金属—有机骨架材料——MOF-5和MIL-101的合成及其对VOCs的吸附/脱附性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
VOCs污染已成为环境污染的主要源头之一,它极大地破坏着生态环境,严重地威胁人类健康和影响社会的可持续发展,有效地治理VOCs的环境污染已迫在眉睫。吸附技术被认为是一种极具发展潜力的VOCs治理技术,新型的多孔吸附材料是吸附技术的核心,研制对VOCs具有高效吸附性能的新型多孔材料成为技术的关键。本文主要探索合成MOF-5和MIL-101材料并测定其吸附VOCs的性能,论文工作主要涉及MOF-5和MIL-101材料的合成及表面性质的表征,测定苯和甲苯在MOF-5和MIL-101材料上的吸附等温线和吸附动力学曲线,估算甲苯在MIL-101材料上的吸附/脱附活化能,属于环境工程、化学工程和材料工程领域,具有重要的研究意义和实际应用背景。
     本文研究了合成条件对MOF-5晶体比表面积和孔隙结构等性能的影响。研究结果表明:以DMF为溶剂,将Zn2+/H2BDC摩尔比为3的合成液中置于130℃下油浴反应4小时后经过一定的纯化和活化处理,可成功得到小颗粒(20-60μm)、较高比表面积(SLangmuir =1022m2/g)和较大孔容(0.45 cm/g)的MOF-5晶体。
     本文研究了合成条件对MIL-101晶体比表面积和孔隙结构等性能的影响。研究结果表明:Cr3+、对苯二甲酸、氢氟酸和水以一定配比在210℃微波辐射反应1小时,并经过一定的纯化和活化处理,可得到高质量、高纯度的纳米级(40-90 nm)微小颗粒、大比表面积(SLangmuir =4443m2/g)和大孔容(1.89 cm3/g)MIL-101晶体。
     本文测定了苯和甲苯在MOF-5和MIL-101上的吸附等温线和甲苯在MIL-101上的吸附动力学曲线,估算了甲苯在MIL-101上的扩散系数和吸附活化能。结果表明:当T =时,苯和甲苯在MIL-101上的平衡吸附量分别为16.3 mmol/g和11.0 mmol/g,MIL-101晶体颗粒对苯和甲苯均有高效快速的吸附容量;甲苯在MIL-101上的吸附活化能为10.9 kJ/mol,大大低于其在活性炭上的吸附活化能。
     本文测定了甲苯在MIL-101上的程序升温脱附曲线,估算了甲苯在MIL-101材料上的脱附活化能,结果表明:甲苯在MIL-101上的脱附活化能为28.0 kJ/mol,大大低于其在其他吸附剂上的脱附活化能。
     以上结果表明,与传统吸附材料相比,MIL-101材料不仅对甲苯有很高的吸附容量和吸附速率,而且又能使甲苯较容易脱附,是一种很有前景的吸附VOCs材料。
VOCs are a kind of environmental pollutant source which seriously threat human health and sustainable development of our society. Therefore, it is extremely urgent for us to effectively deal with VOCs. Adsorption technology is a technique which focuses on porous structured materials and is considered as one of the most potential technology for the air pollution treatment, so to develop new porous materials efficient to adsorb VOCs is the key point. This research mainly involves synthesis and characterization of MOF-5 and MIL-101, and measurements of their adsorption/desorption properties toward benzene and toluene. This study belongs to the fields of environmental engineering, chemical engineering and material engineering. It has important research significance and practical application background.
     The effects of synthesis condition on its physical properties of the MOF-5 crystals, including surface area and porous texture, were investigated. Results showed that the MOF-5 crystals whose particle sizes ranged from 20 to 60μm, surface area was up to 1022 m2/g and pore volume up to were obtained under the following conditions: synthesis temperature of 130℃, reaction time of 4 hours, the Zn2+/H2BDC molar ratio of 3, N, N-dimethylformamide as the solvent, certain purification and activating method.
     The effects of synthesis condition on its physical properties of the MIL-101 crystals including surface area, porous texture and so forth, were investigated. Results showed that high quality and purity MIL-101 crystals whose particle sizes ranged from 40-90 nm, surface area was up to 4443 m2/g and pore volume up to 1.89 cmwere obtained under the following conditions: synthesis temperature of 210℃, 1 hour’s microwave radiation, certain Cr3+/H2BDC/HF/H2O molar ratio, certain purification and activating method.
