鼻咽癌间质的定量蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间质在肿瘤发生发展中的作用越来越受到重视,现已成为当今肿瘤研究的一个热门话题。鼻咽癌(nasopharyngeal carcinoma,NPC)是我国南方常见的一种上皮性恶性肿瘤,其发病率和死亡率均居世界首位,严重危害国人的生命和健康。
     为了从蛋白质组水平探讨间质细胞在肿瘤发生发展过程中的作用及其机制,本研究采用激光捕获显微切割(laser capture microdissection,LCM)技术分别从活检的NPC组织和正常鼻咽粘膜(normalnasopharyngal mucosa,NNM)组织中切割纯化NPC间质和NNM间质,应用荧光差异双向凝胶电泳(Fluorescent two-dimensional difference gelelectrophoresis,2D-DIGE)结合质谱技术分离、鉴定间质相关蛋白。建立了LCM纯化的NPC间质和NNM间质蛋白的荧光差异蛋白表达图谱,高通量筛选与肿瘤发生发展相关的间质蛋白,共得到34个有统计学意义的蛋白质点,质谱鉴定得到20个差异蛋白。其中在NPC间质中高表达的蛋白有Periostin,S100A9,CapG,PYCARD等,低表达的蛋白有L-plastin,Rho-GDI-β,B23,hnRNP K等。采用Western blot验证了其中部分差异蛋白(Periostin,S100A9,CapG,L-plastin)在NPC和NNM组织中的表达水平,证实了2D-DIGE结果的可靠性。为探讨NPC间质差异表达蛋白质的功能和临床病理学意义,采用免疫组织化学染色检测部分差异蛋白质在存档石蜡包埋组织(30例正常鼻咽粘膜上皮组织、66例原发NPC及20例颈淋巴结转移NPC)中的表达,统计学分析差异蛋白质表达水平与临床病理特征的关系。结果显示:Periostin,S100A9和CapG在NPC组织中的表达较NNM组织中明显上调(p<0.01),L-plastin在NPC组织中的表达较NNM组织中明显下调(p<0.01);Periostin和S100A9在颈淋巴结转移NPC中的表达较原发NPC明显上调(p<0.05),CapG和L-plastin在颈淋巴结转移鼻咽癌中的表达与原发鼻咽癌比较无显著差异(p>0.05)。统计学分析显示:Periostin,S100A9,CapG上调和L-plastin下调与NPC组织学分化及临床分期相关(p<0.01),Periostin和S100A9上调还与NPC淋巴结转移密切相关(p<0.01)。
     为进一步探讨NPC间质差异表达蛋白质的功能和临床病理学意义,本研究选取差异蛋白质Periostin为研究对象,首先采用Western blot检测其在不同分化程度或转移潜能的NPC细胞(CNE1、CNE2、5-8F和6-10B)及NIH 3T3成纤维细胞中的表达水平,结果发现Periostin在CNE1、CNE2、6-10B和3T3细胞中不表达,在5-8F细胞中弱表达。随后采用脂质体转染方法将真核表达载体pCMV-neo(+)-Periostin及其相应空白载体pCMV-neo(+)转染6-10B细胞(低转移潜能细胞),建立稳定表达Periostin的细胞系,同时将pCMV-neo(+)-Periostin及其相应空白载体pCMV-neo(+)瞬时转染NIH3T3成纤维细胞。然后以稳定转染6-10B细胞及瞬时转然的NIH 3T3细胞为样本,观察6-10B细胞中Periostin高表达后的细胞生物学特性的改变及对基质金属蛋白酶(matrix metalloproteinases,MMPs)活性的影响。研究结果如下:成功建立了稳定表达Periostin的6-10B细胞系(6-10B~(periostin))和空白载体转染的6-10B细胞系(6-10B~(vector))。生物学特性分析结果显示:(1)与对照组细胞比较,6-10B~(periostin)细胞周期进程加快,G1期减少,S期、G2期增加;(2)高表达Periostin的6-10B细胞较对照组细胞生长速度明显加快;(3)6-10B~(periostin)细胞的平板集落形成数明显增多;(4)6-10B~(periostin)细胞的软琼脂集落形成率显著提高;(5)6-10B~(periostin)细胞的侵袭、迁移能力明显增强;(6)明胶酶谱实验显示,与对照组细胞比较,Periostin高表达的细胞分泌的MMP-2、MMP-9活性增加。接着用免疫组织化学的方法检测了α_vβ_5整合素(integrinα_vβ_5)在NPC和NNM组织、6-10B~(periostin)和6-10B~(vector)、6-10B细胞中的表达水平,发现integrinα_vβ_5在NPC组织和6-10B~(periostin)细胞中表达均较对照组增强,Spearman相关性分析显示integrinα_vβ_5和Periostin在NPC组织中的表达强度呈正相关(r=0.682,p=0.000)。结果提示:Periostin可能是通过与NPC细胞膜上integrinα_vβ_5受体结合来促进肿瘤细胞的生长,提高MMPs的活性,促进肿瘤细胞的侵袭和转移。
     综上所述,本研究采用LCM结合定量蛋白质组学技术从NPC间质和NNM间质中筛选到20个差异蛋白,并通过临床病理标本到细胞模型对差异蛋白Periostin的功能及作用机理进行了探讨。实验结果显示periostin在NPC病程演进中发挥正向调控作用:Periostin与NPC的分化程度、转移相关,Periostin高表达可促进NPC的侵袭和转移,Periostin可能通过与NPC细胞膜上的integrin-α_vβ_5受体结合发挥其功能。Periostin促进NPC转移与其影响MMPs的活性有关。研究结果提示:这些差异表达的蛋白将有助于阐明鼻咽癌细胞和周围间质的关系,对间质蛋白功能的进一步研究,将有助于解析间质在肿瘤发生发展中的作用并为从间质途径寻找肿瘤治疗靶标提供新思路。
