具有缝合功能的喉部微创手术机器人系统设计及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喉部微创手术是医生借助手术工具,通过喉镜狭小腔道实施的喉部手术。受到喉镜狭小空间的限制,该类手术仍无法进行复杂的手术操作。针对喉部狭小空间特点,本论文设计开发了一套具有七自由度的冗余手术机器人系统。该机器人采用主从控制模式,其末端工具的冗余自由度可有效解决喉镜空间限制,在狭小空间内实现手术缝合操作。本文以喉部微创手术机器人系统为研究对象,在以下几方面取得创新性成果:
     1)喉部微创手术机器人机械系统设计。针对喉部微创手术特点,将机器人分为末端工具、主动支架和被动支架三部分进行模块化设计。将末端工具的弯曲自由度与开合动作合成,简化了机构;采用“类曲柄滑块机构”保证工具具有较大的挟持力。主动支架采用远端回转中心机构保证微创口的安全;将内窥镜固定在主动支架上,提高了机器人在图像下的配准精度。被动支架设计具有重力补偿功能,方便医生对机器人手动定位。
     2)针对具有冗余特性的喉部微创手术机器人系统,提出了一套适用于实时操作的冗余机器人逆运动算法。该算法通过对末端工具的弯曲关节加入扰动的办法获得冗余逆运动学的解空间。再利用多优化指标融合的办法对冗余逆运动学解排序,从而得到最优逆解。针对喉镜约束特点设计的优化指标,可以充分利用末端工具弯曲自由度避免末端工具与喉镜之间的碰撞,实现狭小空间内的手术缝合操作。
     3)喉部微创手术机器人狭小空间内缝合动作的验证。基于开源机器人仿真软件包,构建了喉部微创手术机器人仿真开发平台,进行了逆运动学算法进行调试和狭小空间内缝合操作的验证。并将逆运动学算法在喉部微创手术机器人样机上实现,在真实环境下验证了机器人的缝合功能。
     4)设计并实现了基于PC机的主从“异构”型机器人控制系统。采用分层结构的实时控制算法,通过微小扰动建立主从操作手之间的对应关系,减小了计算量;通过增加反馈环节,减小近似计算误差;采用样条插值方法减轻人手抖动。并最终实现了主从“异构”机器人精确的位置控制。
     设计了一系列实验对喉部微创手术机器人系统的各项性能指标进行测量。实验表明该机器人具备了临床手术对精度及灵活度的要求,可进行临床试验。
In laryngeal minimally invasive surgery (LMIS), the surgeon employed the long laryngeal tools through constrained air-path to implement the whole therapy. Due to the restriction of the suspended Laryngeal’s space, the current therapy can not implement complex operation. This dissertation designed a novel 7dof LMIS robot system. The LMIS robot worked in tele-operation mode and controlled by the surgeon through a remote master manipulator device. With the dexterous end effectors, the LMIS robot can implement suturing assignment under constrained space. The paper focused on the LMIS robot system design and implementation and made the following contributions.
     1. A novel mechanism was designed for LMIS robot. The LMIS robot was separated as end-effectors, active platform and passive arm three parts. In order to simplify its mechanism, the end-effectors’redundant joint coincided with open-close joint; the“Similar Crank-Slider”mechanism allowed the end-effectors possessed enough gripping force. The active platform employed a remote center mechanism to guarantee the safety of the trocar; meanwhile it can increase the register precision between robot and image by attaching them together. The passive arm designed with gravity compensation feature, which allowed surgeon easily position the robot in space.
     2. An online algorithm was presented to solve the redundant LMIS robot inverse kinematics problem. By perturbing end-effectors yaw joint with small displacement, the algorithm firstly generated multi redundant inverse kinematics solutions. And then ranked all the solutions followed by multiple redundant optimization criteria (ROC). Except for employing the existing ROC, one novel ROC followed the suspended Laryngeal’s space restriction characteristic was introduced. The novel ROC can make use of the end-effectors redundant joint to avoid the collision between tools and suspended larynscopy, which guarantied the robot implement the suturing assignment in constrained space.