     Benzene and toluene adsorption isotherms and kinetic curves on the MOF-5 and the MIL-101 particles were determined, and the diffusivity coefficients and adsorption activation energy of toluene on MIL-101 were estimated. Results showed that the amounts adsorbed of benzene and toluene on the MOF-5 and the MIL-101 were up to 16.3 mmol/g and 11.0 mmol/g respectively at 298 K and p/pB0 B= 0.5, which showed that MIL-101 has higher adsorption capacities of both benzene and toluene; and the adsorption activation energy of toluene on the MIL-101 was 10.9 kJ/mol, which was obviously lower than that on activated carbon.
     TPD spectrums of toluene on the MIL-101 were determined, and then the desorption activation energy of toluene was estimated. Results showed that the desorption activation energy of toluene on the MIL-101 was 28.0 kJ/mol, which was obviously lower than that on other conventional adsorbents.
     The results above indicated that, the MIL-101 material not only had high adsorption capacity and adsorption rate for toluene in comparison with conventional adsorbents, but also had easily toluene desorb from it. It is a promising material for VOCs adsorption.
引文
[1]陈清,余刚,张彭义.室内空气中挥发性有机物的污染及其控制[J].上海环境科学, 2001, 20(12): 616-620
    [2]徐效梅,黄维秋,赵书华等.活性炭吸附VOC穿透曲线的研究.能源环境保护[J]. 2008, 22(2): 149-152
    [3]王宝庆,马广大,陈剑宁.挥发性有机废气净化技术研究进展[J].环境污染治理技术与设备, 2003, 4(5): 47-51
    [4] Jones A.P. Indoor Air Quality and Health. Atmosphere Environment. 1999, 33: 4535-4564
    [5]游咏妍,陈凡植,黄树杰.活性炭纤维吸附挥发性有机化合物的研究进展[J].工业催化. 2006, 14(4): 63-66
    [6]张林,陈欢林,柴红.挥发性有机物废气的膜法处理工艺研究进展[J].化工环保, 2002, 22(2): 75-80
    [7]吴兑,毕雪岩,邓雪娇等.珠江三角洲大气灰霾导致能见度下降问题研究[J].气象学报,2006,64(4):510-516
    [8] Seniori CostantiniA, QuinnM, ConsonniD, et al. Exposure to Benzene and Risk of Leukemia among Shoe Factory Workers[J]. Scand J Work Environ Health, 2003, 29(1): 51-59
    [9] D.C. Glass, C.N. Gray, D.J. Jolley, et al. Leukemia Risk Associated with Low Level Benzene Exposure[J]. Epidemiology, 2003, 14(5): 569-577
    [10]张济宇.世界各国对排放VOCs浓度的规定[J].石油化工环境保护, 2000, 3(1): 64
    [11]高莲,谢永恒.控制挥发性有机化合物污染的技术[J].化工环保, 1998, 118(6): 343-346
    [12] F.I. Khan, A.K.Ghoshal. Removal of Volatile Organic Compounds from Polluted Air [J]. Journal of Loss Prevention in the Process Industries, 2000, 13 (6): 527-545
    [13]郭建光,李忠.催化燃烧VOCs的三种过渡金属催化剂的活性比较[J].华南理工大学学报, 2004, 32(5): 56-59
    [14] G..Leson, A.M. Wines. Biofiltration: an Innovative air Pollution Control Technology for VOC Emissions[J]. Air Waste Manage Assoc, 1991, 41(8): 1045-1053
    [15] Toshiaki Yamamoto. VOC Decomposition by Nonthermal Plasma Processing– a NewApproach[J]. Journal of Electrostatics, 1997, 42(1-2): 227-238
    [16] J.G.. Deng, L. Zhang, H.X Dai, et al. HIn Situ Hydrothermally Synthesized Mesoporous LaCoOB3B/SBA-15 Catalysts: High Activity for the Complete Oxidation of Toluene and Ethyl- acetateH[J]. Applied Catalysis, 2009, 352 (1-2): 43-49
    [17] S. Aouad, E. Abi-Aad, A. Abouka?s. HSimultaneous Oxidation of Carbon Black and Volatile Organic Compounds over Ru/CeOB2BCatalystsH[J]. Applied Catalysis, 2009, 88 (3-4): 249-256
