氧化石墨烯的湿敏特性及其在微纳湿度传感器上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿度做为一个重要的物理量,在人类日常生活和工农业生产中扮演着非常重要的作用。随着科技的不断发展,人们对高性能湿度传感器的需求不断增加,这为湿度传感器行业的发展带来了前所未有的机遇和挑战。近些年,新型纳米材料被广泛报道应用于湿度传感器领域,正逐渐成为湿度敏感材料的主要发展方向及研究热点。本论文围绕一种新兴的二维碳质纳米材料-氧化石墨烯(GO)的湿敏特性开展研究,提出了几种基于GO敏感薄膜的湿度传感器,并探讨了环境湿度对GO电学特性的影响。论文主要工作如下:
     (1)运用交流复阻抗法和直流Ⅰ-Ⅴ测试两种方法研究了环境湿度因素对GO薄膜电学特性的影响及其机制,并探讨了GO薄膜在阻抗式湿度传感器上的应用。1)采用交流复阻抗法研究了GO薄膜的湿度敏感机制并建立相应的等效电路模型,通过分析不同湿度条件下的GO薄膜的Cole-Cole图和Bode图,可以发现在低湿环境中,GO薄膜的导电机制为材料固有的电子电导和极化,由于GO薄膜固有的电子电导非常微弱,GO材料的极化对复阻抗贡献占主导地位,GO薄膜表现出较大的阻抗。而在高湿环境中,离子电导及水分子参与的极化对GO薄膜导电起主要贡献,GO薄膜表现出弱的导电性;进一步探讨了GO薄膜在阻抗式湿度传感器上的应用,研究结果表明GO薄膜构建的阻抗式湿度传感器在低频激励下(50Hz)具有较好的湿度响应灵敏度,此外这种类型的传感器还具有湿滞小,响应和恢复迅速等特性。2)研究了不同环境湿度条件下GO薄膜的直流Ⅰ-Ⅴ特性,结果表明加载电压幅度影响GO薄膜的Ⅰ-Ⅴ特性曲线特征,在低加载电压区(-2V-2V),GO薄膜的Ⅰ-Ⅴ特性曲线在各个湿度点均表现为近似线性的直线, GO薄膜电阻随着湿度的增加而下降,且薄膜电阻与扫描电压大小无关,而在高加载电压区(-4V--2V以及2V-4V),GO薄膜的Ⅰ-Ⅴ特性曲线特征不仅与外界环境湿度水平有关,还与加载在GO上的电压大小有关,高幅度加载电压导致GO薄膜电阻下降,推测可能的机理为GO薄膜在强电场作用下发生部分还原反应,GO的部分碳原子由Sp3杂化态转向Sp2杂化态,从而使得GO薄膜的电导率得以提高。加载电压幅度的增大以及外界湿度水平的提高都会使得GO薄膜的还原程度提高,导致GO薄膜的电传导能力得到大幅度提高。上述研究工作表明,对于溶液法制备的GO薄膜电子器件,在应用过程中需考虑环境湿度和工作电压因素的影响。
     (2)由于GO薄膜具有的较强亲水性、大比表面积及较高机械模量等优异特性,提出了一种兼具高灵敏度和高稳定度的GO薄膜修饰石英晶体微天平(QCM)湿度传感器。QCM作为基本换能元件,GO做为湿度敏感层沉积在QCM电极上。首先采用振荡电路法研究了所制备的QCM湿度传感器的湿度敏感特性,结果表明GO薄膜修饰的QCM湿度传感器呈现出较高的湿度响应灵敏度,且在宽湿度范围内(6.4~93.5%RH)具有较好的线性,以及快速的响应及恢复特性,低的湿滞特性及较好的长期稳定性;此外,研究了GO薄膜厚度对传感器湿度敏感性能的影响,发现较厚的GO薄膜修饰的QCM湿度传感器具有更高的灵敏度响应,但其线性度略有下降。还采用阻抗电路法研究了GO修饰的QCM湿度传感器在湿度环境中的谐振行为,并与传统聚合物材料修饰的QCM湿度传感器进行了对比分析。研究发现,GO薄膜修饰的QCM湿度传感器在高湿环境下的品质因数(Q)大大高于聚合物材料修饰的QCM湿度传感器,因而GO材料比较适合于构建具有高稳定度的QCM湿度传感器。
     (3)基于GO薄膜吸附水分子发生溶胀这一特性,提出了一种易于集成化的GO-硅双层结构MEMS湿度传感器。采用硅微桥做为换能元件,GO材料做为湿敏层涂覆于硅微桥,形成GO-硅的双层结构。基于GO薄膜的MEMS湿度传感器的换能原理如下:GO吸附/脱附水分子产生膨胀变形,GO薄膜的膨胀变形作用于硅微桥使其产生相应的机械形变,集成在硅微桥内部的压阻惠斯通电桥感知这种机械形变并产生电压输出信号。研究发现,基于GO薄膜的MEMS湿度传感器在较宽湿度范围内(10-98%RH)呈较好的湿度线性响应,并具有快速的响应及恢复特性,以及较好的重复性和低湿滞等特性。除此,研究了GO涂层厚度对传感器湿度响应灵敏度及线性度的影响,并讨论了环境温度因素对传感器输出灵敏度的影响。基于GO薄膜的MEMS湿度传感器由于制作工艺与传统的硅集成电路工艺相兼容,可以比较容易集成后端信号处理电路以实现单片式的湿度传感器,以及与其他类型传感器集成实现多参数、智能化传感器。
As an important physical quantity, relative humidity (RH) plays an important role in human daily life, industry and agriculture. With the continuous development of science and technology, the increasing demands for high performances humidity sensor bring out unprecedented accident and challenge for humidity sensor industry. In recent years, novel nanostructure materials have frequently been adopted in the application of humidity sensor, and gradually become the development trends and the hot spots of the humidity sensing materials. This dissertation centres on and spreads out from the humidity sensing properties of graphene oxide (GO), which is a novel two dimension carbon nanomaterial. We present several types of humidity sensor based on GO thin films, and investigate the influence of ambient humidity on the electrical properties of GO films. The main content summarized as follows:
     Firstly, the effects and mechanism of ambient humidity on the electrical properties of GO films is studied by using alternating current complex impedance technique and direct current I-V method.(1) Utilizing alternating current complex impedance technique, the humidity sensing mechanism of GO films is studied, and the correspoding equivalent circuits are proposed. By analyzing the characteristics of the Cole-Cole diagram and Bode diagram of GO films, we find that the conductive mechanisms of GO films at low RH are intrinsic electron conduction and electronic polarization of GO films; Because of the intrinsic electron conduction of GO films is weak, GO films exhibit large impedance and the polarization is dominant in the impedance of GO films. At high RH, however, the conductive mechanisms of GO films are ion conduction and polarization of water, GO films exhibit poor conductivity. We further dicuss the application of GO films in impedance humidity sensor. The results suggest that GO films based impedance humidity sensor show good humidity sensing property at low frequency exciting point (50Hz). In addition, the sensor exhibit low humidity hysteresis, fast response and recovery.