The role which stroma plays in tumor carcinogenesis is more and more important and now is becoming a hotspot.Nasopharyngeal carcinoma(NPC) is one of the most common malignant tumors in southern China,its incidence and mortality occupies the first place of the world,and is a great threat to people's health and lives.
     To delineate the stromal proteins involved in NPC carcinogenesis,we assessed differences in protein expression of the stroma from NPC and normal nasopharyngeal mucosa(NNM) using a quantitative proteomic approach combined with laser capture microdissection(LCM).LCM was performed to purify stromal tissue from the NPC and NNM,respectively.The protein expression profiles of the stroma tissue from NPC and NNM were compared by fluorescent two-dimensional difference gel electrophoresis(2D-DIGE),and 34 differential protein spots between tumor stroma(TS) and normal stroma (NS) were chosen to be identified by mass spectrometry(MS).2D-DIGE patterns of the purified stroma of NPC and NNM were established.A total of 20 differential proteins were identified,and part of the differential proteins (periostin,S100A9,CapG and L-plastin) were selectively further analyzed by Western blotting to validate the results of 2D-DIGE.Of all the identified proteins,periostin,S100A9,CapG,PYCARD et al.were up-regulated in NPC stroma,whereas L-plastin,Rho-GDI-β,B23,hnRNP K et al.were down-regulated in NPC stroma.To explore the function and clincopathological significances of the differential expression proteins, immunohistochemical(IHC) analysis was performed to detect the expression levels of the differential proteins in paraffin-embedded archival tissue specimens,including 66 cases of primary NPC,30 cases of NNM,and 20 cases of cervical metastatic lymph node from NPC(LMNPC),and the correlation of their expression levels with clinicopathologic features were evaluated.The expression levels of periostin,S100A and CapG in primary NPC were significantly higher than those in NNM(P<0.01),and L-plastin was significantly down-regulated in NPC versus NNET(P<0.01);the expression levels of periostin and S100A9 in LMNPC were significantly higher than those in primary NPC(P<0.05),but no significant difference in the expression level of CapG and L-plastin were observed in the primary NPC and LMNPC.The statistics analysis showed:periostin,S100A9,CapG up-regulated and L-plastin down-regulated were correlated with poor histologic type/grade,advanced clinical stage,periostin and S100A9 up-regulated were correlated with lymph node metastases(P<0.01).
