CD151对大鼠心肌梗死后血运重建及心功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     冠心病是临床常见的心血管疾病,其发病在我国呈明显上升趋势。心肌缺血后的血运重建对保护心脏功能、改善远期预后起着关键作用。尽管PTCA及CABG在临床被广泛应用,但大部分患者不能实施或无法恢复有效血运,血管生成的基因治疗则为缺血性心血管病的治疗开辟了新的途径。血管内皮细胞的粘附和迁移是血管形成的重要生理步骤之一,在心肌缺血后的血运重建中起着举足轻重的作用。以往的研究大都集中在血管内皮细胞生长因子(vascular endothelial growthfactor,VEGF)在血管形成中的作用,但二期临床试验证明VEGF及FGF的效果不理想,他们并不能促进功能血管的形成。因此,必须寻找新的靶点能够促进有功能血管的形成,才能达到真正意义上的血管重建。我们将着眼于血管内皮细胞粘附和迁移在体内血管形成中的作用,这一研究对缺血性心脏病的治疗具有重要的理论及实践意义。
     整合素家族在细胞的分化、增殖及移行等一系列生物活动中起着重要作用,主要通过与众多跨膜蛋白相互作用从而激活细胞内信号转导得以完成。与其作用密切的主要是四跨膜超家族蛋白(transmembrane-4 superfamily,TM4SF proteins,alsocalled tetraspanins),它在细胞增殖、融合、迁移及体外血管生成中的作用已被认识。Tetraspanins在哺乳动物的细胞或组织中广泛表达,有27个家族成员,这些蛋白彼此相连也可与其他蛋白相连,组成一个"Tetraspanin网络”。对细胞粘附和迁移的调节是这一家族最重要的特性,其中与整合素作用最为密切的Tetraspanins成员为CD151,其高表达于上皮细胞、内皮细胞、血小板、巨核细胞及一些未成熟造血细胞。CD151在血管内皮细胞形成及体内外血管生成中起重要作用,目前大多数研究均表明启动内皮细胞粘附、迁移和血管形成的信号从细胞外向细胞内传递是通过integrin-Tetraspanin-PKC复合体这一模式来完成的。
     大量体外研究利用Matrigel模型观察CD151在维持细胞形态及体外血管生成中的作用,发现在抗CD151及抗a6131抗体分别干预下,血管内皮细胞在Matrigel上的网格状形成能力明显受抑。CDl51通过与整合素的特异性结合介导着内皮细胞的粘附和迁移,在血管形成(angiogenesis)与重塑中起着关键作用。上述研究证实CD151在内皮细胞间及与基质间的粘附及迁移、血管生成中起重要作用。但这些研究多集中在CD151与整合素结合的信号转导模式,且促血管形成研究均以细胞系为材料,CD151在整体水平促血管形成的效应又是怎样的呢?
     前期研究中,我们证实了CD151在原代血管内皮细胞中也具有明显的促毛细管状形成作用,并建立了高表达CD151的血管内皮细胞系,观察到它与普通内皮细胞在粘附迁移、血管形成中存在显著差异。我们将携带CD151基因的重组腺相关病毒转染大鼠后肢缺血模型,发现后肢微血管密度及运动耐力明显高于未转染CD151组,初步确定了CD151在体内促血管生成的作用。在此,我们构建CD151重组质粒,用于心肌缺血(或心肌梗死)大鼠模型,使CDl51在缺血大鼠心肌中表达上调,观察CD151的表达对心肌缺血(或心肌梗死)后心肌梗死面积、心肌血管再生及心功能的影响,以证实CD151在心肌缺血后血运重建中的作用,且对CD151在血管形成的机制方面进行探讨,为冠心病及其他缺血性疾病的治疗探索出一新的途径。
     研究方法
     首先通过PCR方法将CD151基因末端连接HA尾(HA-tag)克隆到双链腺相关病毒表达载体pAAV上,构建pAAV-CD151重组质粒,按同法构建对照质粒pAAV-GFP。质粒扩增、提取,氯化铯梯度离心法纯化质粒。
     心肌梗死模型制备、实验分组及CD151基因的心肌转染雄性Sprague-Dawley成年大鼠48只,随机分为4组:击假手术组:开胸后不结扎左前降支,;2心肌梗死组:结扎左前降支,在结扎点以下左室前壁分点注射生理盐水为对照;3心肌梗死+心肌转染对照质粒pAAV-GFP组:结扎左前降支,左室前壁分点注射质粒pAAV-GFP;4心肌梗死+心肌转染pAAV-CD151组:结扎左前降支,分5点注射质粒pAAV-CD151。转染四周后进行如下几个方面的研究:(1)二维超声心动图进行大鼠心脏射血分数(EF)、短轴缩短率(FS)及室壁厚度的测定,评价心功能的变化;(2)左心室血流动力学监测左室舒张末压(LVEDP)、左室收缩压峰值(LVPSP)及左室内压最大上升和下降速率(±dp/dtmax);(3)Western blot免疫印迹检测心肌中CD151的表达水平,评价pAAV-CD151在大鼠心肌中的转染效果;(4)血管内皮细胞特异性抗原FactorⅧ相关抗原抗体SP免疫组化方法标记血管内皮细胞进行心肌微血管密度(microvessel density,MVD)的测定,评价CDl51对心肌梗死后血运重建的影响。