(2) The I-V characteristics of GO films at various humidity levels are investigated. The results indicate that the I-V characteristic of GO films under a lower loading voltage (-2V~2V) is different from that of a higher loading voltage (-4V~-2V and2V~4V). In the case of a lower loading voltage, the I-V curves of GO films are linear at various RHs. The resistance of GO films decreases with inceasing RH at a constant loading voltage. The resistance of GO films is independent on the loading voltage. However, in the case of a higher loading voltage, the I-V characteristics of GO films are not only dependent on humidity, but also on the loading voltage, the resistance of GO films decreases with increasing loading voltage. It is infered that the reduction of GO films occurs in the presence of strong electric fields, a part of cabon atoms of GO films transform from sp3hybridization state to sp2hybridization state; it results in the enhancement of the conduction of GO films. The increase in loading voltage and humidity level can also strengthen the reduction of GO films, leading to the large enhancement of the conduction of GO films. The above-mentioned studies indicate that the graphene electrical device arising from solution processed GO shoud consider the effect of humidity and loading voltage.
     Second, due to these excellent properties of GO films, such as strong hydrophilic, high specific surface area, high mechanical modulus, GO modified quartz crystal microbalance (QCM) humidity sensor with both large humidity sensitivity and high frequency stability is presented. The sensor utilizes QCM as transducer element. GO films as humidity sensing layer is deposited on the electrode of the QCM. At first, we study the humidity sensing properties of GO films modified QCM humidity sensor by oscillation circuit method. The results show that GO films modified QCM exhibit high humidity response sensitivity, linear humidity-frequency response in the wide detection range of6.4-93.5%RH, fast response and recovery, low humidity hysteresis, good long-term stability. In addition, the influence of the thickness of GO films on the humidity sensing characteristics of QCM humidity sensor is discussed; it is found that QCM humidity sensor with the thicker GO films show higher sensitivity response, but worse linearity. Next, the resonant behaviors of GO films modified QCM humidity sensor in various RHs are investigated through impedance circuit method, and are compared with conventional polymer modified QCM. The results indicated that the quality factor (Q) of GO films modified QCM is much higher that of polymer modified QCM in high RH environment, as a result, GO as humidity sensing material is very suitable to realize high stability humidity sensor by combining with QCM transducer.
     Thirdly, a novel MEMS humidity sensor is presented based on the swelling property of GO films due to water adsorption. The sensor utilizes silicon microbridge as transducer element. GO films as humidity sensing layer is deposited on the silicon microbridge, which forms GO-silicon bilayer structure. The transducer principle of GO films based MEMS humidity sensor is as follow: the adsorption/desorption of water molecule from GO films produce volume swelling/shrinking. This stain applies on silicon microbridge, resulting in the bending of silicon microbridge. The full piezoresistive Wheatstonebridge integrated in silicon microbridge transforms this deformation into a measurable output electrical signal. The experiment results show that GO films based MEMS humidity sensor exhibited excellent linear humidity response in a wide humidity range of10-98%RH, fast response and recovery, good repeatable property and low humidity hysteresis, and so on. Moreover, the dependence of the thickness of GO thin films on response sensitivity and linearity is investigated, and the effect of temperature on the sensor output is also dicussed. Since the fabrication process of GO films based MEMS humidity sensor is compatible with classic silicon integrated circuit process, this approach can easily realize singlechip humidity sensors by integrating signal process circuit on MEMS chip, and form multi-informations and smart sensors by integrating other types of sensor on one chip.