     3. The verification of the LMIS robot’s capability of suturing in constrained space. Based on an open source toolkit, a virtual environment with LMIS robot and suspended laryngeal’s model was built in computer. The virtual environment allowed debugging LMIS robot inverse kinematics algorithm and can verify the LMIS robot’s capability of suturing in constrain space. Based on simulation result, LMIS robot inverse kinematics algorithm was implemented on LMIS robot prototype. Finally the LMIS robot’s capability of suturing in constrain space was verified in reality.
     4. Design and implementation of a PC based the tele-controller for isomeric master and slave (m/s) manipulator. The controller designed with multi-level structure. The high-level algorithm employed the robot kinematics relative calculation and run on PC software level with low speed. In order to satisfy the robot control real time requirement, this algorithm maped the small variation instead of homogeneous transform between m/s to reduce calculation. The low-level algorithm computed robot trajectory planning and implemented by motion controller with high speed.
     At last, serial experiments have been done to evaluate the robot performance. After the experiment result complies with the design requirement, the LMIS robot implemented the suturing experiment in tele-operation mode. The experiment result showed the LMIS robot possessed the ability to apply in clinic environment.
引文
[1] Kwoh Y. S., Hou J., Jonckheere E. A. and Hayati S., A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Transactions on Biomedical Engineering, 1988, 35: 153-160.
    [2] Davies B., A review of robotics in surgery, Proc Inst Mech Eng, 2000, 214(1): 129-40.
    [3] Taylor R.H., Stoianovici D., Medical robotics in computer-integrated surgery, IEEE Transactions on Robotics and Automation, 2003, 19(5): 765-781.
    [4] Troccaz J., Delnondedieu Y., Robots in surgery, IARP Workshop on Medical Robots, Vienna, Austria, 1996.
    [5] Cleary K., Nguyen C., State of the art in surgical robotics: clinical applications and technology challenges, Computer Aided Surgert, 2001. 6(6): 312-28.
    [6] http://www.prosurgics.com/
    [7] Benabid, A.L., et al., Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging, Stereotactic and Functional Neurosurgery, 1987, 50(1-6): 153-154.
    [8] Li QH, Zamorano L, Pandya A, The application accuracy of the NeuroMate robot-A quantitative comparison with frameless and frame-based surgical localization systems, Compute Aided Surg, 2002, 7(2): 90-8.
    [9] Varma TR, Eldridge PR, Forster A, Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery, Stereotactic and Functional Neurosurgery, 2003, 80(1-4): 132-5.
    [10] Masamune K., Kobayashi E., Masutani Y. et al, Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery, Journal of Image Guided Surgery, 1995, 1: 242-8.
    [11] Chinzei K., Hata N., Jolesz F. A., and Kikinis R., MR compatible surgical assist robot: system integration and preliminary feasiblity study, Medical Image Computing and Computer Assisted Intervention, Springer, 2000: 921-30.
    [12] Charles S., Williams R. E. and Hamel B., Design of a surgeon-machine interface for teleoperated microsurgery, IEEE Engineering in Medicine and Biology Society, 1989: 883-4.
    [13] Taylor R. H., Jenson P. and Whitcomb L. et al, A steady-hand robotic system for microsurgical augmentation, The International Journal of Robotics Research, 1999, 18: 1201-1210.
    [14] Kumar R., Gordia T. M. and Barnes A. C. et al, Performance of robotic augmentation in microsurgery-scale motions, 2nd International Symposium on Medical Image Computing and Computer Assisted Surgery (MICCAI), Springer, 1999: 1108-15.
    [15] http://www.robodoc.com/
    [16] Cowley G., Introducing Robodoc. A robot finds his calling-in the operating room. Newsweek, 1992, 120(21): 86.
    [17] Borner M., Lahmer A., Bauer A., and Stier U., Experiences with the ROBODOC system in more than 1000 cases, Computer Aided Radiology and Surgery (CARS), Elsevier, 1998: 689-93.