     实验结果
     成功建立了大鼠心肌梗死模型,术后四周病理切片可见正常心肌细胞排列有序,梗死心肌为大量结构紊乱纤维组织取代。(1)pAAV-CD151在大鼠心肌中的转染效果:Western blot免疫印迹检测四组大鼠心肌中CD151蛋白表达相对吸光度值依次为0.98±0.14、0.91±0.09、1.07±0.13和1.98±0.23,可见转染CD151基因后大鼠心肌中CDl51的表达水平明显提高(P<0.01)。(2)CD151表达上调对大鼠心肌梗死后心功能的影响:二维超声及左室心导管测定结果显示转染CDl51基因组EF、FS及LVPSP及±dp/dtmax等反映左室收缩功能指标分别为(64.0±8.7)%、(32.5±5.2)%、6620.2±884.6(mmHg/s)和5311.6±584.0(mmHg/s),明显高于未转染CD151的GFP对照心肌梗死组(41.8±6.5)%、(18.8±2.6)%、5102.1±715(mmHg/s.)4418.8±542.9(mmHg/s),各指标均P<0.01。(3)CD151对梗死后心肌微血管密度的影响:免疫组化染色分析结果显示转染CD151组心肌微血管密度385.4±79.9(n/mm2)明显高于转染GFP心梗对照组240.8±40.3(n/mm2)(P<0.01),可见CD151可明显促进梗死后心肌中微血管的生成,有利于心肌缺血后的血运重建。
     结论
     上述实验结果证实:
     1.pAAV-CD151直接大鼠心肌内注射进行CD151基因的转染可明显上调心肌中CD151的表达。
     2.CD151表达的增强可明显促进梗死后大鼠心肌微血管的生成,有利于缺血后的血运重建。
     3.上调大鼠心肌中CD151的表达,可明显改善大鼠梗死后心脏功能。
BACKGROUND & OBJECTIVE
    Novel angiogenesis-inducing therapies have been developed recently to stimulate collateral vessel formation and to improve muscles function in the treatment of occlusive vascular diseases. Angiogenesis requires signals that are transduced from growth factor receptors and integrins. Therapeutic angiogenesis has focus on the growth factors, such as vessel endothelial growth factors, hepatic growth factors, for a long time, but the clinical trials have showed limited clinical efficacy. In response to an obstruction or occlusion of a major artery, compensation can only come from low-resistance connections between a donor artery in a non-ischemic regions and the postocclusion arterial system of the recipient ischemic regions (arteriogenesis). For getting the satisfactory result, it is necessary to explore more powerful pro-neovascularizing factors, and use them in combination rationally.
