RasGRP3在系统性红斑狼疮发病中的作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分RasGRP3在系统性红斑狼疮患者外周血单个核细胞及B细胞中的表达
     目的系统性红斑狼疮(systemic lupus erythematosus, SLE)是以自身抗体的产生为特征的累及多个器官和组织的自身免疫病,内源性的高反应性B淋巴细胞是狼疮发病的重要环节。SLE患者中存在免疫分子的表达异常可导致BCR通路持续性激活,而RasGRP3(Ras guanyl nucleotide releasing protein3, Ras鸟苷酸释放蛋白3)主要在B细胞中表达,为BCR信号通路下游重要分子。本实验研究RasGRP3在SLE患者外周血单个核细胞(Peripheral blood mononuclear cell, PBMC)中的表达,并进一步提取PBMC中的B细胞,研究RasGRP3在SLE患者外周血B细胞中的表达,并探讨其在SLE发病免疫机制的意义。
     方法收集临床上确诊SLE患者的外周血标本20例,以及正常志愿者20例,Ficoll法提取SLE患者及正常人外周血中的PBMC,采用免疫磁珠分选法纯化B细胞,流式检测B细胞的纯度。使用RT-PCR方法检测SLE患者及正常人PBMC和B细胞中RasGRP3的mRNA表达及用Western Blot方法检测蛋白的表达。其中10例标本用于PBMC中RasGRP3mRNA表达分析,5例标本用于RasGRP3蛋白表达分析,5例标本用于纯化B细胞,检测B细胞中RasGRP3mRNA的表达
     结果免疫磁珠分选法分选B细胞,其纯度能达到90%以上。SLE患者PBMC中RasGRP3的mRNA和蛋白质的表达水平明显高于正常人。在纯化后的B细胞中,与正常人相比,SLE患者RasGRP3的mRNA表达水平也明显升高。
     结论SLE患者外周血PBMC及B细胞中RasGRP3的mRNA和蛋白水平均较正常人高,提示B细胞中RasGRP3的异常表达可能参与狼疮发病。
     第二部分
     SLE患者PBMC中RasGRP3的mRNA水平与临床资料的关联
     目的研究RasGRP3的mRNA表达与SLE患者临床特征的联系,探讨其表达增高是否与SLE临床体征,实验室检查结果,病情活动程度有关。
     方法收集临床上确诊SLE患者26例用于分析PBMC中RasGRP3mRNA水平与临床特征的关联,Ficoll法提取PBMC, RT-PCR方法半定量检测其mRNA表达。通过回归统计分析SLE患者疾病活动程度与其PBMC中RasGRP3的mRNA表达的相关性。根据患者临床特征以及实验室检查结果分组,使用T检验研究RasGRP3的mRNA表达在每两组间有无差异。
     结果SLE患者PBMC中RasGRP3的mRNA表达水平与SLE疾病活动指数(SLEDAI)成正相关(p=0.0301),并且疾病活动期患者较静止期患者PBMC中RasGRP3的mRNA水平显著增加(p<0.05)。血尿、蛋白尿的SLE患者与非血尿、蛋白尿的患者相比,RasGRP3的mRNA表达显著增加(p<0.05)。
     结论RasGRP3可能为反应狼疮疾病活动的指标之一,并与肾脏损害有关,但本次研究样本量偏小,仍需大样本研究进一步验证。
     第三部分
     地塞米松对系统性红斑狼疮患者中RasGRP3表达的影响
     目的分别体内外研究糖皮质激素对SLE患者PBMC中RasGRP3的作用,探讨糖皮质激素通过抑制RasGRP3的表达治疗SLE的机制。
     方法选取临床上使用糖皮质激素(约lmg/kg强的松)的SLE患者10例,抽取其糖皮质激素治疗前及治疗后两周的外周血,提取PBMC。其中5例检测治疗前后PBMC中RasGRP3的mRNA表达水平,5例检测蛋白表达水平。在体外实验中,使用两种不同浓度地塞米松(1.10-5、1×10-6mol/L),与正常人PBMC细胞共同培养,在孵育时间为0h,12h,24h提取细胞,使用RT-PCR的方法检测RasGRP3的mRNA水平,选取合适的浓度。另外收集未经治疗的SLE患者6例,使用该浓度的地塞米松共孵育,观察不同时间点(0h、12h、24h)的地塞米松对PBMC中RasGRP3的mRNA水平的影响。并在地塞米松孵育0h,24h,48h提取细胞,使用western blot方法检测RasGRP3蛋白水平及下游信号通路p-ERK, p-AKT的水平。
     结果未使用糖皮质激素治疗时,SLE患者PBMC中RasGRP3的表达高于正常人,使用中等剂量糖皮质激素治疗2周后,RasGRP3的表达明显下降,接近正常人的表达水平。地塞米松能抑制正常人PBMC中RasGRP3的mRNA表达,1×10-6mol/L浓度的地塞米松对RasGRP3表达的有抑制作用且未明显引起细胞凋亡。使用该浓度的地塞米松与SLE患者PBMC共培养,观察不同时间点地塞米松对RasGRP3的抑制作用。我们发现,24h时地塞米松对PBMC内RasGRP3的mRNA及蛋白水平抑制作用最强。同时在24h地塞米松能明显抑制PBMC中pERK及p-AKT的表达。
     结论SLE患者在临床治疗时,使用糖皮质激素治疗2周后,PBMC中RasGRP3的水平下降。地塞米松能抑制正常人及SLE患者PBMC中RasGRP3及下游信号通路pERK及p-AKT的表达。这可能为激素的抗炎机制之一。
Part Ⅰ The expressions of RasGRP3in peripheral blood lymphocytes and B lymphocytes of SLE patients
     Objective Systemic lupus erythematosus (SLE) is a chronic disease with diverse clinical presentations and immunological abnormalities, involving multiple tissues and organs. The immunological mechanism for lupus has not been fully classified. In order to explore the role of Ras guanine nucleotide releasing protein (RasGRP3) pathogenesis of autoimmunity in SLE, we detected the expressions of RasGRP3in peripheral blood mononuclear cells (PBMCs) of patients with SLE and further study the RasGRP3expressions in purified B cells.
