微小RNA-1通过调节基因KCNE1和KCNB2的表达促进快速起搏兔心房电重构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     心房颤动(房颤AF)是指心房活动不协调,导致规则有序的心房电机械功能恶化,在心电图上的表现为P波消失,代之以不规则的基线波动,心室率极不规则,是最严重的心房电活动紊乱之一,具有较高的致病率、致残率,并导致了沉重的社会经济负担。无序的颤动使心房泵血功能丧失或恶化,加之房室结对快速无序的心房激动的递减传导,可引起心室极不规则的兴奋,心房收缩力丧失,血流瘀滞易形成栓子。因此心功能受损、心室率(律)紊乱、心房附壁血栓形成等是AF患者的主要病理生理特点。过去很多实验室或临床研究已经表明,心房电重构(ER)和结构重构(SR)是发生AF的两大主要机制。心房ER主要包括心房有效不应期(AERP)及动作电位时程的缩短,动作电位传导速度减慢,是AF或快速心房率所产生的有利于AF维持和发生的心房电生理特性的改变。ER发生在AF过程的较早期,而SR发生的相对较晚。近来对编码特异离子通道蛋白基因的mRNA表达异常的研究引起了越来越多的关注,它可以引起离子通道蛋白数量、结构、性质的改变,尤其是钾离子通道,从而成为ER和心律失常的潜在分子机制。其中转录后水平对mRNA的调节也成为了人们关注的焦点。目前药物依然是AF治疗的重要方法,药物能恢复和维持窦性心律,控制心室率。但是药物治疗的副作用较多如恶心、头晕、疲劳甚至室性心律失常。AF的非药物治疗包括电转复、射频消融治疗和外科迷宫手术治疗。电复律是指用两个电极片放置在病人胸部的适当部位,通过除颤仪发放电流,重新恢复窦性心律的方法。电复律不是一种根治AF的方法,AF往往会复发,而且部分患者仍需要继续服用抗心律失常药物维持窦性心律。导管消融治疗及外科迷宫手术都属于有创治疗,易并发感染及血栓形成等。因此,要找到一个高效、安全的新策略用于治疗AF是非常重要的。
     MicroRNA(miRNA)是小RNA中的一个大家族,最早是Lee等人在线虫中发现,其在果蝇、植物和哺乳动物等真核生物中均有所发现。因为它在动植物体内发挥着重要且广泛的调控作用,日渐成为人们新的研究热点。miRNA为一类内源性非编码的单链小RNA,通过与其5’端“种子序列”与目的基因mRNA的3’非翻译区完全或不完全性互补配对,对目的基因mRNA的碱基进行切割或抑制翻译,指导RNA诱导沉默复合体(RISC)来调节目的基因表达,介导转录后基因调控。新进的研究表明miRNA不仅调控发育,而且在造血、细胞增殖和死亡等方面发挥作用,另外对心肌肥厚、心力衰竭、动脉粥样硬化和心律失常等心血管系统疾病的发生发展有重要的影响。
     MiRNA作为转录后调控的重要环节,可以对编码特异离子通道蛋白基因的mRNA表达产生影响,进而使离子通道蛋白及连接蛋白过度表达或低表达,致使离子通道平衡失调,诱发心律失常。miRNA的表达具有组织特异性,如在心肌富含miR-1,let-7,miR-133,miR-126-3p,miR-30c,而动脉平滑肌富含miR-145, let-7,miR-125b,miR-125a,miR-23和miR-143,但miR-1与miR-133在其中也有表达。miR-1与miR-133被认为是肌肉特异性miRNA,在成人的心脏及骨骼肌中优先表达。现在的研究认为miR-1在许多心脏疾病中扮演重要角色,特别是心律失常的病理生理过程。Yang等研究发现:梗死小鼠心脏内过量表达miR-1可以导致心律失常。miR-1通过作用于基因GJA1和KCNJ2减少心肌Cx43,Kir2.1蛋白的表达,使减慢传导,降低了心肌内向整流钾离子电流(IKl),导致细胞膜去极化,促使发生快速性心律失常,心电图中表现为QRS波增宽,QT间期延长。而miR-1通过反义寡核苷酸(AMO-1)被移除后,心律失常的发生明显减少。由此可知miR-1通过引起心肌缺血时离子通道失衡而达到其致心律失常作用。近来在Terentyev等人的研究中发现miR-1还可以通过调节钙离子流来参与心律失常的发生。因此,miR-1被认为是治疗心律失常的新靶点。
     虽然miR-1在心律失常病理生理过程中的作用已经有所研究,但是miR-1在AF早期ER中所发挥的机制至今还没有报道。目前miRNA-1在体转染的研究中大部分选小鼠为动物模型,转染后将心肌细胞进行体外培养,检测其对应的离子通道蛋白含量的变化,但在大型动物模型中进行miRNA-1在体转染的研究较为少见,而大型动物如犬、兔等AF的发生发展过程更接近于人类,且在体转染miRNA对动物模型AF的维持与诱发等观察更直接,因此,我们选择新西兰大白兔做为AF模型来探讨相关miRNA-1的参与机制,有助于我们更好理解人类AF发生的机制。虽然新西兰大白兔的miRNA序列还没有纳入miRbase数据库中,但我们在Ensembl数据库(http://asia.ensembl.org/Oryctolagus_cuniculus/Info/Index)中找到新西兰大白兔的基因序列草图,可用软件分析出其miR-1的序列。据此,本课题组拟以快速心房起搏兔为研究模型,以miR-1为候选miRNA,活体心房内注射转染miR-1及AMO-1,检测miR-1在快速心房起搏兔模型心房肌中的表达及钾离子通道蛋白含量及其编码mRNA的变化,以阐明miR-1参与AF的发展与维持,为AF的治疗提供新的靶点。