    The Tetraspanin membrane protein CD151 is expressed, especially high in endothelial cells, epithelial cells, and platelets. In vitro functional studies have demonstrated an important role of CD151 in cell migration and integrin-initiated morphogenesis. CD151 is a cell surface protein that belongs to the tetrapanin superfamily. It forms complexes with many laminin-binding integrins a3β1, a6β1, a6β4 et al. and is codistributed with these integrins in many tissues at sites of cell-matrix interactions. CD151-inegrin complex may contribute to the cell biological processes, including cell adhesion, cell motility, metastasis and formation and stability of hemidesmosomes. It is not known that promoting CD151 expression in ischemic tissues could stimulate neovascularization, improve recovery of blood flow and function of the ischemic organ.
    We thus hypothesize that an increased expression of CD151 may stimulate neovascularization in vivo. Our study is aimed to evaluate the efficiency of pAAV-mediated CD151 gene delivery in promoting neovascularization and improving heart function after myocardial infarction in rats, and explore a new target of the neovascularization after myocardial ischemia.
    METHODS AND RESULTS
    Firstly, Functional fragment of CD151 gene with HAtag was amplified by RT-PCR, and inserted into the vector pAAV. So, the recombined plasmid pAAV-CD151 was packed successfully. The pAAV-GFP plasmid was selected as control.
    The rat Acute myocardial infarction (AMI) model was established by ligation of the left anterior descending coronary artery in male Spague-Dawley(SD) rats. The surviving rats were grouped randomly as MI control, pAAV-CD151 group and pAAV-GFP group(n=12/group). pAAV-CD151 and pAAV-GFP plasmid were delivered by direct injection in myocardium. Sham-operated group (n=12) was taken randomly as non-infarction control. Four weeks after AMI, the following endpoints were measured : (1)Rats heart function and left ventricular remodeling were assessed by echocardiographic evaluation and LV catherization. (2) The expression of CD151 and MMP-9 (matrix metalloproteinase-9) were detected by Western blot. (3)Micro vessels density (MVD) counting of infarct myocardium in rats observed by factor VIII related antigen immunochemical staining was conducted to value the pro-angiogenesis effect of CD151 delivered by gene transfection in vivo.
    Our immunoblot analysis showed that transfection with pAAV-CD151 could apparently lead to CD151 overexpression in rat myocardium. In comparison with the MI control (OD value 1.07±0.13), the expression of CD151(OD value 1.98±0.23) in pAAV-CD151 group was significantly increased (P<0.01). The micro vessels density (MV) counting in pAAV-CD151-AMI group(385.4±79.9n/mm~2) was significantly higher than the MI control(240.8±40.3n/mm~2) (P<0.01). All indexes reflecting left ventricular contraction function such as left ventricular ejection fraction, LVPSP and ±dp/dt_(max) in CD151 group were statistically increased than MI control group(P<0.01).
    CONCLUSION
    pAAV-CD151 mediated CD151 gene delivery into rat myocardium induced an efficient and stable expression. pAAV-mediated CD151 stable expression stimulates neovascularization, and thereby improves blood perfusion in a rat myocardial infarction modeLAs a result, the rat heart function after ischemic injury was reformed. All these findings suggest that CD151 could be a new insight for the neovascularization therapy in the ischemic disease, and pAAV-mediated CD151 gene transfer may be useful for treatment of ischemic disease. CD151 has an effective role in pro-angiogenesis in infarct myocardium in vivo, thereby improves left ventricular function through valid revascularization.
    This study demonstrates that
    1) pAAV-CD151 promotes the CD151 protein expression in rat myocardium by direct injection.
    2) CD151 stable expression stimulates neovascularization in rat ischemic myocardium, and thereby improves heart function in a rat myocardial infarction model.
引文
1. Zakliczynski M, Swierad M, Lekston A, et al. Percutaneous coronary interventions in patients with transplanted heart coronary artery disease. Effects of intracoronary stent implantation on long-term results. Kardiol Pol. 2004;61:339-348.
    2. Rana JS, Monraats PS, Zwinderman AH, et al. Metabolic syndrome and risk of restenosis in patients undergoing percutaneous coronary intervention. Diabetes Care. 2005;28:873-877.