    [18] A. Aranzabal, J.A. González-Marcos, M. Romero-Sáez, et al. HStability of Protonic Zeolites in the Catalytic Oxidation of Chlorinated VOCs (1,2-dichloroethane)H [J]. Applied Catalysis, 2009, 88 (3-4): 533-541
    [19] G.C. Xiao, X.C.Wang, D.Z Li, et al. HInVOB4B-sensitized TiOB2BPhotocatalysts for Efficient Air Purification with Visible LightH[J]. Journal of Photochemistry and Photobiology, 2008, 193 (2-3): 213-221
    [20] D.S. Tsoukleris, T. Maggos, C. Vassilakos, et al, HPhotocatalytic Degradation of Volatile Organics on TiOB2B Embedded Glass SpherulesH[J]. Catalysis Today, 2007, 129 (1-2): 96-101
    [21] S. Futamura, T. Yamamoto. Byproduct Identification and Mechanism Determination in Plasma Chemical Decomposition of Trichloroethylene[J]. IEEE Trans on Industry Appl, 1997, 33(2) : 447-453
    [22] C. Fitzsimmons, F. Ismail, J.C., Whitehead, et al. The Chemistry of Dichloromethane Destruction in Atmospheric-pressure Gas Streams by a Dielectric Packed-bed Plasma Reactor[J]. Journal of Physical, 2000, 104 (25): 6032-6038
    [23]吴永文,李忠等. VOCs污染控制技术与吸附催化材料[J],离子交换与吸附, 2003, 19(1): 88-95
    [24] V.S. Engleman, Updates on Choices of Appropriate Technology for Control of VOC Emissions [J]. Metal Finishing, 2000, 98 (6): 433-445
    [25] N. Diban, A. Urtiaga, I. Ortiz. HRecovery of Key Components of Bilberry Aroma Using a Commercial Pervaporation MembraneH [J]. Desalination, 2008, 224 (1-3): 34-39
    [26]闫勇.有机废气中VOC的回收方法[J].化工环保, 1997, 17 (6) : 332- 335
    [27] M. Peng, L.M. Vane, S.X. Liu. HRecent Advances in VOCs Removal from Water by PervaporationH[J]. Journal of Hazardous Materials, 2003, 98 (1-3): 69-90
    [28] G.O. Yahaya. HSeparation of Volatile Organic Compounds (BTEX) from AqueousSolutions by a Composite Organophilic Hollow Fiber Membrane-based PervaporationProcessH [J]. Journal of Membrane Science, 2008, 319 (1-2): 82-90
    [29]立本英机.活性炭的应用技术[M].高尚愚.南京:东南大学出版社, 2002
    [30]曾凡龙,潘鼎. H我国活性碳纤维的研究、工业化及前景(Ⅰ)H[J]. H材料导报H, 2003, 17(9):61-63
    [31] Peixiu Yin, Jian Zhang, Zhaoji Li, et al. Magnetic Investigation of Two HelicalFrameworks Derived from Mixed Ligands[J]. Inorganica Chimica Acta, 2007, 360(11):3525–3532
    [32] David Britt, David Tranchemontagne, Omar M. Yaghi. Metal-organic Frameworks withHigh Capacity and Selectivity for Harmful Gases[J]. PANS, 2008, 105(33): 11623-11627
    [33]贾盛澄,李新华,赵亚娟.多孔金属-有机配合物的研究进展—设计、合成及性质[J].世界科技研究与发展, 2007, 29(5): 6-18
    [34] O. M. Yaghi, G. Li, H. Li. Selective Binding and Removal of Guests in a MicroporousMetal-Organic Framework[J]. Nature, 1995, 378(14): 703
    [35] Mohamed Eddaoudi, Jaheon Kim, Nathaniel Rosi, et al. Systematic Design of Pore Sizeand Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295(18) : 469-472
    [36] Reaction Mechanisms, L.E. Nagel, M.O'Keeffe, et al. Frameworks for Extended Solids:Geometrical Design Principles[J]. Journal of Solid State Chemistry, 2000, 152(1): 3-20
    [37] Do-Young Hong, Young Kyu Hwang, Christian Serre, et al. Porous ChromiumTerephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization,Encapsulation, Sorption and Catalysis[J]. Advanced Materials, 2009, 19: 1537–1552
    [38] G. Ferey, C. Mellot-Draznieks, C. Serre, et al. A Chromium Terephthalate–Based Solidwith Unusually Large Pore Volumes and Surface Area[J]. Science, 2005, 309(5743):2040-2042