     研究目的
     1.评价miR-1在快速起搏1周后在兔心房肌中表达水平的变化;
     2.明确miR-1的异常表达与快速起搏兔心房早期ER的关系;
     3.探究miR-1促进心房早期ER的潜在分子机制。
     材料和方法
     1.动物模型建立
     1.1动物分组
     选购健康新西兰大白兔24只,雌雄不拘,体重1.5-2.5kg,随机分为4组,各组6只。其中第1组设为假手术,第2组设为快速起搏组,第3组设为起搏+miRNA-1转染组,第4组设为起搏+AMO-1转染组。
     ①假手术(第1组,n=6),埋置起搏器不予起搏,1周后开胸,右房(RA)心肌内注射对照病毒,1周后处死;
     ②心房快速起搏组(第2组,n=6),埋置起搏器以起搏频率600bpm连续起搏1周。开胸,RA心肌内注射对照病毒,1周后处死;
     ③心房快速起搏+miR-1转染组(第3组,n=6),埋置起搏器以起搏频率600bpm连续起搏1周。开胸,RA心肌内注射miR-1,1周后处死;
     ④心房快速起搏+miR-1转染组(第4组,n=6),埋置起搏器以起搏频率600bpm连续起搏1周。开胸,RA心肌内注射AMO-1,1周后处死。
     1.2快速心房起搏模型建立
     先用3%戊(苯)巴比妥钠(30-35mg/kg)经耳缘静脉将新西兰大白兔麻醉,继以氟烷(2-3%)及一氧化二氮(60-75%)维持麻醉状态(28),仰卧位固定动物,气管插管,呼吸机机械通气,调节呼吸频率30-50bpm,每分通气量15-40ml,吸呼比为2:1。胸颈部用利多卡因局麻并脱毛、常规消毒、铺巾,切开右颈部皮肤、分离皮下组织,暴露右颈内静脉,送入“J”形心房单电极,在X线透视下将电极头端固定于右心耳,整个过程都遵守无菌操作。
     2.电生理指标检测
     电生理检查通过多通道程序刺激仪分别于起搏前、转染前、转染1周三个时间点进行,并由电生理记录系统记录下RA心内心电图。AERP的测定采用S1S2反向扫描刺激法,S1S2呈8:1,步长5ms,基础起搏刺激周长分别为150、130ms,AERP定义为S2不引起心房激动的最长S1S2间期。AF由S1S2程序刺激或者burst刺激诱发。
     3.构建和生产慢病毒
     新西兰大白兔miR-1和AMO-1的前体序列由TELEBIO公司构建,慢病毒滴度为1×109TU/ml。
     4.在体基因转染
     在快速起搏1周后,右胸第4肋间打开胸腔,充分暴露心脏并剥离心包,将慢病毒复合物多点斜行注射到快速心房起搏兔RA前壁,关胸。一周后处死,立即取出心脏用PBS液由主动脉根部逆行灌注,然后分离出RA,拭干后保存在-80。C有待下一步使用。
     5.实时定量RT-PCR
     实时荧光定量RT-PCR反应检测miR-1和KCNE1/KCNB2mRNA表达水平。
     6. Western blot检测
     Western blot检测KCNE1和KCNB2所编码的离子通道蛋白表达水平。
     7.荧光素梅报告分析
     通过荧光素梅报告分析证实KCNE1和KCNB2是miR-1的靶基因。
     结果
     1.在快速起搏1周后,兔RA可发现早期ER;
     2.在快速起搏1周后,miR-1的表达水平发生上调;
     3.通过转染外源基因使miR-1过表达,促进了心房ER的发生,应用AMO-1拮抗miR-1后可逆转上述现象;
     4. KCNE1和KCNB2是miR-1的靶基因,他们的表达水平呈负相关。
     结论
     MiR-1通过作用于其靶基因KCNE1和KCNB2来调节后者编码的钾离子通道蛋白,从而影响心脏钾离子通道及电流,参与了由快速起搏引起的早期心房ER,表明miR-1可能在AF的发生过程中起到重要的作用。因此,miR-1作为治疗AF的潜在靶点具有重要的临床意义。
     创新性
     1.用新西兰大白兔制作快速心房起搏动物模型并检测miR-1在心房细胞中的表达变化;
     2.心房肌内活体注射miR-1及AMO-11周后体外检测离子通道蛋白及其编码基因的变化,探讨miR-1对钾离子通道及心房ER的影响及意义。
     局限性