     On the other hand,periostin was selected to explore the function in NPC cells.First,Western blotting was employed to detect the expression levels of periostin in four NPC cell lines(CNE1,CNE2,5-8F and 6-10B) with different differentiated degrees and/or metastatic potentials and NIH 3T3 fibroblasts, and found that periostin did not expressed in CNE1,CNE2,6-10B and NIH 3T3 cells,and 5-8F cells show weak expression.Sequently,the recombinant plasmids[pCMV-neo(+)-Periostin]and control plasmids[pCMV-neo(+)] were transfected into 6-10B cells(low metastatic potentials) using lipofectamine 2000~(TM) reagent to build stable transfection clone cells,at the same time,the recombinant plasmids[pCMV-neo(+)-Periostin]and control plasmids[pCMV-neo(+)]were also transfected into NIH 3T3 fibroblasts to obtain transient transfection cells.With stable transfection 6-10B cells (6-10B~(periostin)) and transient transfection NIH 3T3 cells,their biological characteristic analysis was performed as follows:(1) Flow cytometry(FCM) analysis of 6-10B~(periostin) cell revealed a significant decrease of G1 phase with a corresponding increase of S phase and G2 phase populations when compared with the control cell lines;(2) The MTT assay showed that up-regulated periostin in 6-10B cells was associated with a marked increase of cell growth; (3) The monolayer growth experiment showed that the clonoogenicity of 6-10B~(periostin) was significantly higher than those of the controls;(4) Soft agar growth experiments revealed that the colony formation abilities of 6-10B~(periostin) was higher than those of the controls;(5) Transwell chamber invasion assay showed that up-regulation of periostin expression in 6-10B cells was associated with increased in vitro cell invasion and migration;(6) A gelatin zymogram for MMPs activation demonstrated an increase in MMP-2 and MMP-9 activity in cultivated supernatant of 6-10B(periostin) and mixed cultured 6-10B and 3T3(+) cells.Furthermore,the expression of integrin-α_vβ_5 was also detected by IHC in NPC and NNM,6-10B(periostin) cells,6-10B(vector) cells and 6-10B cells,the expression levels of integrin-α_vβ_5 in primary NPC and 6-10B(periostin) cells were significantly higher than those in NNM and 6-10B(vector), 6-10B cells.The expression in NPC of integrin-α_vβ_5 showed positively correlated with the expression of periostin(r=0.682,p=0.000).Our results from above experiments demonstrated that periostin plays an important role in regulation of cell proliferation,the activity of MMPs,cell migration and invasion probably by combining with integrin-α_vβ_5。
     Taken together,we identified 20 differential proteins between the stroma from NPC and NNM by quantitative proteomic approach coupled with LCM. Sequently,the differential expression protein periostin was further analyzed by IHC,molecular biology technology and cell biology technology.The results indicate that Periostin plays a positive role in regulation of the evolution of NPC:periostin is related to the differentiation,metastasis and prognosis of NPC and exert its functions probably by combining with integrin-α_vβ_5. Periostin promotes the invasion of NPC through regulating the activity of MMPs.Our results will be helpful to study the role of stroma in the NPC carcinogenesis,as well as discover the interaction between NPC cells and their surrounding microenvironment,and provide a new idea for finding stromal targets of tumor therapy.
引文
[1]Yu MC,Yuan JM:Epidemiology of nasopharyngeal carcinoma.Semin Cancer Biol 2002;12:421-429.
    [2]Wei WI,Sham JS:Nasopharyngeal carcinoma.Lancet 2005;365:2041-2054.
    [3]Vokes EE,Liebowitz DN,Weichselbaum RR:Nasopharyngeal carcinoma.Lancet 1997;350:1087-1091.
    [4]Ahmad A,Stefani S:Distant metastases of nasopharyngeal carcinoma:a study of 256male patients.J Surg Oncol 1986;33:194-197.
    [5]Bose S,Yap LF,Fung M,et al.The ATM tumour suppressor gene is down-regulated in EBV-associated nasopharyngeal carcinoma.J Pathol2009;217:345-352.
    [6]Lin X,Liu S,Luo X,et al.EBV-encoded LMP1 regulates Op18/stathmin signaling pathway by cdc2 mediation in nasopharyngeal carcinoma cells.Int J Cancer 2009;124:1020-1027.
    [7]Cheng AL,Huang WG,Chen ZC,et al.Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis.Clin Cancer Res 2008;14:435-445.
    [8]Qian CN,Guo X,Cao B,et al.Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma.Cancer Res 2002;62:589-596.
    [9]Yan J,Fang Y,Huang B J,et al.Absence of evidence for HER2 amplification in nasopharyngeal carcinoma.Cancer Genet Cytogenet 2002;132:116-119.
    [10]Hui AB,Lo KW,Teo PM,et al.Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization.Int J Oncol 2002;20:467-473.
    [11]Song LB,Zeng MS,Liao WT,et al.Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells.Cancer Res 2006;66:6225-6232.
    [12]Fidler IJ:The pathogenesis of cancer metastasis:the 'seed and soil' hypothesis revisited.Nat Rev Cancer 2003;3:453-458.
    [13]Hede K:Environmental protection:studies highlight importance of tumor microenvironment.J Natl Cancer Inst 2004;96:1120-1121.
    [14]Brown JM:Tumor microenvironment and the response to anticancer therapy.Cancer Biol Ther 2002;1:453-458.
    [15]Sung SY,Hsieh CL,Wu D,et al.Tumor microenvironment promotes cancer progression,metastasis,and therapeutic resistance.Curr Probl Cancer 2007;31:36-100.
    [16]Liotta LA,Kohn EC:The microenvironment of the tumour-host interface.Nature 2001;411:375-379.