     Methods The blood samples from patients diagnosed as SLE and healthy volunteers were collected. Human PBMCs were obtained by Ficoll method. B cells were purified from PBMCs by immunomagnetic beads separation. The purity of B cells was confirmed by FCM and the expressions of RasGRP3were detected by RT-PCR and Western Blot.
     Results The purity of B cell could reach more than90%by immunomagnetic beads separation. Compared with healthy volunteers, the mRNA and protein expressions of RasGRP3were elevated both in PBMCs and B cells.
     Conclusions The expressions of RasGRP3in both PBMC and B cells of SLE patients were much higher compared with healthy volunteers. Aberrant expressions of RasGRP3might contribute to the pathogenesis of autoimmunity in lupus.
     Part II The relationship between the mRNA expressions of RasGRP3in PBMCs and the clinical data of SLE patients
     Objective:SLE patients manifest diverse clinical presentations and laboratory results. In order to explore whether the expression of RasGRP3is related to the clinical data in SLE patients, such as clinical signs, laboratory tests, disease activity, and so on.
     Methods:The peripheral blood samples from patients diagnosed as SLE were collected, as well as the detailed clinical data (basic information, complaims, symptoms, clinical signs, and laboratory test results). The PBMCs were extracted by Ficoll method, and further detected the RasGRP3mRNA expressions by semi-quantitative RT-PCR. We grouped the data by clinical features and laboratory test results, and compared the RasGRP3mRNA expressions between different two groups by Ttest.
     Results The mRNA expression of RasGRP3was positively correlated with SLE disease activity index (SLEDAI)(p=0.0301). The mRNA levels of RasGRP3in the patients with active disease were much higher than that in remission stage (p<0.05). In addition, the mRNA levels of RasGRP3in the patients with hematuria or proteinuria were significantly higher than that without kidney damage (p<0.05).
     Conclusion The mRNA expression of RasGRP3may be used as an indicator for lupus disease activity, and RasGRP3may be related to kidney damages. Due to limited sample size, further samples are needed to confirm this conclusion.
     Part Ⅲ Dexamethasone inhibits the expression of RasGRP3in PBMC of SLE patients both in Vitro and Vivo
     Objective In order to observe the RasGRP3expression after dexamethasone treatment in vivo and in vitro, as well as explore the role of dexamethasone in the treatment of lupus.
