C. Kuang, H. Fang, B. Zou, W. Zhu, G. Bu, T. Jin, Z. Wang, X. Zhang, J. Chen, L.J. Field, M. Rubart, W. Shou, Y. Chen, Smad7 is required for the development and function of the heart, The Journal of biological chemistry,284 (2009) 292-300.
    [84]S.P. Oh, T. Seki, K.A. Goss, T. Imamura, Y. Yi, P.K. Donahoe, L. Li, K. Miyazono, P. ten Dijke, S. Kim, E. Li, Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis, Proceedings of the National Academy of Sciences of the United States of America,97 (2000)2626-2631.
    [85]P. ten Dijke, M.J. Goumans, E. Pardali, Endoglin in angiogenesis and vascular diseases, Angiogenesis,11 (2008) 79-89.
    [86]N.L. Prigoda, S. Savas, S.A. Abdalla, B. Piovesan, D. Rushlow, K. Vandezande, E. Zhang, H. Ozcelik, B.L. Gallie, M. Letarte, Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations, Journal of medical genetics, 43 (2006) 722-728.
    [87]J.H. Kim, M.R. Peacock, S.C. George, C.C. Hughes, BMP9 induces EphrinB2 expression in endothelial cells through an Alkl-BMPRII/ActRII-IDl/ID3-dependent pathway:implications for hereditary hemorrhagic telangiectasia type II, Angiogenesis, 15(2012)497-509.
    [88]F.S. Govani, C.L. Shovlin, Hereditary haemorrhagic telangiectasia:a clinical and scientific review, European journal of human genetics:EJHG,17 (2009) 860-871.
    [89]S.O. Park, Y.J. Lee, T. Seki, K.H. Hong, N. Fliess, Z. Jiang, A. Park, X. Wu, V. Kaartinen, B.L. Roman, S.P. Oh, ALK5-and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2, Blood,111 (2008) 633-642.
    [90]M.T. Holderfield, C.C. Hughes, Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis, Circulation research,102 (2008) 637-652.
    [91]S. Masuda, K. Kumano, K. Shimizu, Y. Imai, M. Kurokawa, S. Ogawa, M. Miyagishi, K. Taira, H. Hirai, S. Chiba, Notch1 oncoprotein antagonizes TGF-beta/Smad-mediated cell growth suppression via sequestration of coactivator p300, Cancer science,96 (2005) 274-282.
    [92]Y. Sun, W. Lowther, K. Kato, C. Bianco, N. Kenney, L. Strizzi, D. Raafat, M. Hirota, N.I. Khan, S. Bargo, B. Jones, D. Salomon, R. Callahan, Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-beta signaling, Oncogene,24 (2005) 5365-5374.
    [93]M. Hiratochi, H. Nagase, Y. Kuramochi, C.S. Koh, T. Ohkawara, K. Nakayama, The Delta intracellular domain mediates TGF-beta/Activin signaling through binding to Smads and has an important bi-directional function in the Notch-Delta signaling pathway, Nucleic acids research,35 (2007) 912-922.
    [94]T. Ohmine, Y. Miwa, F. Takahashi-Yanaga, S. Morimoto, Y. Maehara, T. Sasaguri, The involvement of aldosterone in cyclic stretch-mediated activation of NADPH oxidase in vascular smooth muscle cells, Hypertension research:official journal of the Japanese Society of Hypertension,32 (2009) 690-699.
    [95]P.T. Nowicki, S. Flavahan, H. Hassanain, S. Mitra, S. Holland, P.J. Goldschmidt-Clermont, N.A. Flavahan, Redox signaling of the arteriolar myogenic response, Circulation research,89 (2001) 114-116.
    [96]J.H. Zhu, C.L. Chen, S. Flavahan, J. Harr, B. Su, N.A. Flavahan, Cyclic stretch stimulates vascular smooth muscle cell alignment by redox-dependent activation of Notch3, American journal of physiology. Heart and circulatory physiology,300 (2011) H1770-1780.
    [97]N. Coant, S. Ben Mkaddem, E. Pedruzzi, C. Guichard, X. Treton, R. Ducroc, J.N. Freund, D. Cazals-Hatem, Y. Bouhnik, P.L. Woerther, D. Skurnik, A. Grodet, M. Fay, D. Biard, T. Lesuffleur, C. Deffert, R. Moreau, A. Groyer, K.H. Krause, F. Daniel, E. Ogier-Denis, NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon, Molecular and cellular biology, 30 (2010) 2636-2650.
    [98]W.X. Cai, L. Liang, L. Wang, J.T. Han, X.X. Zhu, H. Han, D.H. Hu, P. Zhang, Inhibition of Notch signaling leads to increased intracellular ROS by up-regulating Nox4 expression in primary HUVECs, Cellular immunology,287 (2014) 129-135.
    [99]H.C. Yu, H.Y. Qin, F. He, L. Wang, W. Fu, D. Liu, F.C. Guo, L. Liang, K.F. Dou, H. Han, Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling, Hepatology,54 (2011) 979-988.
    [100]F. Jiang, Y. Zhang, G.J. Dusting, NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair, Pharmacological reviews,63 (2011) 218-242.
    [101]H. Sauer, G. Rahimi, J. Hescheler, M. Wartenberg, Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells, FEBS letters,476 (2000) 218-223.
    [102]M. Schmelter, B. Ateghang, S. Helmig, M. Wartenberg, H. Sauer, Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation, FASEB journal:official publication of the Federation of American Societies for Experimental Biology,20 (2006) 1182-1184.
    [103]Y.B. Wo, D.Y. Zhu, Y. Hu, Z.Q. Wang, J. Liu, YJ. Lou, Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells, Journal of cellular biochemistry,103 (2008) 1536-1550.
    [104]Q. Xiao, Z. Luo, A.E. Pepe, A. Margariti, L. Zeng, Q. Xu, Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2, American journal of physiology. Cell physiology,296 (2009) C711-723.
    [105]M. Mofarrahi, R.P. Brandes, A. Gorlach, J. Hanze, L.S. Terada, M.T. Quinn, D. Mayaki, B. Petrof, S.N. Hussain, Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase, Antioxidants & redox signaling,10 (2008) 559-574.
    [106]M. Ushio-Fukai, N. Urao, Novel role of NADPH oxidase in angiogenesis and stem/progenitor cell function, Antioxidants & redox signaling,11 (2009) 2517-2533.
    [107]R.B. Hamanaka, A. Glasauer, P. Hoover, S. Yang, H. Blatt, A.R. Mullen, S. Getsios, C.J. Gottardi, R.J. DeBerardinis, R.M. Lavker, N.S. Chandel, Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development, Science signaling,6 (2013) ra8.
    [108]H. Hachisuka, G.J. Dusting, K.M. Abberton, W.A. Morrison, F. Jiang, Role of NADPH oxidase in tissue growth in a tissue engineering chamber in rats, Journal of tissue engineering and regenerative medicine,2 (2008) 430-435.
    [109]M. Hellstrom, L.K. Phng, J.J. Hofmann, E. Wallgard, L. Coultas, P. Lindblom, J. Alva, A.K. Nilsson, L. Karlsson, N. Gaiano, K. Yoon, J. Rossant, M.L. Iruela-Arispe, M. Kalen, H. Gerhardt, C. Betsholtz, D114 signalling through Notch1 regulates formation of tip cells during angiogenesis, Nature,445 (2007) 776-780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700