    [17]Silberstein GB:Tumour-stromal interactions.Role of the stroma in mammary development.Breast Cancer Res 2001;3:218-223.
    [18]Tlsty TD:Stromal cells can contribute oncogenic signals.Semin Cancer Biol 2001;11:97-104.
    [19]De Wever O,Mareel M:Role of tissue stroma in cancer cell invasion.J Pathol 2003;200:429-447.
    [20]Blankenstein T:The role of tumor stroma in the interaction between tumor and immune system.Curr Opin Immunol 2005;17:180-186.
    [21]Jung YD,Ahmad SA,Liu W,et al.The role of the microenvironment and intercellular cross-talk in tumor angiogenesis.Semin Cancer Biol 2002;12:105-112.
    [22]Bingle L,Brown NJ,Lewis CE:The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies.J Pathol 2002;196:254-265.
    [23]Degen M,Brellier F,Schenk S,et al.Tenascin-W,a new marker of cancer stroma,is elevated in sera of colon and breast cancer patients.Int J Cancer 2008;122:2454-2461.
    [24]Soltermann A,Tischler V,Arbogast S,et al.Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer.Clin Cancer Res 2008;14:7430-7437.
    [25]Kikuchi Y,Kashima TG,Nishiyama T,et al.Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon.J Histochem Cytochem 2008;56:753-764.
    [26]Albini A,Sporn MB:The tumour microenvironment as a target for chemoprevention.Nat Rev Cancer 2007;7:139-147.
    [27]Erkan M,Kleeff J,Gorbachevski A,et al.Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity.Gastroenterology 2007;132:1447-1464.
    [28]李虹,韩为农,冯湘玲等。用芯片技术分析鼻咽癌周围的基质细胞基因表达特点。癌症,2003,22(3):235-238.
    [29]Li J,Zhang XS,Xie D,et al.Expression of immune-related molecules in primary EBV-positive Chinese nasopharyngeal carcinoma:associated with latent membrane protein 1(LMP1) expression.Cancer Biol Ther 2007;6:1997-2004.
    [30]Huang YT,Sheen TS,Chen CL,et al.Profile of cytokine expression in nasopharyngeal carcinomas:a distinct expression of interleukin 1 in tumor and CD4+ T cells.Cancer Res 1999;59:1599-1605.
    [31]Teichmann M,Meyer B,Beck A,et al.Expression of the interferon-inducible chemokine IP-10(CXCL10),a chemokine with proposed anti-neoplastic functions,in Hodgkin lymphoma and nasopharyngeal carcinoma.J Pathol2005;206:68-75.
    [32]Buettner M,Meyer B,Schreck S,et al.Expression of RANTES and MCP-1 in epithelial cells is regulated via LMP1 and CD40.Int J Cancer 2007;121:2703-2710.
    [33]Ma N,Kawanishi M,Hiraku Y,et al.Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma:the relation to STAT3 activation and EGFR expression.Int J Cancer 2008;122:2517-2525.
    [34]Mueller MM,Fusenig NE:Friends or foes-bipolar effects of the tumour stroma in cancer.Nat Rev Cancer 2004;4:839-849.
    [35]陈主初,梁宋平.肿瘤蛋白质组学.第1版,湖南长沙:湖南科学技术出版社,2002.1-7.
    [36]Emmert-Buck MR,Bonner RF,Smith PD,et al.Laser capture microdissection.Science 1996;274:998-1001.
    [37]Ornstein DK,Gillespie JW,Paweletz CP,et al.Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines.Electrophoresis 2000;21:2235-2242.
    [38]Neubauer H,Clare SE,Kurek R,et al.Breast cancer proteomics by laser capture microdissection,sample pooling,54-cm IPG IEF,and differential iodine radioisotope detection.Electrophoresis 2006;27:1840-1852.
    [39]Ai J,Tan Y,Ying W,et al.Proteome analysis of hepatocellular carcinoma by laser capture microdissection.Proteomics 2006;6:538-546.
    [40]Shekouh AR,Thompson CC,Prime W,et al.Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma.Proteomics 2003;3:1988-2001.
    [41]Cheng AL,Huang WG;Chen ZC,et aL Identificating cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal carcinoma by laser capture microdissection and proteomic analysis.J Proteome Res 2008;7:2415-2426.
    [42]Sheikh AA,Vimalachandran D,Thompson CC,et al.The expression of S100A8 in pancreatic cancer-associated monocytes is associated with the Smad4 status of pancreatic cancer cells.Proteomics 2007;7:1929-1940.
    [43]Peri S,Navarro JD,Amanchy R,et at Development of human protein reference database as an initial platform for approaching systems biology in humans.Genome Res 2003;13:2363-2371.