     1.迄今为止,已有数千个microRNA分子先后在生物体内被鉴定,我们只进行了miR-1对心房早期ER的研究。
     2.同一种miRNA在不同的AF类型或在AF的不同时期发挥作用的不尽相同,我们只研究了miR-1对快速起搏兔右心房早期ER的影响。
Background
     Atrial fibrillation (AF) is one of the most common arrhythmia with substantial morbidity, mortality, and socioeconomic burden. Experimental and clinical studies have shown that electrical remodeling (ER) and structure remodeling (SR) are two major mechanisms involved in the AF. ER occurred early in the course of AF and led to characteristic changes in action potential duration (APD) and effective refractory period (ERP), whereas SR starts later and proceeds more slowly. Recently, abnormal expression of gene encoding the ion-channel protein, especially potassium (κ) channel, has attracted the researchers'interest in the molecular mechanism for ER and arrhythmia. Also, the difference between the level of messenger ribonucleic acid (mRNA) and that of the correspondent protein, frequently observed in gene expression studies, has aroused researcher's interest to investigate the regulatory mechanisms at the post-transcriptional level. Although traditional pharmacological therapies were effective in maintaining normal sinus rhythm, they were associated with numerous adverse side reactions such as nausea, dizziness, fatigue and even ventricular arrhythmias, while non-pharmacological therapies, such as current cardioversion, surgery, radiofrequency ablation, for instance, may lead to complications such as infection and thrombosis. Therefore, it is important to find an efficient and safe new strategy for the treatment of the AF.
     MicroRNAs (miRNA), a group of endogenous single-stranded non-protein-coding small RNAs (-22nucleotides long) were initially described in1993. MiRNA interacts with the3'untranslated region (3'UTR) of its target mRNA via exact complementarity with the7-8nt at its5' end, the so-called'seed sequence', which is critical for miRNA actions to guide RNA induced silencing complex (RISC) to down-regulate the expression of its target mRNA at the post-transcriptional level.