    3. Spertus JA, Nerella R, Kettlekamp R, et al. Risk of restenosis and health status outcomes for patients undergoing percutaneous coronary intervention versus coronary artery bypass graft surgery. Circulation. 2005;111:768-773
    4. Kereiakes DJ, Young JJ. Percutaneous coronary revascularization of diabetic patients in the era of drug-eluting stents. Rev Cardiovasc Med. 2005;6:S48-58.
    5. Werner GS, Emig U, Mutschke 0, et al. Regression of collateral function after recanalization of chronic total coronary occlusions: a serial assessment by intracoronary pressure and Doppler recordings. Circulation. 2003;108:2877-2882.
    6. Opie SR, Dib N. Local endovascular delivery, gene therapy, and cell transplantation for peripheral arterial disease. J Endovasc Ther. 2004;11:II151-162.
    7. Ruel M, Song J, Sellke FW. Protein-, gene-, and cell-based therapeutic angiogenesis for the treatment of myocardial ischemia. Mol Cell Biochem. 2004;264:119-131.
    8. Melillo G, Serino F, Cirielli C, et al. Gene therapy in peripheral artery disease. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:295-300.
    9. Machens HG, Salehi J, Weich H, et al. Angiogenic effects of injected VEGF165 and sVEGFR-1 (sFLT-1) in a rat flap model. J Surg Res. 2003;111:136-142.
    10. Horrigan MC, Malycky JL, Ellis SG, et al. Reduction in myocardial infarct size by basic fibroblast growth factor following coronary occlusion in a canine model. Int J Cardiol. 1999;68:S85-91.
    11. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med. 2003 ;9:713-725.
    12. Hershey JC, Baskin EP, Corcoran HA, et al. Vascular endothelial growth factor stimulates angiogenesis without improving collateral blood flow following hindlimb ischemia in rabbits. Heart Vessels. 2003;18:142-149.
    13. Lubiatowski P, Gurunluoglu R, Goldman CK, et al. Gene therapy by adenovirus-mediated vascular endothelial growth factor and angiopoietin-1 promotes perfusion of muscle flaps. Plast Reconstr Surg. 2002;110:149-159.
    14. Gurunluoglu R, Ozer K, Skugor B, et al. Effect of transfection time on the survival of epigastric skin flaps pretreated with adenovirus encoding the VEGF gene. Ann Plast Surg. 2002;49:161-169.
    15. Lloyd RV, Vidal S, Horvath E, et al. Angiogenesis in normal and neoplastic pituitary tissues. Microsc Res Tech. 2003;60:244-250.
    16. Fortuin FD, Vale P, Losordo DW, et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol. 2003;92:436-439.
    17. Askari A, Unzek S, Goldman CK, et al. Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol. 2004;43:1908-1914.
    18. Cao Y, Hong A, Schulten H, et al. Update on therapeutic neovascularization. Cardiovasc Res. 2005;65:639-648.
    19. Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res. 2005;65:649-655.
    20. Eliceiri BP, Cheresh DA. The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest. 1999;103:1227-1230.
    21. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature. 2000 ;407:242-248.
    22. Isner JM, Piecezk A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF_(165) in patients with ischemic limb. Lancet, 1996,348:370-374.
    23. Buschmann I, Schaper W. Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. News Physiol Sci. 1999;14:121-125.
    24. Buschmann I, Schaper W. The pathophysiology of the collateral circulation(arteriogenesis). J Pathol. 2000;190:338-342.
    25. Folkman J. Angiogenic therapy of human heart. Circulation. 1998;97:628-629.
    26. Yanez-Mo M, Alfranca A, Cabanas C, et al. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol. 1998;141:791-804.
    27. Hasegawa H, Nomura T, Kishimoto K, et al. SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily, associates preferentially with alpha 5 beta 1 integrin and regulates adhesion of human T cell leukemia virus type 1-infected T cells to fibronectin. J Immunol. 1998; 161:3087-3095.
    28. Yauch RL, Berditchevski F, Harler MB, et al. Highly stoichiometric, stable, and specific association of integrin alpha3betal with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell. 1998;9:2751-2765.
    29. Geary SM,Cambareri AC, Sincock PM, et al. Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens. 2001 ;58(3): 141-53.
