大规模过程系统非线性优化的简约空间理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性规划(NLP)是过程系统工程的重要工具。计算机技术与数值方法的发展使过程工程师可以考虑求解更大规模、更复杂的系统。如何实现大规模NLP问题的高效、稳定求解成为研究重点。简约空间方法适合过程系统优化命题的高维、低自由度特征,并可利用问题结构和近似二阶信息求解,是该类优化命题的良好求解途径。本论文的目标是设计并实现适于大规模NLP问题求解的简约空间算法,特别是为实现稳定求解以及权衡计算代价与求解精度提出解决方案,在理论上分析其特性,并通过各类NLP问题求解测试其应用性能。
     本文讨论的简约空间算法包括简约空间SQP算法(rSQP)和简约空间内点法(rIPOPT)。提出了这两种算法可用的求解策略。为了高效求解空间分解系统,引入一种近似求解方法并相应调整求解计算顺序。在不满秩系统求解中,为实现系统分解和数值稳定性,提出必要的维数变化方法。此外,在求解过程中还需要检测系统秩变化及(局部)不可行性。这可以通过高效应用稀疏系统求解器来实现。为了促进算法全局收敛,本文提出基于障碍法和投影梯度法的两种可行性恢复算法,并对无可行性恢复阶段的鲁棒算法进行了探讨。基于收敛深度的收敛准则能够权衡计算代价与求解精度,为用户提供可接受近似解,控制优化进程适时终止。
     本文的理论探讨包括不满秩(特别是不相容)系统的障碍法可行性恢复问题求解方法;投影梯度可行性恢复算法的全局收敛性及收敛速度分析;无可行性恢复阶段的鲁棒算法全局收敛性分析;基于收敛深度的收敛准则性质证明等。
     作为通用NLP问题求解器,本文通过CUTE/COPS/MITT标准算例库求解,测试了MATLAB环境下rSQP算法的性能,并将其与MINOS和SNOPT两个求解器的性能进行了比较。在过程系统优化应用中,乙烯生产过程联塔系统优化显示出简约空间算法的优越性。FORTRAN环境下的rIPOPT算法在不满秩系统求解、全局收敛性测试和不可行性识别中表现出良好性能。收敛深度控制准则的有效性,通过rSQP算法应用于标准算例库求解、变负荷联塔系统优化、催化剂混合优化等数值实验得到体现。
Nonlinear programming (NLP) is an essential tool in process engineering. The advances in computer technology and numerical methods enable engineers to consider more large-scale and complex systems. Emphasis is laid on solving large NLPs efficiently and stably. Reduced-space methods have advantages in process engineering. For one thing, most problems in this category have only few degrees of freedom compared to the total number of variables. For another, reduced-space approaches allow to exploit problem-dependent structure and approximate second derivative information. The objective of this dissertation is the design and implementation of reduced-space algorithms appropriate to large NLPs, especially the strategies necessary for NLP solvers to solve problems stably and balance between computational cost and precision. Properties of the strategies are analysed, and performance of the new solvers is evaluated by tests on a large variety of NLPs.
     The algorithms discussed include reduced-space SQP (rSQP) and interior point method (rIPOPT). Strategies which can be applied to both of the algorithms are proposed. In order to solve the decomposed system efficiently, an approximate method is introduced, accordingly, the computation order is changed. When solving rank deficient systems, dimension change is necessary for achieving system decomposition and numerical stability. Additionally, checking on rank change and (local) infeasibility during the process of optimization is needed, which can be implemented efficiently by appropriate application of a sparse system solver. Global convergence is guaranteed by feasibility restoration algorithms, i.e. the algorithms based on barrier method and projected gradient method respectively. A robust algorithm without feasibility restoration phase is discussed as well. The trade-off between computational cost and precision is implemented in criteria taking advantage of convergence depth, which try to detect acceptable approximate solution, and discover the proper time to terminate the optimization algorithm.
     Theoretical discussion includes the solution of barrier feasibility restoration problem corresponding to a rank deficient system, especially an inconsistent system; global convergence and convergence rate of the feasibility restoration algorithm following projected gradient methods; global convergence of the robust algorithm without feasibility restoration phase; and proofs of the properties of convergence criteria based on convergence depth.
