镁(铝)合金真空低压消失模铸造工艺优化及组织质量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空低压消失模铸造技术将低压铸造的原理应用于真空消失模铸造中,使得液态镁(铝)合金在真空和较低气压作用下反重力充填消失模铸型,它比压力铸造、砂型铸造和普通消失模铸造具有明显的优势。本研究从实际应用出发,针对镁合金真空低压消失模铸造工艺的特点,系统研究了主要充型工艺参数对铸件质量的影响规律;结合国内外镁合金改性现状,探讨了改善镁合金铸态组织和提高性能的方法。
     在分析普通消失模铸造充型工艺理论的基础上,探讨了真空低压消失模铸造的工艺规范,推导了加压速度(dP充)/(dτ)与气体流量Q、凝固过程中补缩机理的数学关系式。真空低压消失模铸造过程中,当气源初始充型气压一定时,液态金属的加压速度(dP充)/(dτ)与充气流量Q呈线性正比关系,充气流量Q越大,加压速度(dP充)/(dτ)就越快,液态金属的充型速度也就越大。合金成份、浇注温度确定以后,对于晶间同一部位,单位时间内补缩液流经过晶粒的数量N主要取决于凝固结晶时的保压压力P保,保压压力P保越大,补缩液流经过晶粒的数量N越多,补缩能力就越强,组织也就越致密。
     采用阶梯试样对镁合金真空低压消失模铸造中的工艺参数进行了系统研究,掌握了浇注温度、真空度、充气流量、充型与抽真空耦合方式等因素对铸件质量的影响规律,确立了镁合金真空低压消失模铸造技术的最佳充型工艺参数范围:浇注温度710~750℃、真空度0.02~0.03MPa、充气流量8~14m3/h、采用先充型再抽真空的模式以及开放式浇注系统。复杂薄壁铸件一般选择工艺参数值的上限(如:浇注温度750℃等),简单厚壁铸件可以选择工艺参数值下限。
     分析了镁合金真空低压消失模铸件中典型缺陷的物理特征及形成原因。孔洞缺陷可通过适当降低浇注温度、充型速度、真空度以及改善涂料层的透气性和调控充型与抽真空的耦合模式等来消除;浇不足、冷隔缺陷可以适当调节浇注温度、充型速度等来抑制;粘砂缺陷可以通过合理增加涂料厚度、控制真空度和浇注温度、选用粒径较小的干砂造型来消除。
     系统研究了机械振动、Ce-Sb复合合金化以及半固态热处理对镁合金消失模铸件组织和性能的影响,表明三种方法均能细化AZ91D镁合金消失模铸造试样的显微组织、提高其室温力学性能。(1)振动凝固条件下镁合金消失模铸造试样的组织、性能随试样厚度增加效果越好;(2)0.4%Sb+1.0%Ce为最佳合金化配比,合金化后基体中生成了粒状CeSb相和杆状相Al11Ce3相,合金化试样的抗拉强度、延伸率比未合金化处理试样分别提高了35.5%和36.7%,合金化叠加振动可以进一步细化AZ91D镁合金铸态组织、提高力学性能,比单纯合金化试样的抗拉强度、延伸率分别提高了11.2%和11%,断口中少量的韧窝和大量的撕裂棱同时出现,表明试样在拉伸过程中已有明显的塑性变形特征;(3)半固态等温热处理工艺下可以得到形状圆整的球状晶组织,抗拉强度、延伸率比铸态试样分别提高了32.4%和83.4%,最佳的工艺方案是530℃保温60min后取出水冷。
     散热片、制动器缸盖等消失模铸件的试制实验结果表明,真空低压消失模铸造工艺具有较强的充型能力,可以消除重力下镁(铝)合金消失模铸件中常出现的浇不足、冷隔等缺陷,获得外观轮廓良好的铸件,该工艺对于生产复杂薄壁的镁(铝)合金铸件具有非常明显的技术优势。
The low-pressure expendable pattern casting (LP-EPC) process applies the principle of low-pressure casting to expendable pattern casting (EPC), in which the melt metal is filled under anti-gravity condition at low pressure. It obviously gains the advantages over die-casting, sand casting and conventional EPC process. In the present dissertation, the effect of main processing parameters on LP-EPC castings has been investigated systematically, which aims at the application of LP-EPC. Based on the modification of magnesium alloy, this study focuses on the methods to modify as-cast microstructure of magnesium alloy and improve its mechanical property.