    30. Obert L Yauch, Alexander R. Kazarov, Bimal Desai, Richard T. Lee, and Martin E. Hemler : Direct Extracellular Contact between Integrin _3αβ_1 and TM4SF Protein CD151. J Biol Chem 2000; 275: 9230-9238.
    31. Fitter S, Sincock PM, Jolliffe CN, et al. Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha Ⅱb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J. 1999;338:61-70.
    32. Xin A. Zhang, Alexander R. Kazarov, Xiuwei Yang, An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J Cell Biology. 2002;158(7):1299-1309.
    33. Zhang XA, Kazarov AR, Yang X, et al. Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell. 2002;13:1-11.
    34. Kazarov AR, Yang X, Stipp CS, et al. An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol. 2002;158:1299-1309.
    35. Zhang XA, Bontrager AL Hemler ME. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem. 2001;276(27):25005-25013.
    36. Kohno M, Hasegawa H, Miyake M, Yamamoto T, Fujita S. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer. 2002; 97(3):336-343
    37.蓝荣芳,刘正湘,宋玉娥,等.高表达CD151细胞系的构建.中国组织化学与细胞化学杂志,2004,13(4):436-439.
    38.蓝荣芳,刘正湘,宋玉娥,等.CD151对人舌鳞癌细胞Tca8113迁移作用的影响.癌症,2005,24(3):262-267.
    39. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72:2224-2232.
    40. Monahan PE, Samulski RJ. AAV vectors: is clinical success on the horizon? Gene Ther. 2000;7:24-30.
    41. Wang Z, Ma HI, Li J, et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 2003;10:2105-2111.
    42. Lee Ly, Patel SR, Hackett NR, et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector cording for vascular endothelial growth factor 121. Ann Thorac Surg, 2000;69:14-24.
    1. Gonin P, Gaillard C. Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Ther. 2004;11:S98-S108.
    2. Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004 ; 11 :S 10-17.
    3. Athanasopoulos T, Fabb S, Dickson G. Gene therapy vectors based on adeno-associated virus: characteristics and applications to acquired and inherited diseases (review). Int J Mol Med. 2000 ;6:363-375.
    4. Piskin E, Dincer S, Turk M. Gene delivery: intelligent but just at the beginning. J Biomater Sci Polym Ed. 2004;15:1181-1202.
    5. Wang Z, Zhu T, Qiao C, et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol. 2005;23:321-328.
    6. Woo YJ, Zhang JC, Taylor MD, et al. One year transgene expression with adeno-associated virus cardiac gene transfer. Int J Cardiol. 2005;100:421-426.
    7. Jakob M, Muhle C, Park J, et al. No evidence for germ-line transmission following prenatal and early postnatal AAV-mediated gene delivery. J Gene Med. 2005; 3:122-129.
    8. Wang Z, Ma HI, Li J, et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 2003;10:2105-2111.
    9. Wei X, Zhao C, Jiang J, et al. Adrenomedullin gene delivery alleviates hypertension and its secondary injuries of cardiovascular system. Hum Gene Ther. 2005 ;16:372-380.
    10. Ferrari FK, Samulski T, Shenk T, et al. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 1996 ;70:3227-3234.
    11. Yue Y, Li Z, Harper SQ, et al. Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation. 2003;108:1626-1632.
    12. Li L, Yang L, Kotin RM. The DNA minor groove binding agents Hoechst 33258 and 33342 enhance recombinant adeno-associated virus (rAAV) transgene expression. J Gene Med. 2005;7:420-431.
    13. Feng X, Eide FF, Jiang H, et al. Adeno-associated viral vector-mediated ApoE expression in Alzheimer's disease mice: low CNS immune response, long-term expression, and astrocyte specificity. Front Biosci. 2004 ;9:1540-1546.
    14. Monahan PE, Samulski RJ. AAV vectors: is clinical success on the horizon? Gene Ther. 2000;7:24-30.
    15. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 1991;10(12):3941-3950.
    1. Shimpo M, Ikeda U, Maeda Y, et al. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hindlimb ischemia model. Cardiovasc Res. 2002, 53:993-1001.