     Methods The SLE patients who treated with moderate-dose corticosteroids (1mg/kg prednisone) were recruited in. The blood samples were acquired before and two weeks after the corticosteroids treatment to obtain PBMCs. The mRNA expression of RasGRP3was measured by RT-PCR; the protein level was examined by Western Blot. In vitro, dexamethasone of two different concentrations (1×10-5、1×10-6mol/L) was applied to co-culture with PBMC from healthy volunteers at different incubation time (Oh,12h,24h), and then we observed the RasGRP3mRNA expressions by RT-PCR to choose a concentration for better inhibition effect. We co-cultured the PBMC from untreated SLE patients with dexamethasone in this appropriated concentration and observed the mRNA expression of RasGRP3at different time points (Oh,12h,24h). In addition, the protein expressions of RasGPR3, p-ERK and p-AKT were also detected by Western Blot.
     Results The RasGRP3expression of SLE patients without corticosteroids treatment was much higher than that of normal people. After2weeks application of moderate-dose corticosteroids, the expression of RasGRP3was obviously inhibited. In vitro, dexamethasone could inhibit the mRNA expression of RasGRP3in normal people, and the1×10-6mol/L concentration of dexamethasone had obvious inhibited effect and did not induce cell apoptosis. We co-cultured the PBMC from SLE patients with1×10-6mol/L dexamethasone and observed the expression of RasGRP3at different time points, and found that dexamethasone showed the strongest inhibition on the expression of RasGRP3at the time points of24h;and at this time point, dexamethasone also inhibited pERK and p-AKT which were the downstream signaling pathway of RasGRP3.
     Conclusion:In vivo,2-week corticosteroids treatment could inhibit the RasGRP3expression in SLE patients; in vitro, dexamethasone could reduce the RasGRP3expression as well as p-ERK and p-AKT of its downstream signaling pathway of PBMCs from both healthy people and SLE patients. This may be one of the mechanisms of corticosteroids treatment of SLE.
引文
1. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X et al: MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 2010, 184(12):6773-6781.
    2. Nashi E, Wang Y, Diamond B:The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol 2010,42(4):543-550.
    3. Pan Y, Sawalha AH:Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Transl Res 2009,153(1):4-10.
    4. Renaudineau Y, Pers JO, Bendaoud B, Jamin C, Youinou P:Dysfunctional B cells in systemic lupus erythematosus. Autoimmun Rev 2004,3(7-8):516-523.
    5. Perl A:Systems biology of lupus:mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity 2010,43(1):32-47.
    6. Jenks SA, Sanz I:Altered B cell receptor signaling in human systemic lupus erythematosus. Autoimmun Rev 2009,8(3):209-213.
    7. Peng SL:Altered T and B lymphocyte signaling pathways in lupus. Autoimmun Rev 2009,8(3):179-183.
    8. Rodriguez-Bayona B, Ramos-Amaya A, Perez-Venegas JJ, Rodriguez C, Brieva JA: Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther 2010,12(3):R108.
    9. Hatzivassiliou Q Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R et al: RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010,464(7287):431-435.
    10. Buday L, Downward J:Many faces of Ras activation. Biochim Biophys Acta 2008, 1786(2):178-187.
    11. Lorenzo PS, Kung JW, Bottorff DA, Garfield SH, Stone JC, Blumberg PM:Phorbol esters modulate the Ras exchange factor RasGRP3. Cancer Res 2001, 61(3):943-949.
    12. Coughlin JJ, Stang SL, Dower NA, Stone JC:The role of RasGRPs in regulation of lymphocyte proliferation. Immunol Lett 2006,105(1):77-82.
    13. Coughlin JJ, Stang SL, Dower NA, Stone JC:RasGRPl and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J Immunol 2005, 175(11):7179-7184.
    14. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z et al: Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009,41(11):1234-1237.
    15. He CF, Liu YS, Cheng YL, Gao JP, Pan TM, Han JW et al: TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 2010,19(10):1181-1186.
    16. Tomer Y, Buskila D, Shoenfeld Y:Pathogenic significance and diagnostic value of lupus autoantibodies. Int Arch Allergy Immunol 1993,100(4):293-306.