     Based on analysis of theory in conventional EPC process, the technical parameters of LP-EPC were discussed. And the relations linking lifting pressure velocity (dP充)/(dτ) with gas flux Q , as well as the mechanics of solidification feeding in LP-EPC process were established. It was pointed that linear relation was existed between lifting pressure velocity (dP充)/(dτ) and gas fluxQ when the initial pressure of air supply was a certain value. The more gas fluxQ flowed in the crucible, the faster filling velocity. The grain number N of feeding melt metal flowing per unit of time at identical inter-granular location is mainly depended on holding pressure P_保when the alloy composition and pouring temperature have been selected. As the holding pressure increases, the grain number of feeding melt metal flowing would increase, the feeding capacity would become intensive and the microstructure would become more compact also.
     In this study, researches are focused on the effect of process parameters on the LP-EPC casting quality of AZ91D by using ladder samples. Those samples were tested for different combinations of the LP-EPC process parameters. Specifically, pouring temperature, vacuum level, filling velocity and coupling action of above factors were manipulated to observe their effect on the porosity and density distribution of casting. The optimal process parameters for the castings are pouring temperature 710~750℃, vacuum level 0.02-0.03MPa, gas flux 8~14m3/h. The unpressurized gating system and coupled modes of filling several seconds before suction also be selected. Complicated thin-walled castings require an upper limit magnitude(e.g. pouring temperature 750℃),and simple thick-walled casting should use lower limited magnitude。
     The physical feature and genesis of typical casting defects of LP-EPC process for magnesium castings were investigated. The result indicated that hole defects could be avoided through reducing pouring temperature, filling velocity and vacuum level, improving the permeability of coating as well as adjusting coupled modes of filling mold and vacuum level. Misrun and cold laps can be restricted by proper adjustments on pouring temperature and filling velocity, etc. While burning-on defect can be eliminated by increasing coating thickness,decreasing pouring temperature and vacuum,selecting smaller size sand to mold.
     Mechanical vibration, Ce-Sb alloying and semi-solid isothermal heat-treatment were used to improve the structure and performance of AZ91D magnesium alloy via EPC process. The result indicated that above three methods could refine its microstructure and improve tensile strength at room temperature:
     (1) The performance of AZ91D alloy via EPC process was improved when the casting was produced under mechanical vibration, and the microstructure evolved refiner and mechanical property became higher as the thickness of sample increase.
     (2) The optimal alloying composition was AZ91D with the addition of 0.4% Sb and1.0% Ce. Some new granulated CeSb and rod-shaped Al11Ce3 phases had been formed, which are present at the grain boundary and intracrystalline. Compared to AZ91D, the ultimate tensile strength and elongation of AZ91D-1.0%Ce-0.4%Sb alloy are enhanced by 35.5% and 36.7%, respectively. Ce-Sb alloying compound with mechanical vibration could further refine its microstructure and improve tensile strength. Its ultimate tensile strength and elongation were improved by11.2%,11%. The morphology of tensile fracture has more features of quasi-cleavage. It indicates that has had the bigger plastic deformation before failure.
     (3) When AZ91D magnesium is heat-treated at semi-solid temperature, the reticularβ-Mg17 Al12 phase almost solutionizes in matrix and primary grain gradually evolves into spheroidal shape. Its ultimate tensile strength and elongation were improved by32.4%,83.4%. The optimal process parameters of semi-solid isothermal heat-treatment are 560℃×60min, cooling in water.
     The trail manufacture of plate-fin cooler and compressor cylinder head indicated that LP-EPC possess has great mold filling ability which could largely reduce or overcome the defects like misrun and cold laps encountered in conventional EPC process. The complex thin-walled Mg (Al) alloy castings can be produced perfectly by LP-EPC, so the process is very suitable for casting Mg (Al) alloy parts with complex geometries and high dimensional tolerances.
