双生病毒卫星DNA的复制及介导的病毒—介体互惠机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双生病毒是世界范围内广泛发生的一类单链环状DNA病毒,已在多个国家和地区的作物上造成毁灭性灾害。为了更好地了解双生病毒的致病机理及病毒的危害流行,本论文围绕双生病毒卫星DNA的复制专化性的分子机制和双生病毒与介体烟粉虱间接互惠的机制开展了以下两个方面的研究:
     1中国番茄黄曲叶病毒与烟草曲茎病毒卫星复制专化性的分子机制研究
     中国番茄黄曲叶病毒(TYLCCNV)和烟草曲茎病毒(TbCSV)的卫星DNAP分子可以被异源辅助病毒稳定复制,但是当同源及异源的DNAβ共同侵染时,异源的DNAβ会在后期丢失,而同源DNAβ则在整个侵染过程中一直存在,说明卫星分子对辅助病毒具有复制专化性。为了了解TYLCCNV和TbCSV卫星复制专化性的分子机制,首先构建了各种置换相应片段的突变体侵染性克隆,通过接种试验发现DNAP基因组上270bp左右的LCR区段决定了复制专化性,并且这种复制专化性是由辅助病毒上的复制蛋白(Rep, AC1)介导的。为了更进一步精细的寻找复制专化性的决定位点,通过序列比较分析发现LCR片段中存在一个具有重复序列的结构域(RBM),而TYLCCNV和TbCSV的卫星DNAP的这个结构域存在着序列上的不同。通过一系列的体外生化试验发现辅助病毒的Rep与其同源的RBM的结合能力强于其与异源的RBM的结合能力。通过构建该结构域的置换或缺失突变体侵染性克隆并且接种本氏烟,证实了该结构域正是这两种病毒卫星DNAP复制专化性的决定位点,且该结构域是卫星DNAβ复制所必须的。进一步利用烟草细胞系,证实了RBM结构域对于卫星DNAP的复制效率具有决定性的作用。在此基础上,利用中国番茄曲叶病毒(ToLCCNV)及其卫星DNAβ,与TYLCCNV或TbCSV的卫星DNAβ接种植物,证实了RBM结构域决定复制专化性的机制在双生病毒中是普遍存在的。
     2中国番茄黄曲叶病毒与介体烟粉虱的互惠机制研究
     前期的研究表明烟粉虱能与其传播的TYLCCNV通过寄主植物建立互惠关系。我们发现TYLCCNV伴随的卫星TYLCCNB是双生病毒与介体烟粉虱建立互惠互作关系所必须的。通过表达谱测序和qRT-PCR发现TYLCCNV和TYLCCNB共同侵染能抑制烟草的茉莉酸(Jasmonic acid, JA)防御途径;利用病毒诱导的基因沉默(VIGS)或转基因下调JA途径有利于烟粉虱的存活,通过外源涂抹茉莉酸甲酯(MeJA)或转基因上调JA途径则不利于烟粉虱的存活;进一步发现TYLCCNB所编码的βC1蛋白是影响植物防御途径变化从而使得介体昆虫和病毒建立互惠关系的关键因子,从而揭示了植物防御信号途径介导的介体昆虫和病毒建立互惠关系的重要机制;我们还发现了TYLCCNV和TYLCCNB共同侵染和烟粉虱取食分别下调和上调了普通烟中萜类化合物合成途径的一个关键基因5-epi-aristolochene synthase (NtEAS)的表达;通过VIGS或转基因沉默NtEAS有利于烟粉虱的存活,揭示了烟草的次生代谢途径是介导介体昆虫和病毒互惠关系的重要途径。
The Geminiviridae is the largest family of plant viruses with circular, single-stranded DNA genomes that cause devastating diseases of economically important crops world-wide. To get a better insight into the pathogenesis and epidemics of geminiviruses, the molecular mechanism of begomovirus satellite DNA replication specificity and the mechanism of begomovirus-vector whitefly mutualism were studied.