    17. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D:The role of B cells in lpr/lpr-induced autoimmunity. J Exp Med 1994,180(4):1295-1306.
    18. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ:A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. JExp Med 1999,189(10):1639-1648.
    19. Hasler P, Zouali M:B cell receptor signaling and autoimmunity. FASEB J 2001, 15(12):2085-2098.
    20. Teixeira C, Stang SL, Zheng Y, Beswick NS, Stone JC:Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood2003,102(4):1414-1420.
    21. Pisetsky DS:Anti-DNA and autoantibodies. Curr Opin Rheumatol 2000, 12(5):364-368.
    22. ter Borg EJ, Horst G, Hummel EJ, Limburg PC, Kallenberg CG:Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum 1990,33(5):634-643.
    23. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH:Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 1992,35(6):630-640.
    24. Buttgereit F, Straub RH, Wehling M, Burmester GR:Glucocorticoids in the treatment of rheumatic diseases:an update on the mechanisms of action. Arthritis Rheum 2004,50(11):3408-3417.
    25. De Bosscher K, Vanden Berghe W, Vermeulen L, Plaisance S, Boone E, Haegeman G:Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc Natl Acad Sci USA 2000,97(8):3919-3924.
    26. Heck S, Bender K, Kullmann M, Gottlicher M, Herrlich P, Cato AC:I kappaB alpha-independent downregulation of NF-kappaB activity by glucocorticoid receptor. EMBO J 1997,16(15):4698-4707.
    27. Vacca A, Felli MP, Farina AR, Martinotti S, Maroder M, Screpanti I et al: Glucocorticoid receptor-mediated suppression of the interleukin 2 gene expression through impairment of the cooperativity between nuclear factor of activated T cells and AP-1 enhancer elements. J Exp Med 1992,175(3):637-646.
    28. Buttgereit F, Scheffold A:Rapid glucocorticoid effects on immune cells. Steroids 2002,67(6):529-534.
    29. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC et al: Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 2002, 8(5):473-479.
    30. Creed TJ, Lee RW, Newcomb PV, di Mambro AJ, Raju M, Dayan CM:The effects of cytokines on suppression of lymphocyte proliferation by dexamethasone. J Immunol 2009,183(1):164-171.
    31. Moosig F, Damm F, Knorr-Spahr A, Ritgen M, Zeuner RA, Kneba M et al: Reduced expression of C1q-mRNA in monocytes from patients with systemic lupus erythematosus. Clin Exp Immunol 2006,146(3):409-416.
    32. Clark AR:Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007,275(1-2):79-97.
    33. Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K et al: Nongenomic steroid action:controversies, questions, and answers. Physiol Rev 2003,83(3):965-1016.
    1. Renaudineau Y, Pers JO, Bendaoud B, Jamin C, Youinou P:Dysfunctional B cells in systemic lupus erythematosus. Autoimmun Rev 2004,3(7-8):516-523.
    2. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z et al: Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009,41(11):1234-1237.
    3. Jenks SA, Sanz I:Altered B cell receptor signaling in human systemic lupus erythematosus. Autoimmun Rev 2009,8(3):209-213.
    4. Perl A:Systems biology of lupus:mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity 2010,43(1):32-47.
    5. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA et at Development of autoantibodies before the clinical onset of systemic lupus erythematosus. NEngl J Med 2003,349(16):1526-1533.
    6. Tomer Y, Buskila D, Shoenfeld Y:Pathogenic significance and diagnostic value of lupus autoantibodies. Int Arch Allergy Immunol 1993,100(4):293-306.
    7. Pisetsky DS:Anti-DNA and autoantibodies. Curr Opin Rheumatol 2000, 12(5):364-368.
    8. ter Borg EJ, Horst G, Hummel EJ, Limburg PC, Kallenberg CG:Measurement of increases in anti-double-stranded DNA antibody levels as a predictor of disease exacerbation in systemic lupus erythematosus. A long-term, prospective study. Arthritis Rheum 1990,33(5):634-643.
    9. Ehrenstein MR, Katz DR, Griffiths MH, Papadaki L, Winkler TH, Kalden JR et al: Human IgG anti-DNA antibodies deposit in kidneys and induce proteinuria in SCID mice. Kidney Int 1995,48(3):705-711.