     MicroRNA-1(miR-1) was known to be muscle-specific miRNAs preferentially expressed in adult cardiac and skeletal muscle tissues, which was the top20abundant miRNAs in human heart. Current studies indicated that miR-1is involved in many heart diseases, especially in cardiac arrhythmias and its expression is associated with cardiac arrythmogenic potential in ischemic heart diseases. Delivery of miR-1into normal or infarcted rat hearts induces significantly widened QRS complex and prolonged QT interval in electrocardiograms, and AMO-1(anti-miR-1inhibitor oligonucleotides) could rescue this effect. The upregulation of miR-1could increase conduction time and depolarize the membrane potential through repressing the levels of Kir2.1and Connexin43, which may be partly responsible for its arrhythmogenic potential. Recently, one study by Terentyev et al suggested that miR-1may also participate in arrhythmia by deteriorates Ca2+handling.
     The miRNA of rabbit is absent in the miRbase until now. Though miR-1has been studied in the pathogenesis of cardiac arrhythmia, its possible role in the early stage of atrial ER has not yet been reported. Therefore, we performed the present study, to provide the first evidence that miR-1played a significant part in the early stage of atrial ER through a rabbit model with1-week right atrial tachypacing (A-TP). We used in this work established animal techniques for electrophysiology measurements and lentiviral vectors (LV) to deliver the genes of interest. The advantage of LV is their low immunogenicity and they can be easily transferred into cells and tissues and lead to much higher gene expression than that achieved by using adenovirus vectors in previous similar experiments.
     Objectives
     1. To evaluate the expression of miR-1in right A-TP rabbit model by a pacemaker for 1-week.
     2. To definite the relationship between the abnormal expression of miR-1and the early stage of atrial ER in AF.
     3. To elucidate the potential molecular mechanisms of miR-1accelerates the early stage of atrial ER in AF.
     Methods
     1. Establishment of animal model
     1.1Animal preparation
     Adult New Zealand White rabbits (regardless of their gender;1.5-2.5kg) were randomly allocated into4groups:1:control group (Ctl, n=6):with no pacing and transfected with control LV;2:right A-TP group (Pacing, n=6):submitted to pacing at600beats per minute (bpm) for1week, then transfected with control LV;3:right A-TP group transfected with miR-1(P+miR-1, n=6), recombinant LV carrying miR-1were injected into right atrial after right A-TP;4:right A-TP with AMO-1(P+AMO-1, n=6), where animals, after right A-TP, were injected into right atrial with recombinant LV carrying AMO-1.
     1.2Establishment of right atrial tachypacing (A-TP) model
     Rabbits were anesthetized with pentobarbital sodium (30-35mg/kg) and were ventilated by tracheostomy with a volume-regulated respirator. Halothane and N2O were supplemented to maintain a constant level of anesthesia for all procedures. Ventilator settings were adjusted to maintain physiological arterial blood gases. After administrating local anesthesia with lidocaine in the neck skin, right jugular vein was isolated and ligated by skin incision. A pacemaker was implanted in a subcutaneous pocket and attached to an electrode-lead in the RA appendage via the right jugular vein under the guidance of X-ray. All surgical procedures were performed under sterile conditions.
     2. Electrophysiological monitor
     Electrophysiological examination was performed at3time points (before pacing, before transfection and1-week after transfection), by using a programmable multichannel stimulator and intracardiac electrograms (ECG) were measured by using electrophysiological recording system, by placing the catheter into the right atrial (RA). Atrial effective refrractory period (AERP) was measured with S1-S2programmed electrical stimulation [PES]. AF was induced by PES with burst stimulation.
     3. Construction and production of Lentiviral vector
     The miR-1and AMO-1sequences of New Zealand White rabbit precursor were synthesized by TELEBIO (Shanghai, PR China). The titer of Lentiviral vector was1×109TU/ml.
     4. In vivo gene transfer
     After1week of A-TP, the heart was exposed and the RAs were fixed. Then recombinant LVs were directly injected into RAs. After that, the heart was placed back into the thoracic cavity. One week after lentiviral injection, the rabbits were killed and the heart was immediately excised and washed by ice-cold PBS retroperfusion via the aortic root, then the RA was dissected, blotted dry, frozen in liquid nitrogen, and stored at-80℃.