引文
[1]Fenner R, Zdankiewicz E. Micromachined water vapor sensors:a review of sensing technologies. Sensor Journal IEEE,2001,1(4):309-317.
    [2]Chen Z, Chi L. Humidity sensors:a review of materials and mechanisms. Sensor Letters,2005,3(4):274-295.
    [3]Mathews DA. Review of the lithium chloride radiosonde hygrometer. Proceedings of the Conference on Humidity and Moisture, vol. VI, Washington, DC,1963, pp.219-227.
    [4]Rittersma ZM. Recent achievements in miniaturised humidity sensors-a review of transduction techniques. Sensors and Actuators B:Chemical,2002,96 (2): 196-210.
    [5]Takaoka Y, Maebashi Y, Kobayashi S, Usui T. Humidity sensor. Jpn. Tokkyo Koho (patent),1983,58-16467.
    [6]Kinjo N, Ohara S, Sugawara T, Tsuchitani S. Changes in electrical resistance of ionic copolymers caused by moisture sorption and desorption. Polymer Journal, 1983,15(8):621.
    [7]Su PG, Huang LN. Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sensors and Actuators B:Chemical,2007,123(1):501-507.
    [8]Su PG, Wang CP. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials. Sensors and Actuators B:Chemical,2008,129(2): 538-543.
    [9]Yao Z, Yang MJ. A fast response resistance-type humidity sensor based on organic silicon containing cross-linked copolymer. Sensors and Actuators B: Chemical,2006,117(1):93-98.
    [10]Huang XJ, Choi YK. Chemical sensors based on nanostructured materials. Sensors and Actuators B:Chemical,2007,122(2):659-671.
    [11]Pope M. Electric hygrometer. US Patent,1955:2728831.
    [12]Sakai Y, Sadaoka Y, Okumura S, ikeuchi K. A humidity sensor composed of porous polymer film impregnated with a hydrophilic polymer. Kobunshi Ronbunshu,1984,41:209-214.
    [13]Sakai Y, Sadaoka Y, Omura H, Watanabe N. Humidity dependence of the conductivity of alumina containing poly(styrene sulfonate) sodium salt. Kobunshi Ronbunshu,1984,41(2):205-207.
    [14]Sakai Y, Sadaoka Y. Humidity sensor using sulfonated microporous polyethlene films. Denki Kagaku,1985,53:150-151.
    [15]Sakai Y, Rao VL, Sadaoka Y, Matsuguchi M. Humidity sensor composed of a microporous film of polyethylene-graft-poly-(2-acrylamido-2-methylpropane sulfonate). Polymer Bull.,1987,18(6):501-506.
    [16]Sakai Y, Sadanka Y, Matsuguchi M, Rao VL. Humidity sensor using micmporous film of polyethylene-graft-poly-(2-hydroxy-3-methacryloxypropyi tfimethyl-ammonium chloride). J.Mater. Sci.,1989,24:101-104.
    [17]Hijikagawa M, Miyoshi S, Sugihara T, Jinda A. A thin-film resistance humidity sensor. Sensors and Actuators,1983,4:307-315.
    [18]Sakai Y, Sadanka Y, Matsuguchi M. A humidity sensor using cross-linked quatemized polyvinylpyridine. J. Electrochem. Soc.,1989,136:171-174.
    [19]Sakai Y, Sadanka Y, Matsuguchi M, Sakai H. Humidity sensor durable at high humidity using simultaneously cross-linked and quatemized poly(chloromethyl styrene). Sensors and Actuators B,1995,25:689-691.
    [20]Sakai Y, Matsuguchi M, Sadaoka Y, Hirayama K. A humidity sensor composed of interpenetrating polymer networks of hydrophilic and hydrophobic methacrylate polymers. J. Electrochem. Soc.,1993,140(2):432-436.
    [21]Sakai Y, Matsuguchi M, Yonesato N. Humidity sensor based on alkali salts of poly(2-acrylamido-2-methylpropane sulfonic acid). Electrochimica Acta,2001, 46(10):1509-1514.
    [22]Lee CW, Kim Y, Joo SW, Gong MS. Resistive humidity sensor using polyelectrolytes based on new-type mutually cross-linkable copolymers. Sensors and Actuators B:Chemical,2003,88(1):21-29.
    [23]Li Y, Chen Y, Zhang C, Xue T, Yang MJ. A humidity sensor based on interpenetrating polymer network prepared from poly(dimethylaminoethyl methacrylate) and poly(glycidyl methacrylate). Sensors and Actuators B: Chemical,2007,125(1):131-137.
    [24]Li Y, Yang MJ. Bilayer thin film humidity sensors based on sodium polystyrenesulfonate and substituted polyacetylenes. Sensors and Actuators B: Chemical,2002,87(1):184-189.