    10. Gaynor B, Putterman C, Valadon P, Spatz L, Scharff MD, Diamond B:Peptide inhibition of glomerular deposition of an anti-DNA antibody. Proc Natl Acad Sci U S A 1997,94(5):1955-1960.
    11. Isenberg DA, Ravirajan CT, Rahman A, Kalsi J:The role of antibodies to DNA in systemic lupus erythematosus--a review and introduction to an international workshop on DNA antibodies held in London, May 1996. Lupus 1997, 6(3):290-304.
    12. Witte T:IgM antibodies against dsDNA in SLE. Clin Rev Allergy Immunol 2008, 34(3):345-347.
    13. Diamond B, Katz JB, Paul E, Aranow C, Lustgarten D, Scharff MD:The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 1992, 10:731-757.
    14. Radic MZ, Weigert M:Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 1994,12:487-520.
    15. Mietzner B, Tsuiji M, Scheid J, Velinzon K, Tiller T, Abraham K et al: Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proc Natl Acad Sci U S A 2008, 105(28):9727-9732.
    16. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B:A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001,7(11):1189-1193.
    17. Shlomchik MJ, Madaio MP, Ni D, Trounstein M, Huszar D:The role of B cells in lpr/lpr-induced autoimmunity. JExp Med 1994,180(4):1295-1306.
    18. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ:A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. JExp Med 1999,189(10):1639-1648.
    19. Mosmann TR, Sad S:The expanding universe of T-cell subsets:Thl, Th2 and more. Immunol Today 1996,17(3):138-146.
    20. Brown DR, Green JM, Moskowitz NH, Davis M, Thompson CB, Reiner SL: Limited role of CD28-mediated signals in T helper subset differentiation. J Exp Med 1996,184(3):803-810.
    21. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity:T-T help via APC activation. JExp Med 1996,184(2):747-752.
    22. Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P:CD4 T cell cytokine differentiation:the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. JExp Med 1998,188(2):297-304.
    23. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM et al: Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 2000,1(6):475-482.
    24. Hasler P, Zouali M:B cell receptor signaling and autoimmunity. FASEB J 2001, 15(12):2085-2098.
    25. Pugh-Bernard AE, Cambier JC:B cell receptor signaling in human systemic lupus erythematosus. Curr Opin Rheumatol 2006,18(5):451-455.
    26. Carballo M, Conde M, El Bekay R, Martin-Nieto J, Camacho MJ, Monteseirin J et al: Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. JBiol Chem 1999,274(25):17580-17586.
    27. Enyedy EJ, Mitchell JP, Nambiar MP, Tsokos GC:Defective FcgammaRIIb1 signaling contributes to enhanced calcium response in B cells from patients with systemic lupus erythematosus. Clin Immunol 2001,101(2):130-135.
    28. Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC:B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clim Invest 1996,98(11):2549-2557.
    29. Nishizumi H, Taniuchi I, Yamanashi Y, Kitamura D, Ilic D, Mori S et al: Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 1995,3(5):549-560.
    30. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R et al: Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995,83(2):301-311.
    31. Huck S, Le Corre R, Youinou P, Zouali M:Expression of B cell receptor-associated signaling molecules in human lupus. Autoimmunity 2001,33(3):213-224.
    32. Liossis SN, Solomou EE, Dimopoulos MA, Panayiotidis P, Mavrikakis MM, Sfikakis PP:B-cell kinase lyn deficiency in patients with systemic lupus erythematosus.J Investig Med 2001,49(2):157-165.
    33. Flores-Borja F, Kabouridis PS, Jury EC, Isenberg DA, Mageed RA:Decreased Lyn expression and translocation to lipid raft signaling domains in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 2005, 52(12):3955-3965.
    34. Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM:Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 2005,22(1):9-18.
    35. Flores-Borja F, Kabouridis PS, Jury EC, Isenberg DA, Mageed RA:Altered lipid raft-associated proximal signaling and translocation of CD45 tyrosine phosphatase in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 2007,56(1):291-302.
    36. Shrivastava P, Katagiri T, Ogimoto M, Mizuno K, Yakura H:Dynamic regulation of Src-family kinases by CD45 in B cells. Blood 2004,103(4):1425-1432.