    [44] Gharbi S, Gaffney P, Yang A, et al. Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system.Mol Cell Proteomics 2002;1:91-98.
    [45] Zhou G, Li H, DeCamp D, et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 2002;1:117-124.
    [46] Gillan L, Matei D, Fishman DA, et al. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 2002;62:5358-5364.
    [47] Horiuchi K, Amizuka N, Takeshita S, et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 1999;14:1239-1249.
    [48] Sasaki H, Dai M, Auclair D, et al. Serum level of the periostin, a homologue of an insect cell adhesion molecule, as a prognostic marker in nonsmall cell lung carcinomas.Cancer 2001;92:843-848.
    [49] Sasaki H, Sato Y, Kondo S, et al. Expression of the periostin mRNA level in neuroblastoma. J Pediatr Surg 2002;37:1293-1297.
    [50] Shao R, Bao S, Bai X, et al. Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 2004;24:3992-4003.
    [51] Siriwardena BS, Kudo Y, Ogawa I, et al. Periostin is frequently overexpressed and enhances invasion and angiogenesis in oral cancer. Br J Cancer 2006;95:1396-1403.
    [52] Kudo Y, Ogawa I, Kitajima S, et al. Periostin promotes invasion and anchorage-independent growth in the metastatic process of head and neck cancer.Cancer Res 2006;66:6928-6935.
    
    [53] Kanno A, Satoh K, Masamune A, et al. Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int J Cancer 2008;122:2707-2718.
    [54] Baril P, Gangeswaran R, Mahon PC, et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 2007;26:2082-2094.
    
    [55] Bao S, Ouyang G, Bai X, et al. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 2004;5:329-339.
    [56] Jacks T, Weinberg RA: Taking the study of cancer cell survival to a new dimension. Cell 2002;111:923-925.
    [57] Chang Y, Lee TC, Li JC, et al. Differential expression of osteoblast-specific factor 2 and polymeric immunoglobulin receptor genes in nasopharyngeal carcinoma. Head Neck 2005;27:873-882.
    [58] Yu FX, Johnston PA, Sudhof TC, et al. gCap39, a calcium ion- and polyphosphoinositide-regulated actin capping protein. Science 1990;250:1413-1415.
    [59] Dabiri GA, Young CL, Rosenbloom J, et al. Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. J Biol Chem 1992;267:16545-16552.
    [60] Witke W, Li W, Kwiatkowski DJ, et al. Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling,phagocytosis, and vesicle rocketing. J Cell Biol 2001; 154:775-784.
    [61] Rao J, Li N: Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets 2004;4:345-354.
    [62] Pellieux C, Desgeorges A, Pigeon CH, et al. Cap G, a gelsolin family protein modulating protective effects of unidirectional shear stress. J Biol Chem 2003;278:29136-29144.
    [63] Van den Abbeele A, De Corte V, Van Impe K, et al. Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro. Cancer Lett 2007;255:57-70.
    [64] Thompson CC, Ashcroft FJ, Patel S, et al. Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut 2007;56:95-106.
    [65] Nomura H, Uzawa K, Ishigami T, et al. Clinical significance of gelsolin-like actin-capping protein expression in oral carcinogenesis: an immunohistochemical study of premalignant and malignant lesions of the oral cavity. BMC Cancer 2008;8:39.
    [66] Lapillonne A, Coue O, Friederich E, et al. Expression patterns of L-plastin isoform in normal and carcinomatous breast tissues. Anticancer Res 2000;20:3177-3182.
    [67] Klemke M, Rafael MT, Wabnitz GH, et al. Phosphorylation of ectopically expressed L-plastin enhances invasiveness of human melanoma cells. Int J Cancer 2007;120:2590-2599.
    [68] Samstag Y, Klemke M: Ectopic expression of L-plastin in human tumor cells: diagnostic and therapeutic implications. Adv Enzyme Regul 2007;47:118-126.
    [69] Hermani A, De Servi B, Medunjanin S, et al. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 2006;312:184-197.
    [70] Hermani A, Hess J, De Servi B, et al. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 2005;11:5146-5152.
    [71] Ryckman C, Gilbert C, de Medicis R, et al. Monosodium urate monohydrate crystals induce the release of the proinflammatory protein S100A8/A9 from neutrophils. J Leukoc Biol 2004;76:433-440.
    [72] Stulik J, Osterreicher J, Koupilova K, v The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S100A9 and S100A8 positive cells underlie and invade tumor mass.Electrophoresis 1999;20:1047-1054.
    [73] Arai K, Teratani T, Nozawa R, et al. Immunohistochemical investigation of S100A9 expression in pulmonary adenocarcinoma: S100A9 expression is associated with tumor differentiation. Oncol Rep 2001;8:591-596.