     5. Real-time qRT-PCR analysis
     Total RNA was extracted from rabbits RAs, and quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) was performed to detect the level of miR-1and KCNE1and KCNB2genes.
     6. Western blot analysis
     Western blot analysis was used to determine the protein expression of KCNE1and KCNB2.
     7. Luciferase reporter assays
     KCNE1and-KCNB2as the target genes for miR-1were confirmed by luciferase activity assay.
     Results
     1. The early stage of atrial ER in AF was found in right A-TP rabbit model by a pacemaker for1-week;
     2. The expression of miR-1was increased with the right atrial ER;
     3. Over-expression of miR-1via in vivo transfections of recombinant LV accelerated right atrial ER after A-TP meanwhile AMO-1could rescue it;
     4. The level of miR-1and KCNE1/KCNB2appear to be negatively correlated, indicating thus that miR-1could accelerate the atrial ER through KCNE1and KCNB2target genes.
     Conclusions
     MiR-1accelerates the atrial ER induced by A-TP via target K+channel genes, indicating that miR-1may play an important role in the initiation of AF. Thus, miR-1has great clinical relevance as a potential therapeutic target for AF.
引文
1. Murphy NF, Simpson CR, Jhund PS, et al.A national survey of the prevalence, incidence, primary care burden and treatment of atrial fibrillation in Scotland, Heart 2007;93:606-612.
    2. Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation:the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010;31(19):2369-2429.
    3. Murphy NF, Simpson CR, Jhund PS, Stewart S, et al. A national survey of the prevalence, incidence, primary care burden and treatment of atrial fibrillation in Scotland. Heart 2007;93(5):606-12.
    4. Zhang S. Epidemiology of atrial fibrillation in China. The 5th China Atrial Fibrillation Symposium, Beijing,2007.
    5. Moe GK, Abildskov JA. Atrial fibrillation as a selfsustaining arrhythmia independent of focal discharge. Am Heart J 1959;58:59-70.
    6. Scherf D, Schaffer Al, Blumenfeld S. Mechanism of flutter and fibrillation. Arch Intern Med 1953;91:333-352
    7. Gerstenfeld EP, Callans DJ, Dixit S, et al. Incidence and location of focal atrial fibrillation triggers in patients undergoing repeat pulmonary vein isolation: implications for ablation strategies. J Cardiovasc Electrophysiol 2003;14(7):685-690.
    8. Hocini M, Haissaguerre M, Jais P. Predominant origin of ectopy triggering atrial fibrillation from the pulmonary veins:mapping and ablation in 100 patients. Eur Heart J 1999;20:347
    9. Liu J, Huang CX, Bao MW, et al. Ectopic activity induced by atrial pressure in rabbit pulmonary vein in vitro. Chin Med J 2005; 118:1210-1231.
    10. Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995;92(7):1954-1968.
    11. Burstein B, Nattel S. Atrial fibrosis:mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 2008;51:802-809.
    12. Wang Z, Lu Y, Yang B. MicroRNAs and atrial fibrillation:new fundamentals. Cardiovasc Res 2011;89:710-721.
    13. Levy S, Breithardt G, Campbell RWF, et al. On behalf of the Working Group on Arrhythmial of the European Society of Cardiology. Atrial fibrillation; current knowledge and recommendations for management. Eur Heart J 1998; 19: 1294-1320.
    14. Prystowsky EN, Benson JD, Woodrow MD, et al. Management of patients with atrial fibrillation:a statement for healthcare professionals from the subcommittee on electrocardiography and electrophysiology, American Heart Association. Circulation 1996; 93:1262-1277.
    15. Reiffel JA. Drug choices in the treatment of atrial fibrillation. AmJ Cardiol 2000;85:12D-19D.
    16. Prystowsky EN. Management of atrial fibrillation:therapeutic options and clinical decisions. Am J Cardiol 2000;85:3D-11D.