     1. The molecular mechanism of begomovirus satellite DNA replication specificity
     Tomato yellow leaf curl China virus (TYLCCNV) and Tobacco curly shoot virus (TbCSV), both obtained from Yunnan Province, were each found to be associated with a distant species of betasatellite molecule. Both tomato yellow leaf curl China betasatellite (TYLCCNB) and tobacco curly shoot betasatellite (TbCSB) can be trans-replicated stably by the noncognate begomovirus. When either TYLCCNV or TbCSV was associated with both betasatellite molecules simultaneously, the cognate betasatellite became dominant and the noncognate betasatellite became undetectable at late stages of infection. In the present work, we showed that the interaction between the LCR region of betasatellite and Rep protein of begomovirus determined the replication specificity. Furthermore, utilizing biochemistry assays in vitro, we found a novel Rep binding motif (RBM) in the LCR region and proved that the binding activity of Rep protein to its cognate RBM is stronger than to its noncognate RBM. Infectivity tests using infectious clones of RBM deletion mutant showed the RBM was involved in betasatellite infection and replication specificity. Finally we inoculated the Tomato leaf curl China virus (ToLCCNV) and its associated betasatellite together with TYLCCNB or TbCSB and found that the noncognate betasatellite containing the same RBM was detected even in late stage of infection while same the noncognate betasatellite containing the different RBM was undetectable in late stage of infection, indicating that the molecular mechanism of betasatellite replication specificity was ubiquitous.
     2The mechanism of Begomovirus-vector whitefly mutualism
     The whitefly can establish mutualism with the begomovirus TYLCCNV via crop plants. Here, we show that TYLCCNV and betasatellite co-infection suppresses jasmonic acid defenses in the plant. Using VIGS assays and transgenic plants to impair or enhance defenses mediated by jasmonic acid in the plant enhances or depresses the performance of the whitefly. We further generate the βC1transgenic tobacco plants, and demonstrate that the pathogenicity factor βC1encoded in the betasatellite is responsible for the initiation of suppression on plant defenses and contributes to the realization of the virus-vector mutualism. Our findings reveal that a begomovirus pathogenicity factor can suppress the plant defences and provide a mechanism whereby reduced defences result in increased whitefly vector multiplication. Our study also provides an interesting model to study the plant-pathogen-vector interactions through an integration of ecological, physiological and molecular approaches.
     We also found that TYLCCNV and betasatellite co-infection or whitefly infested down or up regulated a key gene NtEAS involved in the terpenoid synthesis pathway, respectively. VIGS or transgenic silence NtEAS enhances the performance of the whitefly. Our study demonstrates that virus infection depletes the terpenoid-mediated plant defense against whiteflies, thereby favoring vector-virus mutualism. Our findings suggest that plant terpenoids play a key role in shaping vector-pathogen relationships. This is an evidence of secondary metabolic pathway mediated virus-vector mutualism on tobacco.
引文
[1]崔晓峰。(2004)双生病毒DNAβ分子pC1基因的功能研究。浙江大学博士论文
    [2]李正和。(2005)云南番茄双生病毒鉴定及烟草曲茎病毒致病分子机理研究。浙江大学博士论文
    [3]Aharoni, A., Jongsma, M.A., and Bouwmeester, H.J. (2005). Volatile science? Metabolic engineering of terpenoids in plants. Trends in Plant Science 10, 594-602.
    [4]Alberter, B., Ali Rezaian, M., and Jeske, H. (2005). Replicative intermediates of Tomato leaf curl virus and its satellite DNAs. Virology 331,441-448.
    [5]Argiiello-Astorga, GR., and Ruiz-Medrano, R. (2001). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses:identification of potential interacting amino acid-base pairs by a comparative approach-Archives of Virology 146,1465-1485.
    [6]Ascencio-Ibanez, J.T., Sozzani, R., Lee, T.J., Chu, T.M., Wolfinger, R.D., Cella, R., and Hanley-Bowdoin, L. (2008). Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiology 148,436-454.
    [7]Baliji, S., Lacatus, G., and Sunter, G. (2010). The interaction between geminivirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virology 402,238-247.
    [8]Behjatnia, S.A.A., Dry, I.B., and Rezaian, M.A. (2001). Sequence divergence in new strains of Tomato leaf curl virus resulting in replication specificity. Australas Plant Path 30,337-342.
    [9]Belliure, B., Janssen, A., Maris, P.C., Peters, D., and Sabelis, M.W. (2005). Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters 8, 70-79.
    [10]Bleeker, P.M., Diergaarde, P.J., Ament, K., Guerra, J., Weidner, M., Schutz, S., de Both, M.T., Haring, M.A., and Schuurink, R.C. (2009). The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiology 151,925-935.