    [74] Harlozinska A: Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Res 2005;25:3327-3333.
    [75] Affara NI, Robertson FM: Vascular endothelial growth factor as a survival factor in tumor-associated angiogenesis. In Vivo 2004; 18:525-542.
    [76] Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005;23:1011-1027.
    [77] Werb Z: ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997;91:439-442.
    [78] Zechmann CM, Woenne EC, Brix G, et al. Impact of stroma on the growth,microcirculation, and metabolism of experimental prostate tumors. Neoplasia 2007;9:57-67.
    [79] Lewis MP, Lygoe KA, Nystrom ML, et al. Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 2004;90:822-832.
    [80] Horikawa T, Sheen TS, Takeshita H, et al. Induction of c-Met proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with cervical lymph node metastasis of nasopharyngeal carcinoma. Am J Pathol 2001;159:27-33.
    [81] Lo AK, Yuen PW, Liu Y, et al. Downregulation of hemidesmosomal proteins in nasopharyngeal carcinoma cells. Cancer Lett 2001; 163:117-123.
    [82] Yoshizaki T, Sato H, Murono S, et al. Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis 1999; 17:431 -436.
    [83] Wakisaka N, Wen QH, Yoshizaki T, et al. Association of vascular endothelial growth factor expression with angiogenesis and lymph node metastasis in nasopharyngeal carcinoma. Laryngoscope 1999;109:810-814.
    [84] Huang GW, Mo WN, Kuang GQ, et al. Expression of p16, nm23-H1, E-cadherin, and CD44 gene products and their significance in nasopharyngeal carcinoma.Laryngoscope 2001;111:1465-1471.
    [85] Kudo Y, Siriwardena BS, Hatano H, et al. Periostin: novel diagnostic and therapeutic target for cancer. Histol Histopathol 2007;22:1167-1174.
    [86] Hara A, Okayasu I: Cyclooxygenase-2 and inducible nitric oxide synthase expression in human astrocytic gliomas: correlation with angiogenesis and prognostic significance.Acta Neuropathol 2004;108:43-48.
    [87] Tamura K, Southwick EC, Kerns J, et al. Cdc25 inhibition and cell cycle arrest by a synthetic thioalkyl vitamin K analogue. Cancer Res 2000;60:1317-1325.
    [88] Grigoriadis A, Mackay A, Reis-Filho JS, et al. Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data. Breast Cancer Res 2006;8:R56.
    [89] Lynch CC, Matrisian LM: Matrix metalloproteinases in tumor-host cell communication.Differentiation 2002;70:561-573.
    [90] Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-174.
    [91] Singer CF, Kronsteiner N, Marton E, et al. MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res Treat 2002;72:69-77.
    [92] Brinckerhoff CE, Matrisian LM: Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 2002;3:207-214.
    [93] Airola K, Fusenig NE: Differential stromal regulation of MMP-1 expression in benign and malignant keratinocytes. J Invest Dermatol 2001;116:85-92.
    [94] Rigg AS, Lemoine NR: Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Ther 2001;8:869-878.
    [95] Lengyel E, Schmalfeldt B, Konik E, et al. Expression of latent matrix metalloproteinase 9 (MMP-9) predicts survival in advanced ovarian cancer. Gynecol Oncol 2001;82:291-298.
    [96] Schmalfeldt B, Prechtel D, Harting K, et al. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res 2001;7:2396-2404.
    [97] Trimis G, Chatzistamou I, Politi K, et al. Expression of p21waf1/Cip1 in stromal fibroblasts of primary breast tumors. Hum Mol Genet 2008; 17:3596-3600.
    [98] Elenbaas B, Weinberg RA: Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 2001 ;264:169-184.
    [99] Brakebusch C, Bouvard D, Stanchi F, et al. Integrins in invasive growth. J Clin Invest 2002;109:999-1006.
    [100] Yan W, Shao R: Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J Biol Chem 2006;281:19700-19708.
    [101] Wang XQ, Sun P, Paller AS: Ganglioside GM3 inhibits matrix metalloproteinase-9 activation and disrupts its association with integrin. J Biol Chem 2003;278:25591-25599.
    [102] Sykes AP, Bhogal R, Brampton C, et al. The effect of an inhibitor of matrix metalloproteinases on colonic inflammation in a trinitrobenzenesulphonic acid rat model of inflammatory bowel disease. Aliment Pharmacol Ther 1999;13:1535-1542.
    [1]Hede K:Environmental protection:studies highlight importance of tumor microenvironment.J Natl Cancer Inst 2004;96:1120-1121.