    37. Gergely P, Jr., Isaak A, Szekeres Z, Prechl J, Erdei A, Nagy ZB et al: Altered expression of Fcgamma and complement receptors on B cells in systemic lupus erythematosus. Ann N YAcad Sci 2007,1108:183-192.
    38. Sohn HW, Pierce SK, Tzeng SJ:Live cell imaging reveals that the inhibitory FcgammaRIIB destabilizes B cell receptor membrane-lipid interactions and blocks immune synapse formation. J Immunol 2008,180(2):793-799.
    39. Bolland S, Ravetch JV:Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 2000,13(2):277-285.
    40. Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K et al: FcgammaRⅡB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 2005, 14(19):2881-2892.
    41. Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A et al: Loss of function of a lupus-associated FcgammaRⅡb polymorphism through exclusion from lipid rafts. Nat Med 2005,11(10):1056-1058.
    42. Blank MC, Stefanescu RN, Masuda E, Marti F, King PD, Redecha PB et al: Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum Genet 2005,117(2-3):220-227.
    43. Dorner T, Jacobi AM, Lipsky PE:B cells in autoimmunity. Arthritis Res Ther 2009, 11(5):247.
    44. Lee J, Kuchen S, Fischer R, Chang S, Lipsky PE:Identification and characterization of a human CD5+ pre-naive B cell population. J Immunol 2009, 182(7):4116-4126.
    45. Yurasov S, Tiller T, Tsuiji M, Velinzon K, Pascual V, Wardemann H et al: Persistent expression of autoantibodies in SLE patients in remission. J Exp Med 2006, 203(10):2255-2261.
    46. Yurasov S, Wardemann H, Hammersen J, Tsuiji M, Meffre E, Pascual V et al: Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 2005,201(5):703-711.
    47. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR et al: Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 2000,165(10):5970-5979.
    48. Dorner T, Foster SJ, Farner NL, Lipsky PE:Immunoglobulin kappa chain receptor editing in systemic lupus erythematosus. J Clin Invest 1998,102(4):688-694.
    49. Dorner T, Lipsky PE:Immunoglobulin variable-region gene usage in systemic autoimmune diseases. Arthritis Rheum 2001,44(12):2715-2727.
    50. Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S et al: Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 2009, 113(1):214-223.
    51. Nimmerjahn F, Ravetch JV:Fc-receptors as regulators of immunity. Adv Immunol 2007,96:179-204.
    52. Ettinger R, Kuchen S, Lipsky PE:Interleukin 21 as a target of intervention in autoimmune disease. Ann Rheum Dis 2008,67 Suppl 3:iii83-86.
    53. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A et al: Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus:delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 2008,58(6):1762-1773.
    54. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J et al: A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 2007, 178(10):6624-6633.
    55. Klein U, Rajewsky K, Kuppers R:Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes:CD27 as a general marker for somatically mutated (memory) B cells. JExp Med 1998,188(9):1679-1689.
    56. Fecteau JF, Cote G, Neron S:A new memory CD27-IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J Immunol 2006,177(6):3728-3736.
    57. Ma CS, Pittaluga S, Avery DT, Hare NJ, Marie I, Klion AD et al: Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Invest 2006,116(2):322-333.
    58. Cappione A,3rd, Anolik JH, Pugh-Bernard A, Barnard J, Dutcher P, Silverman G et al: Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. JClin Invest 2005,115(11):3205-3216.
    59. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF:A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008,28(5):639-650.
    60. Bouaziz JD, Yanaba K, Venturi GM, Wang Y, Tisch RM, Poe JC et al: Therapeutic B cell depletion impairs adaptive and autoreactive CD4+ T cell activation in mice. Proc Natl Acad Sci U S A 2007,104(52):20878-20883.
    61.Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR et al:CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010,32(1):129-140.
    62. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et al: Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011,117(2):530-541.
    63. Odendahl M, Keitzer R, Wahn U, Hiepe F, Radbruch A, Dorner T et al: Perturbations of peripheral B lymphocyte homoeostasis in children with systemic lupus erythematosus. Ann Rheum Dis 2003,62(9):851-858.
    64. Medina F, Segundo C, Campos-Caro A, Gonzalez-Garcia I, Brieva JA:The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 2002,99(6):2154-2161.
    65. Mei HE, Yoshida T, Sime W, Hiepe F, Thiele K, Manz RA et al: Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 2009,113(11):2461-2469.