     The practical performance of rSQP algorithm coded in MATLAB as a general purpose NLP solver is tested on various NLP problems from CUTE, COPS, and MITT. The performance is compared with that of MINOS and SNOPT. In the application to process engineering, the advantage of reduced-space methods is demonstrated in the optimization of distillation columns in ethylene production. rIPOPT in FORTRAN performs very well in the solution of rank deficient problems and tests on global convergence and infeasibility identification. The effectiveness of criteria based on convergence depth control is shown by the rSQP algorithm in the solution of problems from CUTE, distillation columns under changing feed conditions, and catalyst mixing problem.
引文
[1]L.T.Biegler,I.E.Grossmann.Future perspective on optimization.Computers and Chemical Engineering,2004,28(8):1193-1218.
    [2]J.Nocedal,S.Wright.Numerical Optimization.New York,NY,USA:Springer,1999.
    [3]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997.
    [4]J.T.Betts,P.D.Frank.A sparse nonlinear optiomization algorithm.Journal of Optimization Theory and Application,1994,82(3):519-541.
    [5]L.T.Biegler,J.Nocedal,C.Schmid,D.Ternet.Numerical experience with a reduced Hessian method for large-scale constrained optimization.Computational Optimization and Applications,2000,15(1):45-67.
    [6]P.T.Boggs,A.J.Kearsley,J.W.Tolle.A practical algorithm for general large scale nonlinear optimization problems.SIAM Journal on Optimization,1999,9(3):755-778.
    [7]R.Fletcher,S.Leyffer.Nonlinear programming without a penalty function.Mathematical Programming,2002,91(2):239-269.
    [8]P.E.Gill,W.Murray,M.A.Saunders.SNOPT:An SQP algorithm for large-scale constrained optimization.SIAM Journal on Optimization,2002,47(1):99-131.
    [9]W.Murray,F.J.Prieto.A sequential quadratic programming algorithm using an incomplete solution of the subproblem.SIAM Journal on Optimization,1995,5(3):590-640.
    [10]R.A.Bartlett.Object-oriented approaches to large-scale nonlinear programming for process systems engineering[PhD thesis].Pittsburgh,PA,USA:Department of Chemical Engineering,Carnegie Mellon University,2001.
    [11]P.E.Gill,W.Murray,M.A.Sanders.User's guide for SQOPT 5.3:A FORTRAN package for large-scale linear and quadratic programming.Technical Report,San Dieego,La Jolla,CA:Department of Mathematics.University of California,1997.
    [12]C.Schmid,L.T.Biegler.Quadratic programming methods for reduced Hessian SQP.Computers and Chemical Engineering,1994,18(9):817-832.
    [13]陈宝林.最优化理论与算法.北京:清华大学出版社,2005.
    [14]J.Albuquerque,V.Gopal.G.Staus,L.T.Biegler,B.E.Ydstie.Interior-point SQP strategies for structured process optimization problems.Computers and Chemical Engineering,1999,23:543-554.
    [15]D.J.Ternet,L.T.Biegler.Interior-point methods for reduced Hessian successive quadratic programming.Computers and Chemical Engineering,1999,23(7):859-873.
    [16]S.J.Wright.Primal-dual interior-point methods.Philadelphia.PA,USA:Society for Industrial and Applied Mathematics.1997.
    [17] E. A. Yildirim, S. J. Wright. Warm-start strategies in interior-point methods for linear programming. SIAM Journal on Optimization, 2002,12(3): 782-810.
    