引文
[1] Kainer K.U.. Magnesium alloys and technology. Weihneim:Wiley-Veh Verlga GmbH&Co. KGAa, 2003
    [2] Schumann S., Friedrich H.. Current and future use of magnesium in the automotive industry. Materials Science Forum, 2003(419-422):51-56
    [3] Luo A., Renaud J.. Magnesium castings for automotive applications. JOM, 1995, 47(7): 28-31
    [4]樊自田,董选普,黄乃瑜等.镁(铝)合金反重力真空消失模铸造方法及其设备.中国发明专利,专利号ZL02115638.7
    [5] Liu J., Ramsay C.W., Askeland D.R.. Effects of foam density and density gradients on metal fill in the LFC Process. AFS Transactions, 1997 (105): 435-442
    [6] Liu X., Ramsay C.W., Askeland D.R.. A study on mold filling control mechanisms in expendable pattern casting process. AFS Transactions, 1994(102):903-914
    [7] Zhao Q., Wang H., Biederman S., et al. Lost foam casting coating characterization: heat and mass transfer. AFS Transactions, 2005(113):1013-1027
    [8] Sun Y., Tsai H.L., Askeland D.R.. Effects of silicon content, coating materials and gating design on casting defects in aluminum lost foam process. AFS Transactions, 1996 (104): 271-279
    [9] Hill M.W., Lawrence M., Ramsay C.W., et al. Influence of gating and other processing parameters on mold filling in the LFC process. AFS Transactions, 1997 (105): 443-450
    [10]田学锋.消失模铸造镁合金组织及性能研究[博士学位论文].武汉:华中科技大学, 2005
    [11]刘子利.镁合金消失模铸造工艺的应用基础研究[博士学位论文].上海:上海交通大学, 2002
    [12] Liu Zili, Hu Jingyu, Wang Qudong, et al. Evaluation of the Effect of Vacuum on Mold Filling in the Magnesium EPC Process. Journal of Materials Processing Technology, 2002, 120(1-3):94-100
    [13]田学锋,樊自田,黄乃瑜. AZ91合金消失模铸造充型过程研究.材料与冶金学报,2006, 5(3):226-230
    [14] Cho G. S., Lee K. W., Kim S. K., et al. Expendable pattern casting of AZ91D magnesium alloy. Materials Science Forum, 2003(426-432):623-628
    [15] Cho G. S., Lee K. W., kenaga A. L.. Molding filling behavior of AZ91D magnesium alloy in the EPC process. Proceeding of the 1st Korea-Japan Conference for Young Foundary Engineers, Japan, 2002:195-197
    [16]张大付.镁合金低压消失模铸造典型缺陷试验研究[硕士学位论文].武汉:华中科技大学, 2005
    [17]吴和保.可控气压下镁合金消失模铸造充型凝固特征的基础研究[博士学位论文].武汉:华中科技大学, 2005
    [18] Yang Mingbo, Pan Fusheng, Tang Shuangquan. Effects of technological factors on mold-filling velocity of magnesium alloys in the expendable pattern casting (EPC) process. Materials Science Forum, 2005(488-489):317-320
    [19] Bichler L., Ravindran C., Machin A.. Challenges in lost foam casting of AZ91 alloy. Materials Science Forum, 2003(426-432):533-538
    [20] Tsai H. L.,Chen T. S.. Modeling of evaporative pattern process, Part I: Metal flow and heat transfer during the filling stage. AFS Transaction, 1988(96):881-890
    [21] Hess D.R.. Effect of pattern and coating properties on defect formation in aluminum lost foam casting [Doctor’s Dissertation]. USA: University of Missouri-Rolla, 2002
    [22]杨明波,赵玮霖,杨慧等.镁合金消失模铸造成形技术的研究现状及进展.铸造技术, 2005, 26(8):670-673
    [23] Fasoyinu Y., Newcombe P., Sahoo M.. Lost foam casting of magnesium alloys AZ91D and AM50. AFS Transactions, 2006(114):707-718
    [24] Moore A.R., Pederon T.C., Sachdev A.K.. New pattern coating for improved metal fill in low-pressure lost foam aluminum casting. AFS Transactions, 2006(114):875-886
    [25] Warner M.H., Miller B.A., Littleton H.E.. Pattern pyrolysis defect reduction in lost foam castings. AFS Transactions, 1998 (106):777-785