    [18] http://www.acrobot.co.uk/
    [19]裴葆青,周力,吕坤,王田苗,股骨颈骨折空心钉内固定手术参数的优化分析,中国生物医学工程学报,2007,26(3):431-440。
    [20] Cleary K., Melzer A., Watson V. , Kronreif G. and Stoianovici D., Interventional robotic systems: applications and technology state-ofthe-art, Minimally Invasive Therapy and Allied Technologies, 2006, 15(2): 101–113.
    [21] Stoianovici D., Cleary K., and Patriciu A. et al, Acubot: a robot for radiological interventions, IEEE Transactions on Robotics and Automation, 2003, 19(5): 927–930.
    [22] http://www.accuray.com/
    [23] Hui Zhang, Filip Banovac and Kevin Cleary, Increasing registration precision for liver movement with respiration using electromagnetic tracking, Computer Assisted Radiology and Surgery CARS, 2005, 1281: 571-576.
    [24] Achim, S., Hiroya S., and John A., Respiration tracking in radiosurgery. Medical Physics, 2004, 31(10): 2738-2741.
    [25] Hakimi A, Feder M and Ghavamian R., Minimally invasive approaches to prostate cancer: a review of the current literature, Urology Journal, 2007, 4(3): 130-7.
    [26] Gandhi SK, Naunheim KS., The current status of Thoracoscopic surgery, Seminars in laparoscopic surgery, 1996, 3(4): 211-223.
    [27] Williams, M.C.C.a.W., Robotics for telesurgery: second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications, the 39th Allerton Conference on Communication, Control and Computing, 2001.
    [28] http://www.intuitivesurgical.com/
    [29] Zemiti, N., et al. A new robot for force control in minimally invasive surgery, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004.
    [30] McLeod I K, Melder P C, Da Vinci robot-assisted excision of a vallecular cyst: a case report, Ear, Nose & Throat Journal, 2005: 170-172.
    [31] McLeod I K, Mair E A, Melder P C, Potential applications of the Da Vinci minimally invasive surgical robotic system in otolaryngology, Ear, Nose and Throat Journal, August 1, 2005, 84(8): 483-487.
    [32] Hockstein N G, Nolan J P, O'Malley B W, et al, Robotic microlaryngeal surgery: A technical feasibility study using the DaVinci surgical robot and an airway mannequin, Laryngoscope, 2005, 115(5): 780-785.
    [33] Kapoor, A., Simaan, N. and TayJor, R. H., Suturing in confined spaces: constrained motion control of a hybrid 8-DoF robot, 12th International Conference on Advanced Robotics. 2005.
    [34] Kwoh Y. S., Hou J., and Jonckheere E. A. et al, A robot with improved absolute positioning accuracy for CT-guided stereotactic brain surgery, IEEE Trans. Biomed. Eng., 1988, 35: 153–161.
    [35] Taylor R., Paul H. A. and B. Mittelstadt et al., A robotic system for cementless total hip replacement surgery in dogs, 2nd Workshop Medical and Healthcare Robotics, Newcastle-on-Tyne, U. K., 1989.
    [36] Taylor R. H., Stulberg S. D., Medical robotics working group section report, NSF Workshop Medical Robotics and Computer-Assisted Medical Interventions (RCAMI), Bristol, U. K., 1996.
    [37] Cleary K., Nguyen C., State of the art in surgical robotics: Clinical applications and technology challenges, Comput. Aided Surgery, 2001, 6: 312–328.
    [38] Taylor R. H., Medical robotics, in handbook of industrial robotics, 2nd, S. Y. Nof, Ed. New York: Wiley, 1999: 1213–1230.
    [39] Ghodoussi M., Butner S. E., and Wang Y., Robotic surgery-the transatlantic case, IEEE Int. Conf. on Robotics and Automation, 2002: 1882–1888.