    66. Grammer AC, Slota R, Fischer R, Gur H, Girschick H, Yarboro C et al: Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 2003,112(10):1506-1520.
    67. Illei GG, Shirota Y, Yarboro CH, Daruwalla J, Tackey E, Takada K et al: Tocilizumab in systemic lupus erythematosus:data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum 2010,62(2):542-552.
    68. Jacobi AM, Odendahl M, Reiter K, Bruns A, Burmester GR, Radbruch A et al: Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 2003, 48(5):1332-1342.
    69. Hutloff A, Buchner K, Reiter K, Baelde HJ, Odendahl M, Jacobi A et al: Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum 2004, 50(10):3211-3220.
    70. Naka T, Nishimoto N, Kishimoto T:The paradigm of IL-6:from basic science to medicine. Arthritis Res 2002,4 Suppl 3:S233-242.
    71. Grondal G, Gunnarsson I, Ronnelid J, Rogberg S, Klareskog L, Lundberg I: Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 2000,18(5):565-570.
    72. Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR: Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 1991,147(1):117-123.
    73. Peterson E, Robertson AD, Emlen W:Serum and urinary interleukin-6 in systemic lupus erythematosus. Lupus 1996,5(6):571-575.
    74. Hagiwara E, Gourley MF, Lee S, Klinman DK:Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10:interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum 1996,39(3):379-385.
    75. Esposito P, Balletta MM, Procino A, Postiglione L, Memoli B:Interleukin-6 release from peripheral mononuclear cells is associated to disease activity and treatment response in patients with lupus nephritis. Lupus 2009,18(14):1329-1330.
    76. Kitani A, Hara M, Hirose T, Norioka K, Harigai M, Hirose W et al: Heterogeneity of B cell responsiveness to interleukin 4, interleukin 6 and low molecular weight B cell growth factor in discrete stages of B cell activation in patients with systemic lupus erythematosus. Clin Exp Immunol 1989,77(1):31-36.
    77. Nagafuchi H, Suzuki N, Mizushima Y, Sakane T:Constitutive expression of IL-6 receptors and their role in the excessive B cell function in patients with systemic lupus erythematosus. J Immunol 1993,151(11):6525-6534.
    78. Takeno M, Nagafuchi H, Kaneko S, Wakisaka S, Oneda K, Takeba Y et al: Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J Immunol 1997,158(7):3529-3538.
    79. Hirohata S, Kanai Y, Mitsuo A, Tokano Y, Hashimoto H:Accuracy of cerebrospinal fluid IL-6 testing for diagnosis of lupus psychosis. A multicenter retrospective study. Clin Rheumatol 2009,28(11):1319-1323.
    80. Iwano M, Dohi K, Hirata E, Kurumatani N, Horii Y, Shiiki H et al: Urinary levels of IL-6 in patients with active lupus nephritis. Clin Nephrol 1993,40(1):16-21.
    81. Herrera-Esparza R, Barbosa-Cisneros O, Villalobos-Hurtado R, Avalos-Diaz E: Renal expression of IL-6 and TNFalpha genes in lupus nephritis. Lupus 1998, 7(3):154-158.
    82. MacEwan DJ:TNF ligands and receptors--a matter of life and death. Br J Pharmacol 2002,135(4):855-875.
    83. Studnicka-Benke A, Steiner G, Petera P, Smolen JS:Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br J Rheumatol 1996,35(11):1067-1074.
    84. Gabay C, Cakir N, Moral F, Roux-Lombard P, Meyer O, Dayer JM et al: Circulating levels of tumor necrosis factor soluble receptors in systemic lupus erythematosus are significantly higher than in other rheumatic diseases and correlate with disease activity. J Rheumatol 1997,24(2):303-308.
    85. Zhu LJ, Landolt-Marticorena C, Li T, Yang X, Yu XQ, Gladman DD et al: Altered expression of TNF-alpha signaling pathway proteins in systemic lupus erythematosus. J Rheumatol 2010,37(8):1658-1666.
    86. Gomez D, Correa PA, Gomez LM, Cadena J, Molina JF, Anaya JM:Th1/Th2 cytokines in patients with systemic lupus erythematosus:is tumor necrosis factor alpha protective? Semin Arthritis Rheum 2004,33(6):404-413.