    [26]袁子洲,优珊.消失模铸造工艺因素对金属液充型速度影响的研究述评.铸造, 2003 , 52 (9):652-656
    [27] Fu J., Tsai H.L., Askeland D.R.. Mold filling in thin-section castings produced by EPC process. AFS Transactions, 1995 (103):817-828
    [28] Pan E.N., Sheu G.L.. The filling phenomena of lost foam cast irons and aluminum alloys. AFS Transactions, 2003(111):1255-1264
    [29] Pan E.N, Liao K.Y.. Study on flow ability of EPC A356 alloy. AFS Transactions, 1998(106):233-242
    [30] Wu Hebao, Fan Zitian, Huang Naiyu, et al. Process optimization for AZ91 Mg-alloy low-pressure EPC process. Journal of Wuhan University of Technology-Materials Science, 2005, 20(2):42-44
    [31] Liu Z.L., Hu J. Ding W.J., et al. Effect of processing parameters on mold filling in magnesium alloy EPC process. AFS Transactions, 2001(109):1425-1438
    [32]刘子利,吴国华,丁文江等. AZ91镁合金负压消失模铸造充型速度的研究.航空材料学报, 2002 , 22 (2):12-16
    [33] Fasoyinu Y., Chiorean H., Newcombe P.. Vacuum assisted lost foam casting of magnesium alloy AZ91E. AFS Transactions, 2005(113):887-900
    [34] Askeland D.R., Ramsay C.W.. Effect of casting size and geometry on the critical gate area in aluminum lost foam castings. AFS Transactions, 2002(110):1427-1434
    [35] Tschopp Jr M.A.. Fluidity of Aluminum A356 in the Lost foam Casting Process. AFS Transactions, 2002(110):1427-1434
    [36] Hess D.R., Durham B., Ramsay C.W.. Observations on the effect of gating design on metal flow and defect formation in aluminum lost foam castings. AFS Transactions, 2001(109):1455-1488
    [37] Liu Zili, Liu Xiqin, Xu Jiang, et al. Effect of vacuum on solidification process and microstructure of LFC magnesium alloy. Transactions of Nonferrous Metals Society of China,2006(S3):1685-1689
    [38] Liu Zili, Pan Qinglin, Chen Zhaofeng, et al. Heat transfer characteristics of lost foam casting process of magnesium alloy. Transactions of Nonferrous Metals Society of China, 2006, 16(2):445-451
    [39] Wallace J.F., Schwam D., Zhu Y.. The influence of potential grain refiner on magnesium foundry alloys. AFS Transactions, 2003(111):1061-1075
    [40] Lee Y.C., Dahle A.K., Stjohn D.H.. The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A, 2000, 31A(11):2895-2906
    [41] Yan J.L., Sun Y.S., Xue F., et al. Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Materials Science and Engineering, 2008, A 476(15):366-371
    [42] Zhao P., Geng H.R., Wang Q.D.. Effect of melting technique on the microstructure and mechanical properties of AZ91 commercial magnesium alloys. Materials Science and Engineering, 2006, A 429 (1-2):320-323
    [43] Wei L.Y, Dunlop G.L, Westengen H.. Development of microstructure in cast Mg-Al- rare earth alloys. Materials Science and Technology, 1996, 12(9):741-750
    [44] Luo A., Pekgulemzm O.. Cast magnesium alloys for elevated temperature application . Journal of Materials Science, 1994, 29(8):5259-5271
    [45] Mordike B.L., Ebert T.. Magnesium-porperties-application-potential. Materials Science and Engineering, 2001, A302(1-2):37-45
    [46]大野笃美.金属的凝固理论、实践及应用.北京:机械工业出版社, 1990
    [47] Wang, Fengquan. Han, Xiaoling. Influence of vibration & shock on the crystal growth during solidification. Journal of Materials Science, 2000, 35(8):1907-1910
    [48] Numan Abu-Dheir, Marwan Khraisheh, Kozo Saito,et al. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration. Materials Science and Engineering, 2005, A393(2):109-117