    2. Hershey JC, Baskin EP, Glass JD, et al. Revascularization in the rabbit hindlimb:dissociation between capillary sprouting and arteriogenesis. Cardiovasc Res. 2001;49:618-625.
    3. Werner GS, Emig U, Mutschke O, et al. Regression of collateral function after recanalization of chronic total coronary occlusions: a serial assessment by intracoronary pressure and Doppler recordings. Circulation. 2003;108:2877-2882.
    4. Yla-Herttuala S, Markkanen JE, Rissanen TT. Gene therapy for ischemic cardiovascular diseases: some lessons learned from the first clinical trials. Trends Cardiovasc Med. 2004; 14:295-300.
    5. McColl BK, Stacker SA, Achen MG. Molecular regulation of the VEGF family --inducers of angiogenesis and lymphangiogenesis. APMIS. 2004 ;112:463-480
    6. Ruel M, Song J, Sellke FW. Protein-, gene-, and cell-based therapeutic angiogenesis for the treatment of myocardial ischemia. Mol Cell Biochem. 2004;264:119-131.
    7. Sinnaeve P, Varenne O, Collen D, et al. Gene therapy in the cardiovascular system: an update. Cardiovasc Res. 1999 ;44:498-506.
    8. Tomanek RJ, Zheng W, Yue X. Growth factor activation in myocardial vascularization: therapeutic implications. Mol Cell Biochem. 2004 ;264:3-11.
    9. Buschmann I, Katzer E, Bode C. Arteriogenesis - is this terminology necessary? Basic Res Cardiol. 2003;98:l-5.
    10. Collinson DJ, Donnelly R. Therapeutic angiogenesis in peripheral arterial disease: can biotechnology produce an effective collateral circulation? Eur J Vasc Endovasc Surg. 2004;28:9-23.
    11. Laham RJ, Simons M, Sellke F. Gene transfer for angiogenesis in coronary artery disease. Annu Rev Med. 2001;52:485-502
    12. Couffinhal T, Silver M, Zheng LP, et al. Mouse model of angiogenesis. Am J Pathol. 1998;152:1667-1679.
    13. Rissanen TT, Vajanto I, Yla-Herttuala S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb - on the way to the clinic. Eur J Clin Invest. 2001;31:651-666.
    14. Murasawa S, Asahara T. Endothelial progenitor cells for vasculogenesis. Physiology. 2005 ;20:36-42.
    15. Markkanen JE, Rissanen TT, Kivela A, et al. Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart — gene therapy. Cardiovasc Res. 2005 ;65:656-664.
    16. Couffinhal T, Silver M, Zheng LP, et al. Mouse model of angiogenesis. Am J Pathol. 1998;152:1667-1679.
    17. Opie SR, Dib N. Local endovascular delivery, gene therapy, and cell transplantation for peripheral arterial disease.J Endovasc Ther. 2004;11:II151-62
    18. Ruel M, Song J, Sellke FW. Protein-, gene-, and cell-based therapeutic angiogenesis for the treatment of myocardial ischemia. Mol Cell Biochem. 2004;264:119-131.
    19. Melillo G, Serino F, Cirielli C, et al. Gene therapy in peripheral artery disease. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:295-300.
    20. Machens HG, Salehi J, Weich H, et al. Angiogenic effects of injected VEGF165 and sVEGFR-1 (sFLT-1) in a rat flap model. J Surg Res. 2003;111:136-142.
    21. Cao Y, Hong A, Schulten H, et al. Update on therapeutic neovascularization. Cardiovasc Res. 2005;65:639-648.
    22. Buschmann I, Schaper W. Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. News Physiol Sci. 1999;14:121-125.
    23. Wang T, Li H, Zhao C, et al. Recombinant adeno-associated virus-mediated kallikrein gene therapy reduces hypertension and attenuates its cardiovascular injuries. Gene Ther. 2004;11:1342-1350.
    24. Wang Z, Ma HI, Li J, et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Her. 20G3;10:2105-2111.
    25. Bartlett JS, Samulski RJ, McCown TJ. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther. 1998;9:1181-1186.
    26. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst, 1992;84: 1875-1887.