    [40] Kazanzides P., Mittelstadt B. D., Musits B. L., Bargar W. L., and Zuhars J. F. et al., An integrated system for cementless hip replacement, IEEE Eng. Med. Biol. Mag., 1995, 14: 307–313.
    [41] Shoham M., Burman M. and Zehavi E. et al, Bone-mounted miniature robot for surgical spinal procedures, 2nd Annu Meeting Int. Soc. Computer Assisted Orthopaedic Surgery (CAOS 2002), Santa Fe, NM, 2002: 59.
    [42] Guthart G. S., Salisbury J. K., The intuitive telesurgery system: Overview and application, IEEE Int. Conf. on Robotics and Automation (ICRA 2000), San Francisco, CA, 2000: 618–621.
    [43] Mitsuishi M., Watanabe T. and Nakanishi H., et al, A telemicrosurgery system with colocated view and operation points and rotational-force-feedback-free master manipulator, 2nd Int. Symp. Medical Robotics and Computer Assisted Surgery, Baltimore, MD, 1995: 111–118.
    [44] Guerrouad A., Vidal P., Stereotaxical microtelemanipulator for ocular surgery, Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, 1989, 11: 879–880.
    [45] Jensen J. F., Remote center positioning device with flexible drive, U.S., Patent, 5817084, Oct. 6, 1998.
    [46] Taylor R. H., Funda J., Eldridge B., K. et al, A telerobotic assistant for laparoscopic surgery, IEEE Eng. Med. Biol. Mag., 1995, 14: 279–287.
    [47] Kobayashi E., Masamune K., Sakuma I. et al, A new safe laparoscopic manipulator system with a five-bar linkage mechanism and an optical zoom, Comput. Aided Surgery, 1999, 4: 182–192.
    [48] Taylor R., Jensen P., L. Whitcomb, A. et al, A steady-hand robotic system for microsurgical augmentation, Int. J. Robot. Res., 1999, 18(12): 1201-1210.
    [49] Berkelman P., Cinquin P., Troccaz J. et al, A compact, compliant laparoscopic endoscope manipulator, IEEE Int. Conf. Robotics and Automation, May 2002: 1870–1875.
    [50] http://www.kuka.com/
    [51] http://www.fanucrobotics.com/
    [52] http://www.abb.com/
    [53] Corke, P.I., A robotics toolbox for MATLAB, Robotics & Automation Magazine, IEEE, 1996, 3(1): 24-32.
    [54] http://spacelib.ing.unibs.it/
    [55] http://dynamechs.sourceforge.net/
    [56] http://www.cours.polymtl.ca/roboop/
    [57] http://ode.org/
    [58] http://www.cisst.org/
    [59] Whitney, D.E., Resolved motion rate control of manipulators and human prostheses, IEEE Transactions on Man-machine Systems, 1969, 10(2): 47~53.
    [60] Liegeois A., Automatic supervisory control of the configuration and behavior of multibody mechnisms, IEEE Transactions on Systems, Man, and Cybernetics, 1977, 7(12): 868-871.
    [61] Baillieul J., Kinematic programming alternatives for redundant manipulators, IEEE International Conference on Robotics and Automation. 1985.
    [62] Liegeois, A., Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Trans. Syst., Man, Cybern, 1977, 7(12): 868-871.
    [63] Salisbury, J.K. and J.J. Craig, Articulated hands: Force control and inematic Issues, The International Journal of Robotics Research, 1982, 1(1): 4-17.
    [64] Yoshikawa, T., Analysis and control of robot manipulators with redundancy, MIT press, Cambridge, Mass., 1984: 735-747.