    87. Malide D, Russo P, Bendayan M:Presence of tumor necrosis factor alpha and interleukin-6 in renal mesangial cells of lupus nephritis patients. Hum Pathol 1995, 26(5):558-564.
    88. Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN:TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 2007,13(5):543-551.
    89. Niewold TB, Hua J, Lehman TJ, Harley JB, Crow MK:High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun 2007,8(6):492-502.
    90. Niewold TB, Adler JE, Glenn SB, Lehman TJ, Harley JB, Crow MK:Age- and sex-related patterns of serum interferon-alpha activity in lupus families. Arthritis Rheum 2008,58(7):2113-2119.
    91. Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK:Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005, 52(5):1491-1503.
    92. Dall'era MC, Cardarelli PM, Preston BT, Witte A, Davis JC, Jr.:Type I interferon correlates with serological and clinical manifestations of SLE. Ann Rheum Dis 2005, 64(12):1692-1697.
    93. Landolt-Marticorena C, Bonventi G, Lubovich A, Ferguson C, Unnithan T, Su J et al:Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis 2009, 68(9):1440-1446.
    94. Fu Q, Chen X, Cui H, Guo Y, Chen J, Shen N et al: Association of elevated transcript levels of interferon-inducible chemokines with disease activity and organ damage in systemic lupus erythematosus patients. Arthritis Res Ther 2008, 10(5):R112.
    95. Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C et al: Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity:a validation study. Arthritis Rheum 2009,60(10):3098-3107.
    96. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al: Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003,100(5):2610-2615.
    97. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J et al: Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003,197(6):711-723.
    98. Peterson KS, Huang JF, Zhu J, D'Agati V, Liu X, Miller N et al: Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest 2004,113(12):1722-1733.
    99. Nzeusseu Toukap A, Galant C, Theate I, Maudoux AL, Lories RJ, Houssiau FA et al: Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum 2007,56(5):1579-1588.
    100. Tucci M, Quatraro C, Lombardi L, Pellegrino C, Dammacco F, Silvestris F: Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum 2008,58(1):251-262.
    101. Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U et al: Cutting edge:enhancement of antibody responses through direct stimulation of B and T cells by type IIFN. J Immunol 2006,176(4):2074-2078.
    102. Mackay F, Schneider P:Cracking the BAFF code. Nat Rev Immunol 2009, 9(7):491-502.
    103. Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P et al: Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999,190(11):1697-1710.
    104. Jacob CO, Pricop L, Putterman C, Koss MN, Liu Y, Kollaros M et al:Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus-prone New Zealand mixed 2328 mice deficient in BAFF. J Immunol 2006, 177(4):2671-2680.
    105. Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Davidson A: Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice. Arthritis Rheum 2010, 62(5):1457-1468.
    106. Stohl W, Looney RJ:B cell depletion therapy in systemic rheumatic diseases: different strokes for different folks? Clin Immunol 2006,121(1):1-12.
    107. Collins CE, Gavin AL, Migone TS, Hilbert DM, Nemazee D, Stohl W:B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus:disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res Ther 2006,8(1):R6.
    108. Chu VT, Enghard P, Schurer S, Steinhauser G, Rudolph B, Riemekasten G et al: Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus. Arthritis Rheum 2009,60(7):2083-2093.
    109. Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC et al: 'Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus:the randomized, double-blind, phase Ⅱ/Ⅲ systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 2010,62(1):222-233.
    110. Dorner T, Kaufmann J, Wegener WA, Teoh N, Goldenberg DM, Burmester GR: Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 2006, 8(3):R74.
    111. Jacobi AM, Goldenberg DM, Hiepe F, Radbruch A, Burmester GR, Dorner T: Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann Rheum Dis 2008, 67(4):450-457.
    112. Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE et al: Efficacy and safety of belimumab in patients with active systemic lupus erythematosus:a randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377(9767):721-731.
    113. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzova D et al: A phase Ⅲ, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum 2011,63(12):3918-3930.
    114. Stohl W, Hiepe F, Latinis KM, Thomas M, Scheinberg MA, Clarke A et al: Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 2012,64(7):2328-2337:
    115. Jacobi AM, Huang W, Wang T, Freimuth W, Sanz I, Furie R et al: Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: extension of a phase Ⅱ, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum 2010,62(1):201-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700