    27. Folkman J. Angiogenic therapy of human heart. Circulation, 1998;97:628-629.
    28. Isner JM, Piecezk A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF_(165) in patients with ischemic limb. Lancet, 1996;348:370-374.
    29. Lee Ly, Patel SR, Hackett NR, et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector cording for vascular endothelial growth factor 121. Ann Thorac Surg, 2000,69:14-24.
    1. Folkman J. Angiogenic therapy of human heart. Circulation, 1998,97:628-629.
    2. Xin A. Zhang, Alexander R. Kazarov, Xiuwei Yang, An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J Cell Biology. 2002 ;158(7):1299-1309.
    3. Kohno M, Hasegawa H, Miyake M, Yamamoto T, Fujita S. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer.2002 ;97(3):336-343
    4. Zhang XA, Kazarov AR, Yang X, Bontrager AL, Stipp CS, Hemler ME: Function of the Tetraspanin CD151-alpha6beta1 Integrin Complex during Cellular Morphogenesis. Mol Biol Cell. 2002 ;13(1):1-11.
    5. Zhang XA, Bontrager AL Hemler ME: Transmembrane-4 superfamily proteins associate with activated protein kinase C(PKC) and link PKC to specific beta(1) integrins. J Biol Chem. 2001;276(27):25005-25013.
    6. Geary SM,Cambareri AC,Sincock PM,Fitter S,Ashman LK: Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens. 2001 ;58(3):141-153.
    7. Obert L Yauch, Alexander R. Kazarov, Bimal Desai, Richard T. Lee, and Martin E. Hemler: Direct Extracellular Contact between Integrin 3αβ1 and TM4SF Protein CD151. J Biol Chem. 2000 ;275: 9230-9238.
    8. Isner JM, Piecezk A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF_(165) in patients with ischemic limb. Lancet, 1996;348:370-374.
    9. Serru V, Le Naour F, Billard M, et al. Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J. 1999 ;340(1):103-111.
    10.蓝荣芳,刘正湘,宋玉娥,等.CD151对人舌鳞癌细胞Tca8113迁移作用的影响.癌症,2005,24(3):262-267.
    11.蓝荣芳,刘正湘,宋玉娥,等.高表达CD151细胞系的构建.中国组织化学与细胞化学杂志,2004,13(4):436-443
    12. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst, 1992;84: 1875-1887.
    1. Zhang XA, Kazarov AR, Yang. X, et al. Function of the Tetraspanin CD151-alpha6betal Integrin Complex during Cellular Morphogenesis. Mol Biol Cell. 2002;13(1):1-11.
    2. Zhang XA, Bontrager AL Hemler ME: Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem. 2001;276(27):25005-25013.
    3. Yanez-Mo M, Alfranca A, Cabanas C, et al. Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 betal integrin localized at endothelial lateral junctions. J Cell Biol. 1998;141:791-804.
    4. Hasegawa H, Nomura T, Kishimoto K, et al. SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily, associates preferentially with alpha 5 beta 1 integrin and regulates adhesion of human T cell leukemia virus type 1-infected T cells to fibronectin. J Immunol. 1998;161:3087-3095.
    5. Yauch RL, Berditchevski F, Harler MB, et al. Highly stoichiometric, stable, and specific association of integrin alpha3betal with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell. 1998;9:2751-2765.
    6. Geary SM,Cambareri AC,Sincock PM,et al. Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens. 2001 ;58(3): 141-53.
    7. Obert L Yauch, Alexander R. Kazarov, Bimal Desai, et al. Direct Extracellular Contact between Integrin _3αβ_1 and TM4SF Protein CD151. J Biol Chem. 2000; 275: 9230-9238.
    8. Fitter S, Sincock PM, Jolliffe CN, et al. Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J. 1999;338:61-70.
    9. Xin A. Zhang, Alexander R. Kazarov, Xiuwei Yang, An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J Cell Biology.2002; 158(7): 1299-1309.