    [25]Li Y, Yang MJ. Humidity sensitive properties of a novel soluble conjugated copolymer:ethynylbenzene-co-propargyl alcohol. Sensors and Actuators B: Chemical,2002,85(1):73-78.
    [26]Li Y, Yang MJ. A novel highly reversible humidity sensor based on poly(2-propyn-2-furoate). Sensors and Actuators B:Chemical,2002,86(2): 155-159.
    [27]Li Y, Yang MJ, She Y. Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites. Talanta,2004,62(4):707-712.
    [28]Li Y, Yang MJ, She Y. Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate). Sensors and Actuators B: Chemical,2005,107(1):252-257.
    [29]Su PG, Wang CS. Novel flexible resistive-type humidity sensor. Sensors and Actuators B:Chemical,2007,123(2):1071-1076.
    [30]Su PG, Tseng JY, Chuang YC, Pan HH. Novel fully transparent and flexible humidity sensor. Sensors and Actuators B:Chemical,2009,137(2):496-500.
    [31]Nitta T, Terada Z, Hayakawa S. Humidity-sensitive electrical conduction of MgCr2O4-TiO2 porous ceramics. J. Am. Ceram. Soc.,1980,63:295-300.
    [32]Yokomizo Y, Uno S, Harata M, Hiraki H. Microstructure and humidity-sensitive properties of ZnCr2Cr2O4-LiZnVO4 ceramic sensors. Sensors and Actuators B:Chemical,1983,4:599-606.
    [33]Katayama K, Akiba T, Yanagida H. Rutile humidity sensor. Proc.1st. Meet. Chemical Sensors, Japan, Kodansha, Tokyo,1983, Vol.17, pp.433-438.
    [34]He Y, Zhang T, Zheng W, Wang R, Liu X, Xia Y, Zhao J. Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning sensors. Sensors and Actuators B:Chemical,2010,146(1):98-102.
    [35]He Y, Liu X, Wang R, Zhang T. An excellent humidity sensor with rapid response based on BaTiO3 nanofiber via electrospinning. Sensor letters,2011,9(1): 262-265.
    [36]Zhang Y, Yu K, Jiang D, Zhu Z, Geng H, Luo L. Zinc oxide nanorod and nanowire for humidity sensor. Applied Surface Science,2005,242(1):212-217.
    [37]Wu RJ, Sun YL, Lin CC, Chen HW, Chavali M. Composite of TiO2 nanowires and Nafion as humidity sensor material. Sensors and Actuators B:Chemical, 2006,115(1):198-204.
    [39]Li P, Li Y, Ying BY, Yang MJ. Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sensors and Actuators B:Chemical,2009, 141(2):390-395.
    [39]Lin Q, Li Y, Yang M J. Investigations on the sensing mechanism of humidity sensors based on electrospun polymer nanofibers. Sensors and Actuators B: Chemical,2012,171-172:309-314.
    [40]Liu L, Ye X, Wu K, Zhou Z, Lee D, Cui T. Humidity sensitivity of carbon nanotube and poly(dimethyldiallylammonium chloride) composite films. Sensors Journal IEEE,2009,9(10):1308-1314.
    [41]Korvink JG, Chandran L, Boltshauser T, Baltes H. Accurate 3D capacitance evaluation in integrated capacitive humidity sensors. Sens. Mater.,1993,4 (6): 323-335.
    [42]Sadaoka Y, Matsugucgi M, Sakai Y, Takahashi K. Effects of sorbed water on the dielectric constant of some cellulose thin films. J. Mater. Sci. Lett.,1988,7(2): 121-124.
    [43]Matsugucgi M, Umeda S, Sadaoka Y, Sakai Y. Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sensors and Actuators B:Chemical,1998,49 (3):179-185.
    [44]Dabhade RV, Bodas DS, Gangal SA. Plasma-treated polymer as humidity sensing material-a feasibility study. Sensors and Actuators B:Chemical,2004,98 (1):37-40.
    [45]Matsuguchia M, Yoshidaa M, Kuroiwab T, Ogura T. Depression of a capacitive-type humidity sensor's drift by introducing a cross-linked structure in the sensing polymer. Sensors and Actuators B:Chemical,2004,102(1):97-101.
    [46]Gu L, Huang QA, Qin M. A novel capacitive-type humidity sensor using CMOS fabrication technology. Sensors and Actuators B:Chemical,2004,99(2): 491-498.
    [47]Story PR, Galipeau DW, Mileham RD. A study of low-cost sensors for measuring low relative humidity. Sensors and Actuators B:Chemical,1995,25 (1): 37-40.
    [48]Furjes P, Kovacs A, Ducs"o Cs, Adam M, Muller B, Mescheder U. Porous silicon-based humidity sensor with interdigital electrodes and internal heaters. Sensors and Actuators B:Chemical,2003,95(1):140-144.
    [49]Lee CY, Lee GB. Micromachine-based humidity sensors, with integrated temperature sensors for signal drift compensation. J. Micromech. Microeng.,2003, 13(5):620.
    [50]Chen Z, Jin MC, Zhen C. Humidity sensors with reactively evaporated Al2O3 films as porous dielectrics. Sensors and Actuators B:Chemical,1990,2 (3): 167-171.