    [49]田学锋,樊自田,黄乃瑜.熔体混合处理消失模铸造AZ91合金组织及性能研究.特种铸造及有色合金, 2007, 27(12):954-956
    [50] Hu H., Shang R., Li N.. Effect of Ca addition on grain microstructure development of magnesium alloy AM60. AFS Transactions, 2003 (111):1019-1030
    [51] Shaw C. Jones H.. Structure and mechanical properties of two Mg-Al-Ca alloy consolidated from atomized power. Materials Science and Engineering, 1999, 15(1):78-83
    [52]闵学刚,督温文,薛烽等. Ca提高Mg17Al12相熔点的现象及EET理论分析.科学通报, 2002, 47(2):109-112
    [53] Du Wenwen, Sun Yangshan, Min Xuegang, et al. Microstructure and mechanicalproperties of Mg–Al based alloy with calcium and rare earth additions. Materials Science and Engineering, 2003, A356(1-2):1-7
    [54]闵学刚.几种合金元素对改善AZ91合金显微组织和力学性能的作用的研究[博士学位论文].南京:东南大学, 2002
    [55]程素玲,杨根仓,樊建锋等. Ca, Y对AZ91镁合金显微组织和力学性能的影响.稀有金属材料与工程, 2006, 35(9):1400-1403
    [56] Neubert V., StulíkováI., Smola B., et al. Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys. Materials Science and Engineering, 2007, A 462(1-2):329-333
    [57] Wang Yingxin, Guan Shaokang, Zeng Xiaoqin, et al. Effects of RE on the microstructure and mechanical properties of Mg–8Zn–4Al magnesium alloy. Materials Science and Engineering, 2006, A 416(1-2):109-118
    [58] Wu Guohua, Fan Yu, Gao Hongtao, et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D.Materials Science and Engineering. 2005, A 408(1-2): 255-263
    [59] Moreno I. P., Nandy T. K., Jones J. W., et al. Microstructural stability and creep of rare-earth containing magnesium alloys. Scripta Materialia, 2003, 48(8):1029-1034
    [60] Wang Qudong, Lu Yizhen, Zeng Xiaoqin, et al. Study on the fluidity of AZ91+xRE magnesium alloy. Materials Science and Engineering, 1999, A 271(1-2):109-115
    [61] Wang Yeshuang, Lu Yizhen, Ma Chunjiang, et al. Effects of Zn and RE additions on the solidification behavior of Mg-9Al magnesium alloy. Materials Science and Engineering, 2003, A342 (1-2):178-182
    [62]张诗昌.钇及混合稀土对压铸镁合金组织及性能影响研究[博士学位论文].武汉:华中科技大学, 2002
    [63] Wang Mingxing, Zhou Hong, Wang Lin. Effect of yttrium and cerium addition on microstructure and mechanical properties of AM50 magnesium Alloy. Journal of Rare Earths, 2007, 25(2): 233-237
    [64] Wang S.C., Chou C.P.. Effect of adding Sc and Zr on grain refinement and ductility of AZ31 magnesium alloy. Journal of Materials Processing Technology,2008, 197(1-3):116-121
    [65]王斌,易丹青,罗文海等.微量Sc元素对AZ91镁合金组织性能的影响.铸造, 2005, 54(5):459-461
    [66] Liu S.F., Liu L.Y., Kang L.G... Refinement role of electromagnetic stirring and strontium in AZ91 magnesium alloy. Journal of Alloys and Compounds, 2008, 450(1-2):546-550
    [67] Kinji Hirai, Hidetoshi Somekawa, Yorinobu Takigawa, et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Materials Science and Engineering, 2005, A403(1-2):276-280
    [68] Srinvasan A., Pillai U.T.S., Pai B.C.. Modification of Mg2Si precipitates in Si added AZ91 magnesium alloy. AFS Transactions, 2006(114):737-746
    [69] Nam K.Y., Song D. H., Lee C. W., et al. Modification of Mg2Si morphology in as-cast Mg-Al-Si alloys with strontium addition. Materials Science Forum, 2006(510-511): 238-241
    [70]袁广银.耐热镁合金的应用基础研究[博士学位论文].上海:上海交通大学, 2001.
    [71] Juarez-Islas J.A.. Rapid solidification of Mg-A1-Zn-Si alloys. Materials Science & Engineering, 1991(134):1193-1196.