    10. Kazarov AR, Yang X, Stipp CS, et al. An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol. 2002;158:1299-1309.
    11. Nishiuchi R, Sanzen N, Nada S, et al. Potentiation of the ligand-binding activity of integrin alpha3betal via association with tetraspanin CD151. Proc Natl Acad Sci U S A. 2005;102(6):1939-1944.
    12. Geary SM,Cambareri AC, Sincock PM,et al. Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens. 2001;58(3):141-153.
    13. Sincock PM, Fitter S Parton RG, Bemdt MC et al :Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens. 2001;58(3):141-153.
    14. Erru V, Le Naour F, Billard M, et al. Selective tetraspan-integrin complexes (CD81/alpha4betal, CD151/alpha3betalCD151/alpha6betal) under conditions disrupting tetraspan interactions. Biochem J. 1999;340 (1):103-111.
    15. Chometon G, Zhang ZG, Rubinstein E, et al. Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Exp Cell Res. 2006 ; [Epub ahead of print]
    16. Cowin AJ, Adams D, Geary SM, et al. Wound healing is defective in mice lacking tetraspanin CD151. J Invest Dermatol. 2006 ;126(3):680-689.
    17. Karamatic Crew V, Burton N, Kagan A, et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood. 2004;104(8):2217-2223.
    18. Liu ZX, Lan RF, Song YE, et al. The effects of AAV-mediated CD151 gene on the neovasculanzation and the foundation of blood flow in the model of rat hind-limb ischemia. J ENDOVASC THER. 2005;12:469-478
    19. Penas PF, Garcia-Lopez MA, Barreiro del Rio O. Inhibition of the motility of melanoma cells using interference RNA against CD9. Actas Dermosifiliogr. 2005;96(1):30-36
    20. Garcia-Lopez MA, Barreiro O, Garcia-Diez A, et al. Role of tetraspanins CD9 and CD151 in primary melanocyte motility. J Invest Dermatol. 2005 Nov;125(5):1001-1009
    21. Lan RF, Liu ZX, Song YE, et al. Effects of CD151 on migration of human tongue squamous carcinoma cell line Tca8113. Ai Zheng. 2005;24(3):262-267
    22. Ang J, Lijovic M, Ashman LK, et al. CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev. 2004;13:1717-1721.
    23. Hashida H, Takabayashi A, Tokuhara T, et al. Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer. 2003 Jul 7;89(1):158-167
    24. Frankel S, Smith GD, Donovan J, et al. Screening for prostate cancer. Lancet 2003;361:1122-1128.
    25. Brakebusch C, Bouvard D, Stanchi F, et al. Integrins in invasive growth. J Clin, Invest 2002; 109:999-1006.
    26. Hashido H, Takabdgashi A, Tokuhara T. Clinical significance of transmembrane 4 supefamily in colon cancer. Br J Cancer, 2003,89(1):67.
    27. Tokahara T, Hasegawa H, Hattori N, et al. Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res, 2001,7(12): 14.
    28. Shiomi T, Inoki I, Kataoka F, et al. Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest. 2005;85(12):1489-1506
    29. Klosek SK, Nakashiro K, Hara S, et al. CD151Biochemical Research Foundationforms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun. 2005;336(2):408-416
    30. Kohno M, Hasegawa H, Miyake M, et al. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer. 2002;97(3):336-43.
    31. Wright MD, Geary SM, Fitter S, et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol. 2004;24(13):5978-5988
    32. Lau LM, Wee JL, Wright MD, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood. 2004;104(8):2368-2375.
    33. Serebruany VL, Malinin AI, Callahan KP, et al. Effect of tenecteplase versus alteplase on platelets during the first 3 hours of treatment for acute myocardial infarction: the Assessment of the Safety and Efficacy of a New Thrombolytic Agent (ASSENT-2) platelet substudy. Am Heart J. 2003;145(4):636-642.
    34. Gurbel PA, Cummings CC, Bell CR, et al. Onset and extent of platelet inhibition by clopidogrel loading in patients undergoing elective coronary stenting: the Plavix Reduction Of New Thrombus Occurrence (PRONTO) trial. Am Heart J. 2003;145(2):239-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700