    [2]Brown JM:Tumor microenvironment and the response to anticancer therapy.Cancer Biol Ther 2002;1:453-458.
    [3]Hanahan D,Weinberg RA:The hallmarks of cancer.Cell 2000;100:57-70.
    [4]Park CC,Bissell MJ,Barcellos-Hoff MH:The influence of the microenvironment on the malignant phenotype.Mol Med Today 2000;6:324-329.
    [5]Brown LF,Guidi AJ,SchniR S J,et al.Vascular stroma formation in carcinoma in situ,invasive carcinoma,and metastatic carcinoma of the breast.Clin Cancer Res 1999;5:1041-1056.
    [6]Liotta LA,Kohn EC:The microenvironment of the tumour-host interface.Nature 2001;411:375-379.
    [7]Rubin H:Selected cell and selective microenvironment in neoplastic development.Cancer Res 2001;61:799-807.
    [8]Aboseif S,El-Sakka A,Young P,et al.Mesenchymal reprogramming of adult human epithelial differentiation.Differentiation 1999;65:113-118.
    [9]Mohla S:Tumor microenvironment.J Cell Biochem 2007;101:801-804.
    [10]Sung SY,Chung LW:Prostate tumor-stroma interaction:molecular mechanisms and opportunities for therapeutic targeting.Differentiation 2002;70:506-521.
    [11]Kohn EC,Liotta LA:Molecular insights into cancer invasion:strategies for prevention and intervention.Cancer Res 1995;55:1856-1862.
    [12]Stromblad S,Cheresh DA:Integrins,angiogenesis and vascular cell survival.Chem Biol 1996;3:881-885.
    [13]Carmeliet P,Jain RK:Angiogenesis in cancer and other diseases.Nature 2000;407:249-257.
    [14]Liotta LA,Steeg PS,Stetler-Stevenson WG:Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation.Cell 1991;64:327-336.
    [15]Gupta GP,Massague J:Cancer metastasis:building a framework.Cell 2006;127:679-695.
    [16] Fidler IJ: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003;3:453-458.
    [17] Sung SY, Hsieh CL, Wu D, et al. Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Curr Probl Cancer 2007;31:36-100.
    [18] Fata JE, Werb Z, Bissell MJ: Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 2004;6:1-11.
    [19] Werb Z, Ashkenas J, MacAuley A, et al. Extracellular matrix remodeling as a regulator of stromal-epithelial interactions during mammary gland development, involution and carcinogenesis. Braz J Med Biol Res 1996;29:1087-1097.
    [20] Bissell MJ, Weaver VM, Lelievre SA, et al. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res 1999;59:1757-1763s;discussion 1763 s-1764s.
    [21] Kalluri R: Basement membranes: structure, assembly and role in tumour angiogenesis.Nat Rev Cancer 2003;3:422-433.
    [22] Schittny JC, Yurchenco PD: Basement membranes: molecular organization and function in development and disease. Curr Opin Cell Biol 1989;1:983-988.
    [23] de Fougerolles AR, Sprague AG, Nickerson-Nutter CL, et al. Regulation of inflammation by collagen-binding integrins alphalbeta1 and alpha2beta1 in models of hypersensitivity and arthritis. J Clin Invest 2000;105:721-729.
    [24] Xu J, Rodriguez D, Petitclerc E, et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 2001;154:1069-1079.
    [25] White DE, Kurpios NA, Zuo D, et al. Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 2004;6:159-170.
    [26] Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med 2004;10:789-799.
    [27] Ronnov-Jessen L, Petersen OW, Bissell MJ: Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 1996;76:69-125.
    [28] Tlsty TD, Hein PW: Know thy neighbor: stromal cells can contribute oncogenic signals.Curr Opin Genet Dev 2001 ;11:54-59.
    
    [29] Coussens LM, Werb Z: Inflammation and cancer. Nature 2002;420:860-867.
    [30] Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118:285-296.
    [31] Barcellos-Hoff MH, Ravani SA: Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 2000;60:1254-1260.
    [32] Ohuchida K, Mizumoto K, Murakami M, et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions.Cancer Res 2004;64:3215-3222.
    [33] Lynch CC, Matrisian LM: Matrix metalloproteinases in tumor-host cell communication.Differentiation 2002;70:561-573.
    [34] Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-174.
    [35] Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003;4:915-925.
    [36] Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T: Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 1997;57:3305-3313.
    [37] Jue SF, Bradley RS, Rudnicki JA, Varmus HE, Brown AM: The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol Cell Biol 1992;12:321-328.
    [38] Dumont N, Arteaga CL: Transforming growth factor-beta and breast cancer: Tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2000;2:125-132.
    [39] Kuperwasser C, Chavarria T, Wu M, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 2004;101:4966-4971.