    [51]Timar-Horvath V, Juhasz L, Vass-Varnai A, Perlaky G. Usage of porous Al2O3 layers for RH sensing. Microsystem Technologies,2008,14(7):1081-1086.
    [52]Rittersma ZM, Splinter A, Bodecker A, Benecke W. A novel surface-micromachined capacitive porous silicon humidity sensor. Sensors and Actuators B:Chemical,2000,68 (1):210-217.
    [53]Bjorkqvist M, Salonen J, Paski J, Laine E. Characterization of thermally carbonized porous silicon humidity sensor. Sensors and Actuators B:Chemical, 2004,112(2):244-247.
    [54]Connolly EJ, Pham HTM, Groeneweg J, Sarro PM, French PJ. Relative humidity sensors using porous SiC membranes and Al electrodes. Sensors and Actuators B:Chemical,2004,100(1):216-220.
    [55]Syritski V, Reut J, Opik A, Idla K. Environmental QCM sensors coated with polypyrrole. Synthetic Metals,1999,102(1):1326-1327.
    [56]Wang X, Ding B, Yu J, Wang M, Pan F. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology,2010,21(5):055502.
    [57]Wang X, Ding B, Yu J, Wang M. Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. Journal of Materials Chemistry,2011,21(40):16231-16238.
    [58]Zhang Y, Yu K, Ouyang S, Luo L, Hu H, Zhang Q, Ziqiang Zhu. Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films. Physica B:Condensed Matter,2005,368(1):94-99.
    [59]Wang X, Ding Y, Zhang J, Zhu Z, You S, Che S, Zhu J. Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance. Sensors and Actuators B:Chemical,2006,115(1):421-427.
    [60]Erol A, Okur S. Comba B, Mermer O, Arikana MC. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process. Sensors and Actuators B:Chemical,2010,145(1):174-180.
    [61]Uzar N, Okur S, Arikana MC. Investigation of humidity sensing properties of ZnS nanowires synthesized by vapor liquid solid (VLS) technique. Sensors and Actuators A:Physical,2011,167(2):188-193.
    [62]Zhu Y, Yuan H, Xu J, Xu P, Pan Q, Sakai H. Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with hexagonal lamelliform monodisperse mesoporous silica SBA-15 thin film. Sensors and Actuators B:Chemical,2010,144(1):689-691.
    [63]Radeva E, Georgiev V, Spassov L, Koprinarov N, Kanev St. Humidity adsorptive properties of thin fullerene layers studied by means of quartz micro-balance. Sensors and Actuators B:Chemical,1997,42(1):11-13.
    [64]Zhang Y, Yu K, Xu R, Jiang D, Luo L, Zhu Z. Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sensors and Actuators A:Physical,2005,120(1):142-146.
    [65]Su PG, Tsai JF. Low-humidity sensing properties of carbon nanotubes measured by a quartz crystal microbalance. Sensors and Actuators B:Chemical, 2009,135(2):506-511.
    [66]Dong Y, Feng G. Effects of surface physical sorption on characteristic of coated quartz-crystal humidity sensor.Sensors and Actuators B:Chemical,1995, 24(1):62-64.
    [67]Chen WL, Shull KR, Papatheodorou T, Styrkas DA, Keddie JL. Equilibrium swelling of hydrophilic polyacrylates in humid environments. Macromolecules, 1999,32(1):136-144.
    [68]朱健.MEMS技术的发展与应用.半导体技术,2003,28(1):29-32.
    [69]杨友文,王建华.MEMS技术现状及应用.微纳电子技术,2003,40(3):29-32.
    [70]Gerlach G, Sager K. A piezoresistive humidity sensor. Sensors and Actuators A:Physical,1994,43(1):181-184.
    [71]Buchhold R, Nakladal A, Buttner U, Gerlach G. The metrological behaviour of bimorphic piezoresistive humidity sensors. Measurement Science and Technology, 1998,9(3):354-359.
    [72]Buchhold R, Nakladal A, Gerlach G, Neumann P. Design studies on piezoresistive humidity sensors. Sensors and Actuators B:Chemical,1998,53(1): 1-7.
    [73]Porter TL, Eastman MP, Macomber C, Delinger WG, Zhine R. An embedded polymer piezoresistive microcantilever sensor. Ultramicroscopy,2003,97(1): 365-369.
    [74]Lao CS, Kuang Q, Wang ZL, Park MC, Deng Y. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl. Phys. Lett.,2007, 90(26):262107.
    [75]Singamaneni S, McConney ME, LeMieux MC, Jiang H, Enlow JO, Bunning TJ, Naik RR. Tsukruk VV. Polymer-silicon flexible structures for fast chemical vapor detection. Advanced Materials,2007,19(23):4248-4255.
    [76]刘力涛.碳纳米管薄膜气敏元件的制备及敏感性研究[博士学位论文].北京:清华大学,2010.
    [77]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV. Firsov AA, Electric field effect in atomically thin carbon films, Science,2004,306 (5696):666-669.
    [78]Schedin F, Geim AK, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K. Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007,6(9):652-655.