    [39] Liping Wang, Xiangru Meng, Erpeng Zhang, et al. Rational Design and Syntheses of 0-D,1-D, and 2-D Metal-organic frameworks (MOFs) from Ferrocenedicarboxylate TetrametallicMacrocyclic Building Units and Subsidiary Ligands[J]. Journal of Organometallic Chemistry,2007, 692(20): 4367-4376
    [40] Mohamed Eddaoudi, Hailian Li, O. M. Yaghi. Highly Porous and Stable Metal-OrganicFrameworks: Structure Design and Sorption Properties[J]. Am. Chem. Soc, 2000, 122(7):1391-1397
    [41] Hailian Li, Mohamed Eddaoudi, Misako Kachi, et al. Design and Synthesis of anExceptionally Stable and Highly Porous Metal-organic Framework[J]. Nature, 1999, 402(18):276-279
    [42] S. Kitagawa, R. Kitaura, S. Noro. Functional Porous Coordination Polymers[J].Angewandte Chemie-International Edition, 2004, 43(18): 2334-2375
    [43] Y.X. Zhou. Metal-organic Frameworks as an Acid Catalyst for the Synthesis of EthylmethylCarbonate via Transesterification[J]. Journal of Molecular Catalysis, 2009, 308(1-2):68-72
    [44] F. Xamena. Metal Organic Frameworks (MOFs) as Catalysts: A Combination of CuP2+Pand CoP2+P MOFs as an Efficient Catalyst for Tetralin Oxidation[J]. Journal of Catalysis, 2008,255(2): 220-227
    [45] Maike M ller, Stephan Hermes, Kevin K hler, et al. Loading of MOF-5 with Cu andZnO Nanoparticles by Gas-phase Infiltration with Organometallic Precursors: Properties ofCu/ZnO MOF-5 as Catalyst for Methanol Synthesis[J]. Chemistry of Materials, 2008. 20(14):4576-4587
    [46] S. Kawi, M. Te. MCM-48 Supported Chromium Catalyst for TrichloroethyleneOxidation[J]. Catalysis Today, 1998, 44(1-4): 101-109
    [47]周元敬,杨明莉,武凯等.金属-有机骨架(MOFs)多孔材料的孔结构调节途径[J].材料科学与工程学报, 2007, 25(2): 308-311
    [48] Jianghua He, Yuetao Zhang, Qinhe Pan, et al. Three Metal-organic Frameworks Preparedfrom Mixed Solvents of DMF and HAc[J]. Microporous and Mesoporous Materials, 2006,90(1-3): 145–152
    [49] Wenbin Lin. Homochiral Porous Metal-organic Frameworks: Why and How[J]. Journalof Solid State Chemistry, 2005, 178(8): 2486–2490
    [50] Shengqian Ma, Daofeng Sun, Jason M. Simmons, et al. Metal-organic Framework froman Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake[J].Journal of American chemistry society 2008, 130(3): 1012-1016
    [51] Claudia F. Braga, Ricardo L. Longo. Structure of Functionalized Porous Metal-organic Frameworks by Molecular Orbital Methods[J]. Journal of Molecular Structure, 2005, 716(1-3): 33-38
    [52] Jung Sik Choi, Won Jin Son, Jahoen Kim, et al. Metal-organic Framework MOF-5 Prepared by Microwave Heating: Factors to be Considered[J]. Microporous and Mesoporous Materials, 2008, 116(1-3): 727–731
    [53] Sung Hwa Jhung, Jin-Ho Lee, Ji Woong Yoon, et al. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability[J]. Advanced Materials, 2007, 19(1): 121-124
    [54] Bj?rnar Arstad, Helmer Fjellv?g, Kjell Ove Kongshaug, et al. Amine Functionalised Metal Organic Frameworks (MOFs) as Adsorbents for Carbon Dioxide[J]. Adsorption, 2008, 14(6): 755–762
    [55] Krista S. Walton, Randall Q. Snurr. Applicability of the BET Method for Determining Surface Areas of Microporous Metal?organic Frameworks[J]. Journal of American chemistry society 2007, 129(27): 8552-8556