    [40] Angeloni D, Danilkovitch-Miagkova A, Miagkov A, et al. The soluble sema domain of the RON receptor inhibits macrophage-stimulating protein-induced receptor activation.J Biol Chem 2004;279:3726-3732.
    [41] Maggiora P, Lorenzato A, Fracchioli S, et al. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness.Exp Cell Res 2003;288:382-389.
    [42] Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003;3:347-361.
    [43] Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336-1338.
    [44] Massague J, Blain SW, Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295-309.
    [45] Grady WM, Myeroff LL, Swinler SE, et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 1999;59:320-324.
    [46] Gold LI: The role for transforming growth factor-beta (TGF-beta) in human cancer.Crit Rev Oncog 1999;10:303-360.
    [47] Chytil A, Magnuson MA, Wright CV, et al. Conditional inactivation of the TGF-beta type II receptor using Cre:Lox. Genesis 2002;32:73-75.
    [48] Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 1995;130:393-405.
    [49] Bhowmick NA, Chytil A, Plieth D, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004;303:848-851.
    [50] Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002;110:341-350.
    [51] Joseph H, Gorska AE, Sohn P, et al. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 1999;10:1221-1234.
    [52] Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315:1650-1659.
    [53] Bergers G, Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3:401-410.
    [54] De Wever O, Mareel M: Role of tissue stroma in cancer cell invasion. J Pathol 2003;200:429-447.
    [55] Manabe Y, Toda S, Miyazaki K, et al. Mature adipocytes, but not preadipocytes,promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol 2003;201:221-228.
    [56] Kalluri R, Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer 2006;6:392-401.
    [57] Elenbaas B, Weinberg RA: Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 2001;264:169-184.
    [58] Fukumura D, Jain RK: Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 2007;101:937-949.
    [59] DiResta GR, Lee J, Healey JH, et al. a new approach to reduce interstitial hypertension and increase blood flow, pH and pO2 in solid tumors. Ann Biomed Eng 2000;28:543-555.
    [60] Thomlinson RH, Gray LH: The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539-549.
    [61] Melillo G: Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol Cancer Res 2006;4:601-605.
    [62] Gruber G, Greiner RH, Hlushchuk R, et al. Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res 2004;6:R191-198.
    [63] Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2alpha in normal human tissues,cancers, and tumor-associated macrophages. Am J Pathol 2000; 157:411-421.
    [64] Kitano H: Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 2004;4:227-235.
    [65] Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 2003;93:1074-1081.
    [66] Balkwill F, Charles KA, Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005;7:211-217.
    [67] Jayasurya A, Bay BH, Yap WM, et al. Infiltrating lymphocytes in undifferentiated nasopharyngeal cancer lack metallothionein expression. Cancer Lett 2000; 155:99-104.
    [68] Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71-78.
    [69] Hynes RO: A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002;8:918-921.
    [70] Mueller MM, Fusenig NE: Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004;4:839-849.
    [71] Folkman J: Fundamental concepts of the angiogenic process. Curr Mol Med 2003;3:643-651.
    [72] Jung YD, Ahmad SA, Liu W, et al. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol 2002;12:105-112.
    [73] Liotta L, Petricoin E: Molecular profiling of human cancer. Nat Rev Genet 2000;1:48-56.
    [74] St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium.Science 2000;289:1197-1202.
    
    [75] Paweletz CP, Charboneau L, Bichsel VE, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front.Oncogene 2001;20:1981-1989.
    [76]Albini A,Sporn MB:The tumour microenvironment as a target for chemoprevention.Nat Rev Cancer 2007;7:139-147.
    [77]Joyce JA:Therapeutic targeting of the tumor microenvironment.Cancer Cell 2005;7:513-520.
    [78]LaBarge MA,Petersen OW,Bissell MJ:Of microenvironments and mammary stem cells.Stem Cell Rev 2007;3:137-146.
    [79]廖雯婷,汪慧民,李满枝等。鼻咽癌变不同时期的体外三维培养模型建立的实验研究。癌症,2005,24(11):1317-1321.
    [80]Zhu WH,Nicosia RF:The thin prep rat aortic ring assay:a modified method for the characterization of angiogenesis in whole mounts.Angiogenesis 2002;5:81-86.
    [81]Donovan D,Brown NJ,Bishop ET,et al.Comparison of three in vitro human 'angiogenesis' assays with capillaries formed in vivo.Angiogenesis 2001;4:113-121.
    [82]Gutheil JC,Campbell TN,Pierce PR,et al.Targeted antiangiogenic therapy for cancer using Vitaxin:a humanized monoclonal antibody to the integrin alphavbeta3.Clin Cancer Res 2000;6:3056-3061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700