    [79]Massera E, Ferrara VL, Miglietta M, Polichetti T, Nasti I, Francia GD. Gas sensors based on graphene. Chim.Oggi,2011,29(1):39-41.
    [80]Gautam M, Jayatissa AH. Gas sensing properties of graphene synthesized by chemical vapor deposition. Materials Science and Engineering:C,2011,31(7): 1405-1411.
    [81]Paul RK, Badhulika S, Saucedo NM. Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal. Chem.,2012,84 (19):8171-8178.
    [82]Yavari F, Castillo E, Gullapalli H, Ajayan PM, Nikhil Koratkar N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett.,2012,100(20):203120.
    [83]Lu G, Ocola LE, Chen J. Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett.,2009,94(8):083111.
    [84]Guo L, Jiang HB, Shao RQ, Zhang YL, Xie SY, Wang JN, Li XB, Jiang F, Chen QD, Zhang T, Sun HB. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon,2012,50(4):1667-1673.
    [85]Penza M, Cassano G, Aversa P, Antolini F, Cusano A, Cutolo A, Nicolais L Alcohol detection using carbon nanotubes acoustic and optical sensors. Appl. Phys. Lett.,2004,85(12):.2379-2381.
    [86]Sivaramakrishnan S, Rajamani R, Smith CS, McGee KA, Mann KR, Yamashita N. Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing. Sensors and Actuators:B. Chemical,2008,132 (1):296-304.
    [87]Sayago, I, Fernandez MJ, Fontecha JL, Horrillo MC, Vera C, Obieta I, Bustero I. Surface acoustic wave gas sensors based on polyisobutylene and carbon nanotube composites. Sensors and Actuators:B. Chemical,2011,156 (1):1-5.
    [88]Arsat R, Breedon M, Shafiei M, Spizziri PG, Gilje S, Kaner RB, Kalantar-zadeh K, Wlodarski W. Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters,2009,467(4):344-347.
    [89]Ciplys D, Rimeika R, Chivukula V, Shur MS, Kim JH, Xu JM. Surface acoustic waves in graphene structures:response to ambient humidity. Proc. IEEE Sensors Conference, issue 1-4, Kona, HI,2010, pp.785-788.
    [90]Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry,2010,2(12):1015-1024.
    [91]Rimeika R, Barkauskas J, Ciplys D. Surface acoustic wave response to ambient humidity in graphite oxide structures. Appl. Phys. Lett.,2011,99(5): 051915.
    [92]Balashov SM, Balachova OV, Pavani Filho A, Cecilia Q Bazetto M, de Almeida MG. Surface acoustic wave humidity sensors based on graphene oxide thin films deposited with the surface acoustic wave atomizer. ECS Trans.,2012, 49(1):445-450.
    [93]Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature,1985,318:162-163.
    [94]Iijima S. Helical microtubes of graphitic carbon. Nature,1991,354 (6348):56-58.
    [95]Landau LD, Zur Theorie der phasenumwandlungen Ⅱ. Phys. Z. Sowjetunion, 1937,11:26-35.
    [96]Peierls RE, Quelques proprietes typiques des corpses solides. Ann. I. H.Poincare,1935,5(3):177-222.
    [97]Geim AK, Novoselov KS. The rise of graphene. Nature Materials,2007,6(3): 183-191.
    [98]Chen JH, Jang C, Xiao SD, IshigamiM, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology,2008, 3(4):206-209.
    [99]Lee CG, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321 (5887):385-388.
    [100]Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 2006,442:282-286.
    [101]Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett.,2008,8(10):3498-3502.
    [102]黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学:B辑,2009,39(9):887-896.
    [103]Li X, Cai WW, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung Ⅰ, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324 (5932): 1312-1314.
    [104]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7):1558-1565.
    [105]Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials. Small,2010,6 (6):711-723.
    [106]Hofmann U, Holst R. Uber die Saurenatur und die Methylierung von Graphitoxyd. Ber. Dtsch. Chem. Ges. B,1939,72(4):754-771.
    [107]Ruess G. Uber das Graphitoxyhydroxyd (Graphitoxyd). Monatsh. Chem., 1947,76(3):381-417.
    [108]Scholz W, Boehm HP. Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Anorg. Allg. Chem.,1969,369(3-6):327-340.
    [109]Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B,1998,102(23):4477-4482.
    [110]Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano,2008,2(3):463-470.
    [111]Venugopal G, Krishnamoorthy K, Mohan R, Kim SJ. An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys., 2012,132(1):29-33.
    [112]Eda G, Fanchini G, Chhowall M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology,2008,3(5):270-274.
    [113]Wang G, Shen X,6Wang B, Yao J, Park J. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon,2009,47(5): 1359-1364.
    [114]Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters,2010,484(4):247-253.
    [115]Ren PG, Yan DX, Ji X, Chen T, Li ZM. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology,2011,22(5):055705.
    [116]Zhu Y, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano,2010,4(2):1227-1233.
    [117]Akhavan O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon,2010,48(2):509-519.
    [118]Chen WF, Yan L. Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale,2010,2(4):559-563.