    [72]陈晓,傅高升,钱匡武等. Sr对原位自生Mg2Si/ZM5复合材料组织与性能的影响.中国有色金属学报, 2002, 12(Al-special):241-245
    [73] Yuan Guangyin, Sun Yangshan, Ding Wenjiang. Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Scripta Materialia, 2000, 43(11):1009-1013.
    [74] Yuan Guangyin, Sun Yangshan, Ding Wenjiang. Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering , 2001, A 308(1-2): 38-44
    [75] Balasubramani N., Srinivasan A., Pillai U.T.S., et al. Effect of Pb and Sb additions on the precipitation kinetics of AZ91 magnesium alloy. Materials Science and Engineering, 2007, A 457(1-2):275-281
    [76]袁广银,张为民. Mg-Al基合金加铋对其力学性能的改善作用.东南大学学报,1999(5):115-119
    [77] Chang Si-Young, Sung Jun Cho, Hong Sung-Kil. Microstructure and tensile properties of bi-materials with macro-interface between unreinforced magnesium and composite. Journal of Alloys and Compounds, 2001, 316(1-2):275-279.
    [78] Caceres C. H., Davidson C. J., Griffiths J. R.. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering, 2002, A325(1-2):344-355
    [79] Aung N. N., Zhou W.. Effect of Heat treatment on Corrosion and Electrochemical Behaviour of AZ91D Magnesium Alloy. Journal of Applied Electrochemistry, 2002, 32 (12):1397-1401
    [80] Ma?trejean S., Véron M., Bréchet Y., et al. Morphological instabilities in Mg-7.7 at % Al. Scripta Materialia, 1999, 41(11):1235-1240
    [81] Celotto S.. TEM study of continuous precipitation in Mg-9Wt%Al-1Wt%Zn alloy. Acta Materialia, 2000(48):1775-1787
    [82] Duly D., Simon J.P.. On the competition between continuous and discontinuous precipitations in binary Mg-Al Alloys. Acta Metallurgica Materialia, 1995, 43 (1):101-106
    [83] Nussbaum A. I.. Semi-solid forming of aluminum and magnesium. Light Metal Age, 1996, 19 (6): 6- 22.
    [84] Zhang Kui, Zhang Yongzhong, Liu Guojun, et al. Structural evolution of non-dendritic AlSi7Mg alloy during reheating. Trans Nonferrous Met Soc China, 1999, 9(3):553 -556.
    [85]李元东,郝远,陈体军等.等温热处理工艺对AZ91D镁合金半固态组织演变和成形性的影响.中国有色金属学报, 2002, 12(6):1143-1148
    [86] B.A.奥泽洛夫, B.C.舒良克,Г.A.普洛特尼科夫.泡沫聚苯乙烯铸造法.济南铸造锻压机械研究所磁型铸造研究组译.北京:机械工业出版社,1974
    [87]盖格,波伊里尔.冶金中的传热传质现象.俞景禄,魏季和译.北京:冶金工业出版社,1981
    [88]Г.K.克列因.散粒体结构力学.陈万佳译.北京:中国铁道出版社,1993
    [89]吴志超.负压干砂消失模铸造铸铁件充型与凝固特性基础研究[博士学位论文].武汉:华中理工大学, 1998
    [90] Sun Y., Tsai H.L., Askeland D.R.. Investigation of wetting and wicking properties of refractory coating in the EPC process. AFS Transactions, 1992(100):297-308.
    [91] Ramsay C.W, Askeland D.R.. Effect of processing parameters on mold filling for gray iron EPC castings using statistical experimental techniques. AFS Transactions, 1994(102): 921-930
    [92]董秀琦.低压及差压铸造理论与实践.北京:机械工业出版社, 2003
    [93] Fan Z.T., Ji S. Low pressure lost foam process for casting magnesium alloy. Materials Science and Technology, 2005, 21(6):727-734
    [94]何存兴.液压传动与气压传动.武汉:华中科技大学出版社,2000
    [95]李诗久.工程流体力学.北京:机械工业出版社,1990
    [96] Flemings M.C.. Solidification processing. New York: McGraw-Hill,1974
    [97]董秀琦,朱丽娟.消失模铸造实用技术.北京:机械工业出版社,2005
    [98] Martlatt M., Wweiss D.J., Hryn J.N.. Developments in lost foam casting of magnesium. AFS Transactions, 2003(111):1053-1060
    [99] H.M.卡尔金.轻合金铸件浇注系统.王乐仪译.北京:国防工业出版社,1982
    [100] Yang J., Huang T.. Study of gas pressure in EPC (LFC) molds. AFS Transactions, 1998(106):21-26
    [101] Hill M, Vrieze A.E., Moody T.L., et al. Effect of Metal Velocity on Defect Formation in Al LFCs. AFS Transactions, 1998 (106):365-374
    [102]冯小明,郭从盛,王绪然等.消失模铸造铝合金铸件浇注系统的试验研究.特种铸造及有色合金, 2005, 25(12):751-752
    [103]盖伊·海诺,克劳德·马斯克里.国际铸件缺陷图谱.刘振康译.南京:江苏科学技术出版社, 1983.