    [18] A. Wachter. An interior point algorithm for large-scale nonlinear optimization with applications in process engineering [PhD thesis]. Pittsburgh, PA, USA: Department of Chemical Engineering, Carnegie Mellon University, 2002.
    
    [19] A. V. Fiacco, G P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. New York, NY, USA: John Wiley and Sons, 1968. Reprinted by Philadelphia, PA, USA: SIAM, 1990.
    
    [20] A. Wachter, L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 2006, 106(1):25-57.
    
    [21] IPOPT home page. https://projects.coin-or.org/Ipopt/.
    
    [22] R. J. Vanderbei, D. F. Shnno. An interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications, 1999,13(1-3): 231-252.
    
    [23] N. Arora, L. T. Biegler. A trust region SQP algorithm for equality constrained parameter estimation with sumple bounds. Computational Optimization and Applications, 2004, 28(1):51-86.
    
    [24] R. H. Byrd, M. E. Hribar, J. Nocedal. A trust region method based on interior point techniques for nonlinear programming. SIAM Journal on Optimization, 2000, 9(4): 877-900.
    
    [25] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, A. Wachter. Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM Journal on Optimization, 2002,13(3): 635-659.
    
    [26] R. Fletcher, S. Leyffer, Ph. L. Tiint. On the global convergence of a filter-SQP algorithm. SIAM Journal on Optimization, 2002, 13(1): 44-59.
    
    [27] L. Chen, D. Goldfarb. An interior-point piecewise linear penalty method for nonlinear programming. Technical Report, New York, NY, USA: IEOR Department, Columbia University, 2007.
    
    [28] L. Chen, D. Goldfarb. Interior-point /2-penalty methods for nonlinear programming with strong global convergence properties. Mathematical Programming, 2006, 108(1): 1-36.
    
    [29] F. Gomes. A sequential quadratic programming algorithm with a piecewise linear merit function. Optimization Online, 2004.
    
    [30] T. F. Coleman, A. R. Conn. Nonlinear programming via an exact penalty function: Global analysis. Mathematical Programming, 1982,24(1): 137-161.
    
    [31] J. Nocedal, M. Overton. Projected Hessian updating algorithms for nonlinear constrained optimization. SIAM Journal on Numerical Analysis, 1985, 22(5): 821-850.
    [32] Y. Xie. Reduced Hessian algorithms for solving large-scale equality constrained optimization problems [PhD thesis]. Boulder, CO, USA: Department of Computer Science, University of Colorado, 1991.
    
    [33] D. Gabay. Reduced quasi-Newton methods with feasibility Improvement for nonlinearly constrained optimization. Mathematical Programming Study, 1982, 16:18-44.
    
    [34] J. C. Gilbert. Maintaining the positive definiteness of the matrices in reduced secant methods for equality constrained optimization. Mathematical Programming, 1991, 50(1-3): 1-28.
    
    [35] R. Fletcher. Practical Methods of Optimization. New York, NY, USA: John Wiley and Sons,1987.
    
    [36] W. Murray, F. J. Prieto. A sequential quadratic programming algorithm using an incomplete solution of the subproblem. Technical Report, Stanford, CA, USA: Department of Operations Research, Stanford University, 1992.
    
    [37] W. Murray, M. H. Wright. Computation of the search direction in constrained optimization algorithms. Mathematical Programming Study, 1982,16: 62-83.
    
    [38] S. Vasantharajan, L. T. Biegler. Large-scale decomposition for successive quadratic programming. Computers and Chemical Engineering, 1988, 12(11): 1087-1101.
    
    [39] M. H. Locke, R. Edahl, A. W. Westerberg. An improved successive quadratic programming optimization algorithm for engineering design problems. AIChE Journal, 1983, 29(5):871-874.
    
    [40] C. Schmid. Reduced Hessian successive quadratic programming for large-scale process optimization [PhD thesis]. Pittsburgh, PA, USA: Department of Chemical Engineering,Carnegie Mellon University, 1994.
    
    [41] L. T. Biegler, J. Nocedal, C. Schmid. A reduced Hessian method for large-scale constrained optimization. SIAM Journal on Optimization, 1995, 5(2): 314-347.
    
    [42] L. T. Biegler. Convergence analysis for a multiplier-free reduced Hessian method. Technical Report, Pittsburgh, PA, USA: Department of Chemical Engineering, Carnegie Mellon University, 1995. Revised 1999.
    
    [43] C. E. Orozco. Large-scale shape optimization: Numerical methods, parallel algorithms, and applications to aerodynamic design [PhD thesis]. Pittsburgh, PA, USA: Department of Civil Engineering, Carnegie Mellon University, 1993.
    
    [44] N. Maratos. Exact penalty function algorithms for finite dimensional and control optimization problems [PhD thesis]. London, UK: Imperial College, University of London,1978.
    
    [45] R. M. Chamberlain, C. Lemarechal, H. C. Pedersen, M. J. D. Powell. The watchdog technique for forcing convergence in algorithms for constrained optimization. Mathematical Programming Study, 1982, 16: 1-17.
    [46] A. Wachter, L. T. Biegler. Global and local convergence of a reduced space quasi-Newton barrier algorithm for large-scale nonlinear programming. Technical Report, Pittsburgh, PA,USA: Department of Chemical Engineering, Carnegie Mellon University, 2000.
    
    [47] H. Y. Benson, D. F. Shanno, R. J. Vanderbei. Interior-point methods for nonconvex nonlinear programming: Jamming and comparative numerical testing. Technical Report, Princeton, NJ,USA: Operations Research and Financial Engineering, Princeton University, 2000.
    