    17. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843-854.
    18. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
    19. Bernstein E, Caudy AA, Hammond S, et al. Role for abidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363-366.
    20. Pasquinelli AE. MicroRNAs:deviants no longer. Trends Genet 2002;18(4):171-173.
    21. Brennecke J, Hipfner DR, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003;113(1):25-36.
    22. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoieticlineage differentiation. Science 2004;303(5654):83-86.
    23. Van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by amicroRNA. Science 2007;316:575-579.
    24. Van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006; 103:18255-18260.
    25. Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007; 100:416-424.
    26. Care" A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 22007;13:613-618.
    27. Cheng Y, Ji R, Yue J, Yang J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? Am J Pathol 2007;170:1831-1840.
    28. Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 2007;42:1137-1141.
    29. Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart:a clue to fetal gene reprogramming in heart failure. Circulation 2007; 116:258-267.
    30. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD et al. Altered micro-RNA expression in human heart disease. Physiol Genomics 2007;31:367-373.
    31. Haver VG, Slart RH, Zeebregts CJ, et al. Rupture of vulnerable atherosclerotic plaques:microRNAs conducting the orchestra? Trends Cardiovasc Med 2010;20(2):65-71.
    32. Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA:miR-1 causes cardiac arrhythmias by targeting GJA1 and KCNJ2 genes.Nat Med 2007; 13:486-491.
    33. Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004;32(22):e188.
    34. Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific miRNAs from mouse. Curr Biol 2002;12:735-739.
    35. Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res 2007;100:1579-1588.
    36. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005; 436(7048):214-220.
    37. Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007; 8:166.
    38. Luo X, Zhang H, Xiao J, et al. Regulation of human cardiac ion channel genes by microRNAs:theoretical perspective and pathophysiological implications. Cell Physiol Biochem 2010; 25:571-586
    39. Terentyev D, Belevych AE, Terentyeva R, et al. miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 2009;104:514-521
    40. Israel CW, Gronefeld G, Ehrlich JR, et al. Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device:implications for optimal patient care. J Am Coll Cardiol 43:47-52,2004
    41. Kerr CR, Humphries KH, Talajic M, et al.Progres-sion to chronic atrial fibrillation after the initial diagnosis of par-oxysmal atrial fibrillation:results from the Canadian Registry of Atrial Fibrillation. Am Heart J 2005;149:489-496.
    42. Stewart S, Hart CL, Hole DJ, et al. A population-based study of the long-term risks associated with atrial fibrillation:20-year follow-up of the Renfrew/Paisley study. Am J Med 2002; 113:359-364.
    43. Glitsch HG Electrophysiology of the sodium-potassium-ATPase in car-diac cells. Physiol Rev 2001;81:1791-1826.
    44.Shigekawa M, Iwamoto T. CardiacNa+-Ca2+exchange. Molecular and phar-macological aspects. Circ Res 2001;88:864-876.
    45. KoumiS, B acker CL, Arentzen CE. Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation 1995; 92:164-174.
    46. Koumi S, A rentzen CE, Backer CL, et al. Alterations in muscarinic K+channel response to acetylcholine and to G protein-mediated activation in atrial myocytes isolated from failing human hearts. Circulation 1994;90:2213-2224.
    47. ZHAO Feng, HUANG Xin, LI Li. The Status of Atrial Fibrillation Animal Model. Laboratory Animal and Comparative Medicine 2006;26(4):257-260.
    48. Hou YM,Yang XC. Atrial fibrillation model making and evaluation. Chinese Journal of Cardiac Pacing and Electrophysiology 2006;20(3):194-197.
    49. Robbins J. KCNQ potassium channels:physiology, pathophysiology,and pharmacology. Pharmacol Ther 2001;90:1-19.
    50. Luo X, Lin H, Lu Y, et al. Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 2007;212:358-367.
    51. HUANG Bing, CHEN Lei, WU Xueren, et al. The altered transient outward (I_(tol)) and ultra-rapid delayed rectifier (I_(Kur)) K-+currents in right atrial myocytes of human atrial fibrillation. Chinese Journal of Pathophysiology 2005;21(1):77.