    [104] Bichler L., Ravindran C.. Effect of vacuum and selected LFC process parameters on mold filling of AZ91E casting. AFS Transaction, 2006(114):921-943
    [105] Sun W.L., Littleton H.E. Bates C.E.. Real–time X-Ray investigation on lost foam mold filling. AFS Transaction, 2002(110):1347-1356
    [106] Warner M.H., Miller B.A., Littleton H.E.. Pattern pyrolysis defect reduction in lostfoam castings. AFS Transactions, 1998 (106):777-785
    [107] Tschopp M.A., Wang Q.G., Dewyse M.J., et al. Mechanisms of misrun formation in aluminum lost foam casting. AFS Transaction, 2002(110):1371-1398
    [108] Zhao Q., Gustafson T.W., Hoover M. et al. Folds formation and prevention in the lost foam aluminum process. AFS Transaction, 2004(112):1145-1159
    [109] Liu X.J., Bhavnani S.H., Overfelt R.A.. Simulation of EPS foam decomposition in the lost foam casting process. Journal of Materials Processing Technology, 2007, 182(1-3):333-342
    [110] Sun Y., Tsai H.L., Askeland D.R.. Influence of pattern geometry and other process parameters on mold filling in aluminum EPC Process, AFS Transactions, 1995(103): 651-662
    [111] Littleton H., Molibog T., Sun W.L.. Role of pattern permeability in lost foam casting. AFS Transactions, 2003(111):1265-1278
    [112]顾志荣,吴永生.材料力学.上海:同济大学出版社,1990
    [113]徐灏.机械设计手册(第一卷).北京:机械工业出版社,1991
    [114]苏华钦.冶金传输原理.南京:东那大学出版,1989
    [115] Sun W., Littleton H.E.. Process control of metal penetration defect in lost fom casting. AFS Transactions, 2004(112):1087-1095
    [116]丁文江.镁合金科学与技术.北京:科学出版社,2007.
    [117] Wallace J.F., Schwam D., Druyor D., et al. Shrikage behavior of AM50, AMm60 and AZ91D. AFS Transaction, 2005(113):849-856
    [118] Michael M.. Magnesium and Magnesium Alloys. Ohio: Materials Park, 2000
    [119] Nayeb-Hshemi A.A., Clark J.B.. Phase diagrams of binary magnesium alloys [M]. Metals Park, Ohio:ASM International,1998
    [120] Yan J.L., Sun Y.S., Xue F., et al. Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Materials Science and Engineering, 2008, A 476(15):366-371
    [121] Zhang Shi-chang, Wei Bo-kang, Cai Qi-zhou, et al. Effect of mischmetal and yttrium on microstructures and mechanical properties of Mg-Al alloy. Transactions of Nonferrous Metals Society of China, 2003, 13(1):83-87
    [122]周公度,段连运.结构化学基础.北京:北京大学出版社,2002
    [123] Friedrich H. E., Mordike B.L.. Magnesium technology. Germany: Springer, 2006
    [124] Gale W.F., Totemeier T.C.. Smithells metals reference book. Oxfod: Elservier Butterworth-Heinemanm, 2004
    [125]潘金生.材料科学基础.北京:清华大学出版社, 1998
    [126] Huang Zhenghua, Guo Xuefeng, Zhang Zhongming. Effects of Ce on damping capacity of AZ91D magnesium alloy. Trans Nonferrous Met Soc China, 2004, 14 (4):311-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700