    [56]魏文英,方键,孔海宁.金属有机骨架材料的合成及应用[J].化学进展, 2005, 17(6): 1110-1115
    [57] David Dubbeldam, Casey J. Galvin, Krista S. Walton, et al. Separation and Molecular-level Segregation of Complex Alkane Mixtures in Metal-organic Frameworks[J]. Journal of American chemistry Society, 2008, 130(33): 10884–10885
    [58] Kristopher J. Ooms, Roderick E. Wasylishen. 129Xe NMR Study of Xenon in Iso-reticular Metal–organic Frameworks[J]. Microporous and Mesoporous Materials, 2007, 103: 341–351
    [59] Rahul Banerjee, Anh Phan, Bo Wang, et al. High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture[J]. Science, 2008, 319(5865): 939-943
    [60]那立艳,姜慧明,杨宝灵等.三维开放骨架镧系金属有机配位聚合物Tm(BTC)(DMF)(DMSO)的合成、结构和性质[J].高等学校化学学报, 2007, 28(8): 1437-1439
    [61] Yan, Y.S., M.E. Davis, and G.R. Gavalas, Preparation of Zeolife ZSM-5 Membranes byIn-situ Crystallization on Porous Alpha-Al2O3[J]. Industrial & Engineering Chemistry Research, 1995. 34(5): 1652-1661
    [62]贾盛澄,李新华,赵亚娟.多孔金属-有机配合物的研究进展——设计、合成及性质[J].世界科技研究与发展, 2007, 29(5): 6-18
    [60] Chen, B.L., et al., Cu-2(ATC)center dot 6H(2)O: Design of Open Metal Sites in Porous Metal-organic Crystals (ATC: 1,3,5,7-adamantane tetracarboxylate)[J]. Journal of the American Chemical Society, 2000, 122(46): 11559-11560
    [61]林之恩,杨国昱.多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J],结构化学, 2004, 23(12): 2388-1398
    [62] N. Rosi, M. Eddaoudi, D. Vodak, et al. Metal-Organic Frameworks as New Materials for Hydrogen Storage[J], Science, 2003, 300: 1127
    [63] Mohamed Eddaoudi, Hailian Li, O. M. Yaghi. Highly Porous and Stable Metal-Organic Frameworks: Structure Design and Sorption Properties[J]. Am. Chem. Soc., 2000, 122(7): 1391-1397
    [63] H. Li, M. Eddaoudi, T. L. Groy, et al. Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC =1,4-Benzenedicarboxylate)[J]. Chem. Soc., 1998, 120(33): 8571-8572
    [64] J. Rowsell, A. Millward, K. Park, et al. Hydrogen Sorption in Functionalized Metal-Organic Frameworks[J]. Chem. Soc., 2004, 126(18): 5666-5557
    [65] J. Rowsell, O. M. Yaghi, Angew. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Chem, 2005, 44: 4670-4679
    [66] A.C. Sudik, A.P. Cote, O. M. Yaghi, Metal-organic Frameworks Based on Trigonal Prismatic Building Blocks and the New "Acs" Topology[J]. Inorganic Chemistry, 2005, 44(9): 2998-3000
    [69] Pradip Chowdhury, Chaitanya Bikkina, Sasidhar Gumma. Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101[J]. American Chemical Society, 2009, 113(16): 6616-6621
    [70] Dipendu Saha, Zuojun Wei, Shuguang Deng. Hydrogen Adsorption Equilibrium and Kinetics in Metal–Organic Framework (MOF-5) Synthesized with DEF Approach[J]. Separation and Purification Technology, 2009, 64(3): 280-287
    [71] Ryu, Z.Y., J.T. Zheng, M.Z. Wang. Porous Structure of PAN-based Activated Carbon Fibers[J]. Carbon, 1998, 36(4): 427-432
    [72] MehlmanMA. Carcinogenic Effects of Benzene: Cesare Maltoni’s Contributions[J]. Ann N Y Acad Sci, 2002, 982: 137 -148
    [73]张婉静,固体催化剂的研究方法-第十章多晶X射线衍射[J].石油化工, 2001. 30(7): 571-583
    [74]王静,曹立志,武永虹,庄思永,感光化学中的近代研究方法[J].信息记录材料, 2003. 4(3): 39-44.