    [65] http://www.robotics.utexas.edu/
    [66]武汉医学院,耳鼻咽喉科学,北京:人民医学出版社, 1975: 27~29。
    [67]王光却,蔡懿廷,王志清,彭波,支撑喉镜下喉显微手术183例分析,实用临床医学,2005,05。
    [68]贺广湘,孙虹,支撑喉镜下应用电视内窥镜的喉微创外科手术,中国内镜杂志,2004,10(1):26-27。
    [69]林忠辉,王岩,电视监视下支撑喉镜显微手术的初步体会,耳鼻喉学报1996,10(1):5-6。
    [70] http://www.gyrusmedical.de/
    [71]曾春荣,李丰德,全麻支撑喉镜下声带手术94例临床分析,中华现代耳鼻喉杂志,2005,2(1):15-17。
    [72]中日友好医院,卫生部医学视听教材声显微手术,北京:人民卫生电子音像出版社,1998.
    [73] Song S K, Kim W S, Kwon D S, et al, Analysis of microsurgery task for developing micromanipulator, the 12th Korea Automatic Control Conference, 1997, 2: 1631~1634.
    [74]王树新,丁杰男,朱峰等,微创外科手术用多自由度微机械手,国家发明专利,申请号:200710056701.7。
    [75] Grace, Kenneth, Suturing articulating device for tissue and needle manipulation during minimally invasive endoscopic procedure, World patent, WO0059384, 2001.
    [76] Michael J. Tierney, Thomas Cooper, Chris Julian, Mechanical actuator interface system for robotic surgical tools, U.S. patent, 6491701, 2002.
    [77] Thomas G. Cooper, Daniel T. Wallace, Stacey Chang, S. Surgical tool having positively positionable tendon-actuated multi-disk wirst joint, U.S. patent, 6817974, 2002.
    [78] Thomas G. Cooper, Daniel T. Wallace, Stacey Chang, S. Christopher,Surgical tool having positively positionable tendon-actuated multi-disk wrist joint, U.S. patent, 6817974, 2004.
    [79]朱峰,喉部手术机器人末端工具,硕士学位论文,天津大学,2007.05。
    [80] Jensen Joel F., Remote center positioning device with flexible drive, U.S. patent, 5817084, 1998.
    [81] Taylor R.H., Janez Funda, Grossman David D. et al, Remote center-of-motion robot for surgery, U.S. patent, 5397323, 1995.
    [82] Dan Stoianovici, Louis L. Whitcomb, Dumitru Mazilu, Russell H, Remote center of motion robotic system and method, U.S. patent, 7021173, 2006.
    [83]梁修莹,喉部手术机器人从操作手设计与仿真分析,硕士学位论文,天津大学,2007.06。
    [84]王树新,丁杰男,罗海风等,具有重力补偿功能的被动式手动锁紧支架,国家发明专利,申请号:CN:200610129845.6。
    [85] Grey Lerner A., Stoianovici Dan, A passive positioning and supporting device for surgical robots and instrumentation, 2001, 1679: 1052 - 1061.
    [86] Stoianovici D., Keenan A. Wyrobek, Dumitru Mazilu, Louis L. Whitcomb, Medical imaging environment compatible positioning arm, U.S. patent, 6857609, 2005.
    [87]罗海风,支撑喉镜类手术机器人被动支架设计,学士学位论文,天津大学,2006.06。
    [88]孟彩芳,机械原理电算分析与设计,天津大学出版社, 2001。
    [89] Cleary, K., Brooks, T., Kinematic analysis of a novel 6-DOF parallel manipulator, IEEE International Conference on Robotics and Automation, 1993, 11: 708-712.
    [90] Richard M., Murray, Z.L., Shankar Sastry S., A mathematical introduction to robotic manipulation. CRC Press, Inc., 1994.
    [91] Park, F.C. and F.C. Park, Computational aspects of the product-of-exponentials formula for robot kinematics, Automatic Control, IEEE Transactions on, 1994, 39(3): 643-647.
    [92] Uicker J. J., Denavit J., Hartenberg R. S., An iterative method for displacement analysis of spatial mechanisms, ASME J. Mech., 1964, 86(2): 309~314.
    [93] Craig J. J., Introduction to robotics, AddisonWesley, second edit., Addison-Wesley, 1989.
    [94] Paul R. P., Robot Manipulators: mathematics, programming and control, Cambridge, Massachusetts, MIT Press, 1981.