    [48] M. Marazzi, J. Nocedal. Feasibility control in nonlinear optimization. Technical Report,Evanston, IL, USA: Optimization Technology Center, Northwestern University, 2000.
    
    [49] A. L. Tits, A. Wachter, S. Bakhtiari, T. J. Urban, C. T. Lawrence. A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties.S1AM Journal on Optimization, 2003,14(1): 173-199.
    
    [50] L. T. Biegler, C. Schmmid, D. Ternet. A multiplier-free, reduced Hessian method for process optimization. // L. T. iegler, T. F. Coleman, A. R. Conn, F. N, Santosa, editors, Large-scale Optimization with Applications, Part II: Optimal Design and Control, IMA Volumes in Mathematics and Applications. New York, NY, USA: Springer, 1997,101.
    
    [51] F. A. M. Gomes. A sequential quadratic programming algorithm that combines merit function and filter ideas. Computational and Applied Mathematics, 2007, 26(3): 337-379.
    
    [52] A. R. Conn, N. I. M. Gould, P. L. Toint. Trust Region Methods. Philadelphia, PA, USA:SIAM, 2000.
    
    [53] C. Lin, J. J. More. Newton's method for large bound-constrained optimization problems.SIAM Journal on Optimization, 1999,9(4): 1100-1127.
    
    [54] J. J. More. Trust regions and projected gradients. Technical Report, Argonne, IL, USA:Argonne National Laboratory, 1988.
    
    [55] J. V. Burke, J. J. More, G. Toraldo. Convergence properties of trust region methods for linear and convex constraints. Mathematical Programming, 1990,47(3): 305-336.
    
    [56] T. Tosukhowong, J. H. Lee. Real-time economic optimization for an integrated plant via a dynamic optimization scheme. //Proceedings of 2004 American Control Conference, Boston,MA,USA: 2004, 1:233-238.
    
    [57] 徐成贤,陈志平,李乃成.近代优化方法.北京:科学出版社,2002.
    
    [58] K. Wang, A. Jiang, Z. Shao, J. Qian. RSQP toolbox for use with MATLAB-user's guide.MATLAB Central. 2006.http://www.mathworks.com/matlabcentral/fileexchange/13046.
    
    [59] K. Wang, A. Jiang, Z. Shao J. Qian. RSQP toolbox for MATLAB: A solver for large-scale constrained optimization. Technical Report, Hangzhou, China: State Key Lab. Of Industrial Control Technology, 2006.
    [60] Z. Shao. RSQP Toolbox for MATLAB. MATLAB Central. 2006.http://www.mathworks.com/matlabcentral/fileexchange/13046.
    
    [61] M. Lalee. Algorithms for nonlinear optimization [PhD thesis]. Evanston, IL, USA:Department of Industrial Engineering, Northwestern University, 1992.
    
    [62] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: constrained and unconstrained testing environment. ACM Transactions on Mathematical Software, 1995,21(1): 123-160.
    
    [63] R. J. Vanderbei. Nonlinear optimization model.http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/.
    
    [64] A. S. Bondarenko, D. M. Bortz, J. J. More. COPS: Large-scale nonlinearly constrained optimization problems. Technical Report, Argonne, IL, USA: Argonne National Laboratory,1998. Revised 1999.
    
    [65] E. D. Dolan, J. J. More. Benchmarking optimization software with COPS. Technical Report,Argonne, IL, USA: Argonne National Laboratory, 2000.
    
    [66] H. D. Mittelmann. AMPL models.ftp://plato.la.asu.edu/pub/ampl_files/.
    
    [67] H. D. Mittelmann. Sufficient optimality for discretized parabolic and elliptic control problems. // K. H. Hoffmann, R. H. W. Hoppe, V. Schulz, editors, Fast Solution of Discretized Optimization Problems. Basel, Switzerland: Birkhaeuser, 2001.
    
    [68] H. D. Mittelmann, F. Troeltzsch. Sufficient optimality in a parabolic control problem. // P.Manchanda, A. H. Siddiqi, M. Kocvara, editors, Proceedings of the First International Conference on Industrial and Applied Mathematics in Indian Subcontinent, Dordrecht, The Netherlands: Kluwer, 2001.
    