    [119]Huang L, Liu Y, Ji LC, Xie YQ, Wang T, Shi WZ. Pulsed laser assisted reduction of graphene oxide. Carbon,2011,49(7):2431-2436.
    [120]Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun HB, Xiao FS. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today,2010,5(1):15-20.
    [121]Chen W, Yan L, Bangal PR. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon,2011,48(4): 1146-1152.
    [122]Ekiz OO, U□rel M, Guner H, Mizrak AK, Da□na A. Reversible electrical reduction and oxidation of graphene oxide. ACS Nano,2011,5(4):2475-2482.
    [123]Teoh HF, Tao Y, Tok ES, Ho GW, Sow CH. Electrical current mediated interconversion between graphene oxide to reduced grapene oxide. Appl. Phy. Lett.,2011,98(17):173105.
    [124]Guo YL, Wu B, Liu HT, Ma YQ, Yang Y, Zheng J, Yu G, Liu YQ. Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors. Adv. Mater.,2011,23(40):4626-4630.
    [125]Wei Z, Wang DB, Kim S, Kim SY, Hu YK, Yakes MK, Laracuente AR, Dai ZT, Marder SR, Berger C, King WP, de Heer, WA, Sheehan PE, Riedo E. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010,328(5984):1373-1376.
    [126]Eda G, Chhowalla M. Chemically derived graphene oxide:towards large-area thin-film electronics and optoelectronics. Adv. Mater.,2010,22(2.2):2392-2415.
    [127]Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB. Hydrogen bond networks in graphene oxide composite paper:structure and mechanical properties. ACS Nano,2010,4(4):2300-2306.
    [128]Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir,2008,24(19):10560-10564.
    [129]Buchsteiner A, Anton Lerf A, Jorg Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B,2006,110 (45): 22328-22338.
    [130]Lerf A, Buchsteiner A, Pieper B, Schottl S, Dekany I, Szabo T, Boehm B. Water Hydration behavior and dynamics of water molecules in graphite oxide. J Phys. Chem.,2006,67 (5):1106-1110.
    [131]Cerveny S, Barroso-Bujans F, Alegria A, Colmenero J. Dynamics of water intercalated in graphite oxide. J. Phys. Chem. C,2010,114 (6):2604-2612.
    [132]Nair RR, Wu HA, Jayaram PN, Grigorieval IV, Geiml AK. Unimpeded permeation of water through helium-1Leak-tight graphene-based membranes. Science,2012,335(6067):442-444.
    [133]Lee CW, Min BJ, Kim SI, Jeong HK. Stacking of water molecules in hydrophilic graphene oxides characterized by Kelvin probe force microscopy. Carbon,2013, (54):353-358.
    [134]Park S, An J, Suk JW, Ruoff RS. Graphene-based actuators. Small,2009,6(2): 210-212.
    [135]Brodie BC. On the atomic weight of graphite. Phil. Trans. Roy. Soc.,1859, 149:24959.
    [136]Staudenmaier L. Verfahren Zur Darstellung Der Graphitsaure. Ber. Dtsh. Chem. Ges.,1898,31:148199.
    [137]Hummers WS, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc.,1958,80(6):1339.
    [138]Jin M, Jeong HK, Yu WJ, Bae DJ, Kang BR, Lee YH. Graphene oxide thin film field effect transistors without reduction. J. Phys. D:Appl. Phys.,2009,.42: 135109
    [139]Naik G, Krishnaswamy S. Room-temperature humidity sensing using graphene oxide thin films. Intelligent Structural Health Management of Civil Infrastructure,2012:61.
    [140]Huang Q, Zeng D, Tian S, Xie C. Synthesis of defect graphene and its application for room temperature humidity sensing. Materials Letters,2012, 83:76-79.
    [141]Chen T, Zeng BQ, Liu JL, Dong JH, Liu XQ, Wu Z, Yang XZ, Li ZM. High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. In Journal of Physics:Conference Series,2009,188(1):012051
    [142]Jeong HK, Jin MH, So KP, Lim SC, LeeYH. Tailoring the characteristics of graphite oxides by different oxidation times. J. Phys. D:Appl. Phys.,2009, 42(6):065418
    [143]Jung I, Rhyee JS, Son JY, Ruoff RS, Rhee KY.Colors of graphene and graphene-oxide multilayers on various substrates. Nanotechnology,2012,23(2): 025708
    [144]Garcia-Belmonte G, Kytin V, Dittrich T, Bisquert J. Effect of humidity on the ac conductivity of nanoporous TiO2. J. Appl. Phys.,2007,94(8):5261
    [145]Varghese OK, Malhotra LK. Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy. J. Appl. Phys., 2000,87:7457
    [146]杨得全,范垂祯.平面电极LB膜气体传感器的响应特性.传感器技术,1997,16(4):17-20
    [147]Geng W, Yuan Q, Jiang X, Tu J, Duan L, Gu J, Zhang Q. Humidity sensing mechanism of mesoporous MgO/KCl-SiO2 composites analyzed by complex impedance spectra and bode diagrams. Sensors and Actuators B:Chemical,2012, 174:513-520
    [148]Wang J, Shi K, Chen L, Zhang X. Study of polymer humidity sensor array on silicon wafer. J. Mater. Sci.,2004,39(9):3155-3157
    [149]崔晓莉,江志裕.交流阻抗谱的表示及应用.上海师范大学学报(自然科学版),2001,30(4):53-61
    [150]贺春元.高压下Ⅱ-Ⅳ族化合物CdX(X=S、Se、Te)的电输运性质[博士学位论文].吉林:吉林大学,2007
    [151]Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ,
    Kim SO, Ruoff RS, Choi SY. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett.,2010,10(11):4381-4386
    [152]Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ, Kim SO, Ruoff RS, Choi SY. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett.,2010,10(11):4381-4386.