    [95] Lee C. S. G., Robot arm kinematics, dynamics and control, IEEE Computer, 1982, 15: 62–80.
    [96] Orin, D. E., Schrader W. W., Efficient computation of the jacobian for robot manipulators, The International Journal of Robotics Research, 1984, 3(4): 66-75.
    [97] Paul R.P., Shimano B.E., Mayer G., Differential kinematic control equations for simple manipulators, IEEE SMC, 1981, 11(6): 456-460.
    [98] Thomas M, Yuan–Chou HC, Tesar D, Optimal actuator sizing for robotic manipulators based on local dynamic criteria, Journey of Mechanisms, Transmissions, and Automation in Design, 1985, 107: 163–169.
    [99] Baker, D. and Wampler C., Some facts concerning the inverse kinematics of redundant manipulators, IEEE International Conference on Robotics and Automation, 1987.
    [100] Nakamura, Y. and Hanafusa H., Optimal redundancy control of robot manipulators, The International Journal of Robotics Research, 1987, 6(1): 32-42.
    [101] Gilbert Strang, Linear algebra and its applications, U.S. Academic Press Inc. 1980.
    [102] Noble, B., Methods for computing the Moore-Penrose generalized inverse, and related matters, Generalized Inverses and Applications, edited by M.z. Nashed, Academic Press, 1975: 245-301.
    [103] Tan Fung, Dubey R.V., A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators, Robotics and Automation, IEEE Transactions on, 1995, 11(2): 286-292.
    [104] Yuan-Chou, Computer aided optimization in the dynmic analysis and parametric design of robotics manipulators, PhD dissertation, University of Florida, 1985.
    [105] Hollerbach J. and Ki S., Redundancy resolution of manipulators through torque optimization, IEEE International Conference on Robotics and Automation, 1985.
    [106] Hooper, R., Multicriteria inverse kinematics for general serial robots, Ph.D. Dissertation, Texal University, 1994.
    [107] Kapoor, C., A reusable operational software architecture for advanced robotics, Ph.D. Dissertation,Texas University, 1996.
    [108] Goldenberg, A.B., B.; Fenton, R., A complete generalized solution to the inverse kinematics of robots, IEEE Journal of Robotics and Automation, 1985, 1(1): 14– 20.
    [109] http://www.windriver.com/
    [110] Hayward, V., An analysis of redundant manipulators from several viewpoints, NATO Advanced Research Workshop on robots with redundancy: Design, Sensing and Control, 1988.
    [111] Cleary, K. and D. Tesar., Incorporating multiple criteria in the operation of redundant manipulators, IEEE International Conference on Robotics and Automation, 1990.
    [112] Chetan Kapoor, M.C., Delbert Tesar, Performance based redundancy resolution with multiple criteria. ASME Design Engineering Technical Conference, 1998
    [113] Cleary, Kevin, Decision making software for redundant manipulator, PhD dissertation. University of Texas, 1990.
    [114] Suh, K.C., and Hollerbach, J.M., Local versus global torque optimization of redundant manipulators. IEEE inter. Conf. on Robotics and Automation, 1987: 619-624.
    [115] Fu, K.S., Gonzalez, R.C., and Lee, C.S.G, .Robotics: Control, sensing, vision, and intelligence, McGraw-Hill, New York, 1987.
    [116] Park, F.C., Computational aspects of the product-of-exponentials formula for robot kinematics, IEEE Transactions on Automatic Control, 1994, 39(3): 643-647.
    [117] Strang, G., Linear algebra and its applications, Academic Press, New York, 1980.
    [118] Angeles, J., Rojas A., Manipulator kinematic inversion via condition-number minimization and continuation, The International J. Robotics & Automation, 1987, 2(2): 61-69.
    [119] Golub, G.H., Charles F. and Van Loan, Matrix compuations. 3rd ed, Baltimore and London: The Johns Hopkins University Press, 1996.