    [69] H. Maurer, H. D. Mittelmann. Optimization techniques for solving elliptic control problems with control and state constraints. Part 2: Distributed control. Computational Optimization and Applications, 2001, 18: 141-160.
    
    [70] L. Luksan, J. Vlcek. Sparse and partially separable test problems for unconstrained and equality constrained optimization. Technical Report, Prague, Czech Republic: Institute of Computer Science, Academy of Sciences of the Czech Republic, 1999.
    
    [71] B. A. Murtagh, M. A. Saunders. MINOS 5.5 user's guide. Technical Report, Sydney,Australia: Graduate School of Management, Macquarie University, 1983. Revised 1987,1993,1995,1998.
    
    [72] E. D. Dolan, J. J. More. Benchmarking optimization software with performance profiles. Technical Report, Argonne, IL, USA: Argonne National Laboratory, 2001.
    
    [73] 江爱朋,邵之江,陈曦,方学毅,耿大钊,郑小青,钱积新.乙烯生产流程中联塔模拟与优化.化工学报, 2006. 57(9): 2128-2134.
    [74]张正江,邵之江,陈曦,郑小青,耿大钊.开放式方程的脱丁烷塔模拟与优化的一体化研究.中国科学技术大学学报,2005,35(增):272-278.
    [75]O.von Stryk.User's guide for DIRCOL(version 2.1):A direct collocation method for the numerical solution of optimall control problems.Technical Report,Munchen,Germany:Technische Universitat,1999.
    [76]D.D.Elizabeth,J.J.More,T.S.Munson.Benchmarking optimization software with COPS 3.0.Technical Report,Argonne,IL,USA:Argonne National Laboratory,2004.
    [77]C.L.Lawson,R.J.Hanson,D.Kincaid,F.T.Krogh.Basic linear algebra subprograms for FORTRAN usage.ACM Transactions on Mathematical Software,1979,5(3):308-323.
    [78]J,J.Dongarra,J.Du Croz,S.Hammarling,R.J.Hanson.An extended set of FORTRAN basic linear algebra subprograms.ACM Transactions on Mathematical Software,1988,14:1-17.
    [79]J.J.Dongarra,J.Du Croz,S.Hammarling,R.J.Hanson.Algorithm 656:An extended set of FORTRAN basic linear algebra subprograms.ACM Transactions on Mathematical Software,1988,14:18-32.
    [80]J.J.Dongarra,J.Du Croz,I.S.Duff,S.Hammarling.A set of level 3 basic linear algebra subprograms.ACM Transactions on Mathematical Software,1990,16:1-17.
    [81]J.J.Dongarra,J.Du Croz,I.S.Duff,S.Hammarling.Algorithm 679:A set of level 3 basic linear algebra subprograms.ACM Transactions on Mathematical Software,1990,16:18-28.
    [82]L.S.Blackford,J.Demmel,J.Dongarra,I.Duff,S.Hammarling,G Henry,M.Heroux,L.Kaufman,A.Lumsdaine,A.Petitet,R.Pozo,K.Remington,R.C.Whaley.An updated set of basic linear algebra subprograms(BLAS).ACM Transactions on Mathematical Software,2002,28(2):135-151.
    [83]J.Dongarra.Basic linear algebra subprograms technical forum standard.International Journal of High Performance Applications and Supercomputing,2002,16(1):1-111,and International Journal of High Performance Applications and Supercomputing,2002,16(2):115-199.
    [84]Basic Linear Algebra Subroutines(BLAS).http://www.netlib.org/blas/.
    [85]HSL archive:A catalogue of subroutines.Aspentech,First edition 1978.Fifteenth edition 2007.
    [86]HSL 2007:A catalogue of subroutines.Aspentech,First edition 1978.Fifteenth edition 2007.
    [87]Harwell Subroutine Library(HSL).http://hsl.rl.ac.uk/archive/hslarchive.html/.
    [88]E.A.nderson,Z.Bat,C.Bischof,J.Demmel,J.J.Dongarra,J.Du Croz,S.Hammarling,A.Greenbaum,A.Mckenney,D.Sorensen.LAPACK XVHUV guide(third edition).Philadelphia,PA,USA:Society for Industrial and Applied Mathematics,1999.
    [89]LAPACK working notes,http://www.netlib.org/lapack/lawns/downloads/.
    [90]Linear Algebra Package(LAPACK).http://www.netlib.org/lapack/.
    [91]C.Lin,J.More.TRON.hrtp://www.mcs.anl.gov/~more/tron/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700