    [153]Curie J, Curie P. Developpement, par pression, de l'electricite polaire dans les cristaux hemiedres a faces inclinees. Comptes Rendus de l'Academie des Sciences.1880,91:294-295
    [154]Cady WG. The piezoelectric resonator. Phys. Rev.,1921,17:531
    [155]Lack FR, Willard GW, Fair IE. Bell System Technical Journal.1934,13:453
    [156]Sauerbrey G. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys.,1959,155:206-222
    [157]King W H. Piezoelectric sorption detector. Anal. Chem.,1964,36 (9):1735-1739
    [158]姚守拙.压电化学与生物传感[M].湖南师范大学出版社,长沙,1997
    [159]Reed CE, Kanazawa KK, Kaufman JH. Physical description of a viscoelastically loaded AT-cut quartz resonator. J. Appl. Phys.,1990,68(5):1993
    [160]Butterworth S. On electrically maintained vibrations. Proc. Phys. Soc.,1915, 27:410-424
    [161]Kim S, Zhou S, Hu Y, Acik M, J. Chabal Y, Berger C, Heer W, Bongiorno A, Riedo E. Room-temperature metastability of multilayer graphene oxide films. Nature Materials,2012,11:544-549
    [162]Lucklum R, Behling C, Hauptmann P. Gravimetric and non-gravimetric chemical quartz crystal resonators. Sensors and Actuators B:Chemical,2000, 65(1):277-283
    [163]Holloway AF, Nabok A, Thompson M, Ray AK, Wilkop T. Impedance analysis of the thickness shear mode resonator for organic vapour sensing. Sensors and Actuators B:Chemical,2004,99(2):355-360
    [164]Yong Y, Patel M, Masako Tanaka M. Estimation of quartz resonator Q and other figures of merit by an energy sink method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control,2007,54(7):1386-1398
    [165]Goyal A, Tadigadapa S, Gupta A, Eklund P. Use of single-walled carbon nanotubes to increase the quality factor of an AT-cut micromachined quartz resonator. Appl. Phys. Lett.,2005,87(20):204102
    [166]Berg S, Johannsmann D. High speed microtribology with quartz crystal resonators. Phys. Rev. Lett.,2003,91 (14):145505
    [167]Dragoman M, Muller A, Neculoiu D, Vasilache D, Konstantinidis G, Grenier K, Dubuc D, Bary L, Plana R, Flahaut E. High performance thin film bulk acoustic resonator covered with carbon nanotubes. Appl. Phys. Lett.,2006,89(14):143122
    [168]Abd El-Kader KAM, Abdel Hamied SF, Mansour AB, E1-Lawindy AMY, E1-Tantaway F. Effect of the molecular weights on the optical and mechanical properties of poly(vinyl alcohol) films. Polymer Testing,2002,21(7):847-850
    [169]Raeber GP, Lutolfl MP, Hubbell JA. Molecularly engineered PEG hydrogels: a nove model system for proteolytically mediated cell migration. Biophysical journal,2005,89(2):1374-1388
    [170]Su Y, Wei H, Gao R, Yang Z, Zhang J, Zhong Z, Zhang Y. Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper. Carbon,2012,50(8):2804-2809
    [171]Irwin EF, E. Ho JE, Kane SR, Healy KE. Analysis of interpenetrating polymer networks via quartz crystal microbalance with dissipation monitoring. Langmuir,2005,21(12):5529-5536
    [172]Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature,2007,448 (7152):457-460
    [173]Beroulle V, Bertrand Y, Latorre L, Nouet P. Test and testability of a monolithic MEMS for magnetic field sensing, Journal of Electronic Testing,2001, 17(5):439-450
    [174]Eaton WP, Smith JH. Micromachined pressure sensors:review and recent developments. Smart Materials and Structures,1997,6(5):530
    [175]Gerlacha G, Guenther M, Sorber J, Suchaneck GArndt KF, Richter A. Micromachined pressure sensors:review and recent developments. Sensors and Actuators B:Chemical,2005,111:555-561
    [176]Smith CS. Piezoresistive effect in germanium and silicon. Phys. Rev.,1954, 94:42-49
    [177]Liu P, Shao G, Yuan M, Chen Y. Electrical properties and mechanics performance analysis of MEMS pressure sensor. Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 19-20,2011, Melbourne, Australia, Advances in Intelligent and Soft Computing Volume 112,2012, pp.217-223
    [178]樊尚春,彭春荣.硅压阻式传感器的温度特性及其补偿.微纳电子技术,2003,(8):484-488

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700