    [120] Kapoor, A., et al., Suturing in confined spaces: constrained motion control of a hybrid 8-DoF robot, 12th International Conference on Advanced Robotics (ICAR), 2005.
    [121] Maxwell E.A., General homogeneous coordinates in space of three dimensions, Cambridge, England: Cambridge University Press, 1951.
    [122] Rose M. E., Elementary theory of angular momentum, Wiley: New York, 1957.
    [123] Smith Scott T., MATLAB Advanced GUI Development, Dog Ear Publishing, USA, 2006.
    [124] Marchand Patrick and Holland Thomas, Graphics and guis with Matlab, third version, USA, Chapman & Hall/CRC, 2003.
    [125] Mitsuishi M, Iizuka Y, Watanabe H, et al., Remote operation of a micro-surgical system, IEEE International Conference on Robotic and Automation. Piscataway, NJ, USA, 1998: 1013-1019.
    [126] http://www.sensable.com/
    [127] Murat Cenk Cavusoglu, David Feygin, Kinematics and dynamics of Phantom(TM) model 1.5 Haptic Interface, 2001.
    [128] Xiaoli Zhang, Application of visual tracking for robot-assisted laparoscopic surgery. Journal of Robotic Systems, 2002, 19(7): 315-328.
    [129] Philip S. Green, Method and apparatus for transforming coordinate system in a tele-manipulation system, U.S., patent, 5696837, 1997.
    [130] Roth, Z., et al., An overview of robot calibration, IEEE Journal of Robotics and Automation, 1987, 3(5): 377-385.
    [131] Ying, B., et al. Experiment study of PUMA robot calibration using a laser tracking system, IEEE International Workshop on Soft Computing in Industrial Applications, 2003.
    [132] Xu, W., Mills J.K., A new approach to the position and orientation calibration of robots, IEEE International Symposium on Assembly and Task Planning, 1999.
    [133] Gunter D. Niemeyer, William C. Nowlin, Gary S. Guthart., Alignment of master and slave in a minimally invasive surgical apparatus., U.S., patent, 6364888, 2002
    [134] Baker, D. and Wampler C., Some facts concerning the inverse kinematics of redundant manipulators, IEEE conf. on Robotics and Automation, 1987, 4:604-609.
    [135] Daniel, R.B., Charles W. and Wampler. II, On the inverse kinematics of redundant manipulators. Int. J. Rob. Res., 1988, 7(2): 3-21.
    [136]丁杰男,王树新,贠今天,李群智,机器人辅助外科手术主从实时操作控制算法与实验研究,《机械工程学报》,2006,42(12):163-168。
    [137] Bazas S, Tondu B., 3-Cubic spline for on-line cartesian space trajectory planning of an industrial manipulator, Advanced Motion Control, Coimbra, Portugal, 1998, 6:493-498.
    [138] Lin Chunshin, Hyongsuk K., Manipulator control with torque interpolation systems, IEEE Man and Cybernetics, Los Angeles, CA, 1990:624-626.
    [139] Angeles J., Fundamentals of robotic mechanical systems theory methods and algorithms. Springer, 2002.
    [140] Ang W. T., Pradeep P. K., and Riviere C. N., Active tremor compensation in microsurgery, IEEE Engineering in Medicine and Biology Society, San Francisco, California, New Jersey, 2004: 2738-2741.
    [141]丁杰男,显微外科手术机器人系统“妙手”的研究与开发,天津:天津大学,硕士论文,2004. 29-40。
    [142] http://www.ati-ia.com/
    [143] Charles Corradini. Jean-Christophe Fauroux, Evaluation of 4 Degree of freedom parallel manipulator stiffness, the 11th World Congress in Mechanism and Machine Science, 2003, China.
    [144]李奇,徐之海,一种图像稳定程度的描述方法光学学报,2004,24(3): 427~430。
    [145] Arnout R. H. Fischer Frans J. J. Blommaer Cees J. H., Midden monitoring and evaluation of time delay, 2005, 19(2): 163-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700