    [75]薛用芳,固体催化剂的研究方法-第二章分析电子显微镜[J].石油化工, 2001. 30(3): 227-235
    [76]何余生,李忠,奚红霞等.气固吸附等温线的研究进展[J].离子交换与吸附, 2004, 20(4): 376-384
    [77] Hafizovic, J. The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities[J]. Journal of the American Chemical Society, 2007. 129(12): 3612-3620.
    [78] L.M. Huang. Synthesis, Morphology control and properties of Porous Metal-organic Coordination Polymers[J]. Microporous and Mesoporous Materials, 2003. 58(2): 105-114
    [79] Jagadeswara R. Karra, Krista S. Walton. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC[J]. Langmuir, 2008, 24(16): 8620-8626.
    [80] Bo Xiao, Hongwei Hou, Yaoting Fan, et al. Impact of Counteranion on the Self-assembly of Cd(II)-containing MOFs: Syntheses, Structures and Photoluminescent Properties[J]. Inorganica Chimica Acta, 2007, 360: 3019-3025
    [81] Yingwei Li, and Ralph T. Yang. Gas Adsorption and Storage in Metal?Organic Framework MOF-177[J]. Langmuir, 2007, 23 (26): 12937-12944
    [82] Pradip Chowdhury, Chaitanya Bikkina, Sasidhar Gumma. Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101[J]. American Chemical Society 2009, 113(16): 6616-6621
    [83] H. Miyoshi. Donnan Dialysis with Lon-exchange Membranes. III. Diffusion CoefficientsUsing Ions of Different Valence[J]. Separation Science and Technology, 1999, 34(2): 231-241.
    [84] J. Karger, D.M. Ruthven. Diffusion in Zolites and Oher Mcroporous Slids[J]. AIChE Journal, 1992, 39(4): 605
    [85] H.M. Alsyouri, J.Y.S. Lin, Gas Diffusion and MicroStructural Properties of Ordered Mesoporous Silica Fibers[J]. Journal of Physical Chemistry B, 2005, 109(28): 13623-13629
    [86]金一中,徐灏,谢裕坛.活性炭吸附苯、甲苯废气的研究[J].高校化学工程学报, 2004, 18(2): 258-263
    [87]张丽丹,赵晓鹏,马群等.改性活性炭对苯废气吸附性能的研究[J].新型炭材料, 2002, 17(2): 41-44
    [88]李启芬,龙超,刘鹏等.吸附树脂和活性炭对气体中苯的吸附研究[J].离子交换与吸附, 2009, 25(2): 137-144
    [89]胡祖美,张艳,王金渠等.苯在活性炭纤维上吸附等温线的测定及分析[J].石油学报, 2008, 24(4): 484-487
    [90] P. Pre, F. Delage, C. Faur-Brasquet, et al. Quantitative Structure–activity Relationships for the Prediction of VOCs Adsorption and Desorption Energies onto Activated Carbon[J]. Fuel Processing Technology, 2002, 77–78(20): 345-351
    [91]张会平,钟辉,叶李艺.苯酚在活性炭上的吸附与脱附研究[J].化工科技, 1999, 7(4): 35-38
    [92] J. H. Park, R. T. Yang. Predicting Adsorption Isotherms of Low-Volatile Compounds by Temperature Programmed Desorption: Iodine on Carbon[J]. Langmuir, 2005, 21(11): 5055-5060
    [93] R. I. Masel, Principles of Adsorption and Reaction on Solid Surfaces[M]. New York: A Wiley-Interscience Publication, 1996
    [94] Zhong Li, Hongjuan Wang, Hongxia Xi, et al. Estimation of Activation energy of Desorption of n-Hexane on Activated Carbons by TPD Technique[J]. Adsorption Science and Technology, 2003, 21(2): 125-132
    [95] Xi Hong xia , Li Zhong , Zhang Hai- bing , et al . Estimation of activation energy for desorption of low volatility dioxins on zeolites by TPD technique[J]. Separation and Purification Technology,2003,31(1): 41-45
    [96] R.I. Slioor, J.M. Kanervo, T.J. Keskitalo, et al. Gas phase adsorption and desorption kinetics of toluene on Ni/γ-AlB2BOB3B[J]. Applied Catalysis, 2008, 344(1-2): 183-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700