    52. Xia M,Jin Q,Bendabhou S,et al.A Kir2.1 gain of function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 2005;332(4):1021-1019
    53. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38:228-233.
    54. Anderson ME, Mohler PJ. MicroRNA may have macro effect on sudden death. Nat Med 2007;13:410-411.
    55. Editor. Research Highlights. Nature 2007;447:4-5.
    56. Editor. Notable advances. Nat Med 2007;13:1401.
    57. Editor. Editors' choice:highlights of the recent literature. Science 2007;316:663.
    58. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007;129:303-317.
    59. Luo X, Lin H, Pan Z, et al. Downregulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. JBiol Chem 2008;283:20045-20052.
    60. X iao J, Y ang BF, L in HX, et al. Nove 1 approaches for Gene-specific interference via manipulating actions of microRNAs:examination on the pacemaker channel genes HCN2 and HCN4. J Ce ll Physiol 2007;212:285-292.
    61. X iao J, Yang B, L in H, et al. Mesenchymalstem cells transfected with HCN2 genes by Lenti V can be modified to be cardiac pacemaker cells[J]. J Cell Phys iol 2007;212:285.
    62. Girmatsion Z, Biliczki P, Bonauer A, et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 2009;6:1802-1809.
    63. Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 2010;122:2378-2387.
    64. Zhang G, Budker V, Wolff JA. Hingh levels of foreign gene expression in hepatocytes after tail vien injections of naked plasmid DNA. Hum Gene Ther 1999;10(10):1735-1737.
    65. Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutationinfamilial atrial fibrillation. Science 2003;299:251-254.
    66. Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nature Genet 1997; 17:267-268.
    67. Splawski L,Tristani-Firouzi M, Lehmann MH, et al. Mutations in the hmink gene cause long QT syndrome and suppress IKs function. Nature Genet 1997;17:338-340.
    68. Splawski L, Shen JX,Timothy KW, et al. Spectrum of Mutations in Long-QT Syndrome Genes:KVLOT1, HERG, SCN5A, KCNE1, and KCNE2.circulation 2000;102:1178-1185.
    69. Yan L, Figueroa DJ, Austin CP, et al. Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 2004;53:597-607.
    70. Heck A, Vogler C, Gschwind L, et al. Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory. PLoS One 2011;6:e29337. DOI:10.1371/journal.pone.0029337. Epub 2011 Dec 21.
    71. Thibault K, Calvino B, Dubacq S, et al. Cortical effect of oxaliplatin associated with sustained neuropathic pain:Exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex. Pain 2012;153:1636-1647.
    72. Xu C, Lu Y, Tang G, Wang R. Expression of voltage-dependent K(+) channel genes in mesenteric artery smooth muscle cells. Am J Physiol 1999; 277:G1055-1063.
    73. Frey BW, Lynch FT, Kinsella JM, et al. Blocking of cloned and native delayed rectifier K channels from visceral smooth muscles by phencyclidine. Neurogastroenterol Motil 2000; 12:509-516.
    74. Brahmajothi MV, Morales MJ, Liu S, et al. In situ hybridization reveals extensive diversity of K+channel mRNA in isolated ferret cardiac myocytes. Circ Res 1996;78:1083-1089.
    75. Heerdt PM, Kant R, Hu Z, et al. Transcriptomic analysis reveals atrial KCNE1 down-regulation following lung lobectomy. J Mol Cell Cardiol 2012; 53(3):350-353.
    76. Temple J, Frias P, Rottman J, et al. Atrial fibrillation in KCNE1-null mice. Circ Res 2005;97:62-69.
    77. Olesen MS, Bentzen BH, Nielsen JB, et al. Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrialfi brillation. BMC Med Genet 2012;13:24.
    78. X Luo, ZP, J Xiao, et al. critical role of micrornas mir-26 and mir-101 in atrial electrical remodeling in experimental atrial fibrillation. Circulation 2010;122:A19345.
    79. Matkovich SJ, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 2010;106:166-175.
    80. Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. JClin Invest 2009; 119:2772-2786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700