    [11]Bock, K.R., Guthrie, E.J., and Woods, R.D. (1974). Purification of maize streak virus and its relationship to viruses associated with streak diseases of sugar cane and Panicum maximum. Annals of Applied Biology 77,289-296.
    [12]Bostock, R.M. (2005). Signal crosstalk and induced resistance:straddling the line between cost and benefit. Annual Review of Phytopathology 43,545-580.
    [13]Boulton, M.I. (2002). Functions and interactions of mastrevirus gene products. Physiological and Molecular Plant Pathology 60,243-255.
    [14]Briddon, R.W., Bull, S.E., Amin, I., Idris, A.M., Mansoor, S., Bedford, I.D., Dhawan, P., Rishi, N., Siwatch, S.S., Abdel-Salam, A.M., et al. (2003). Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology 312,106-121.
    [15]Briddon, R.W., Lunness, P., Bedford, I.D., Chamberlin, L.C.L., Mesfin, T., and Markham, P.G. (1996). A streak disease of pearl millet caused by a leafhopper-transmitted geminivirus. European Journal of Plant Pathology 102, 397-400.
    [16]Briddon, R.W., Mansoor, S., Bedford, I.D., Pinner, M.S., Saunders, K., Stanley, J., Zafar, Y., Malik, K.A., and Markham, P.G. (2001). Identification of dna components required for induction of cotton leaf curl disease. Virology 285, 234-243.
    [17]Bruce, T.J., and Pickett, J.A. (2007). Plant defence signalling induced by biotic attacks. Current Opinion of Plant Biology 10,387-392.
    [18]Buntin, D.G., Gilbertz, D.A., and Oetting, R.D. (1993). Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology 86,517-522.
    [19]Cai, X.Z., Zhou, X., Xu, Y.P., Joosten, M.H., and de Wit, P.J. (2007). Cladosporium fulvum CfHNNIl induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants. Plant Molecular Biology 64,89-101.
    [20]Carvalho, C.M., Fontenelle, M.R., Florentino, L.H., Santos, A.A., Zerbini. F.M., and Fontes, E.P.B. (2008a). A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. The Plant Journal 55,869-880.
    [21]Carvalho, C.M., Machado, J.P., Zerbini, F.M., and Fontes, E.P. (2008b). NSP-interacting GTPase:A cytosolic protein as cofactor for nuclear shuttle proteins. Plant Signal Behavior 3,752-754.
    [22]Carvalho, M.F., and Lazarowitz, S.G. (2004). Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for Cabbage leaf curl Geminivirus infection and pathogenicity. Journal of Virology 78, 11161-11171.
    [23]Carvalho, M.F., Turgeon, R., and Lazarowitz, S.G. (2006). The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiology 140,1317-1330.
    [24]Clerot, D., and Bernardi, F. (2006). DNA helicase activity is associated with the replication initiator protein rep of tomato yellow leaf curl geminivirus. The Journal of Virology 80,11322-11330.
    [25]Cohen, Y., Niderman, T., Mosinger, E., and Fluhr, R. (1994). (3-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by phytophthora infestans. Plant Physiology 104,59-66.
    [26]Colvin, J., Omongo, C.A., Govindappa, M.R., Stevenson, P.C., Maruthi, M.N., Gibson, G., Seal, S.E., and Muniyappa, V. (2006). Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Advances in Virus Research 67, 419-452.
    [27]Colvin, J., Omongo, C.A., Maruthi, M.N., Otim-Nape, G.W., and Thresh, J.M. (2004). Dual begomovirus infections and high Bemisia tabaci populations:two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathology 53,577-584.
    [28]Cui, X., Li, G., Wang, D., Hu, D., and Zhou, X. (2005). A Begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. The Journal of Virology 79,10764-10775.
    [29]Cui, X.F., Xie, Y., and Zhou, X.P. (2004). Molecular characterization of DNAβ molecules associated with Tobacco Leaf Curl Yunnan Virus. Journal of Phytopathology 152,647-650.
    [30]Desbiez, C., David, C., Mettouchi, A., Laufs, J., and Gronenborn, B. (1995). Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proceedings of the National Academy of Science U S A 92, 5640-5644.
    [31]Dicke, M., van Loon, J.J., and Soler, R. (2009). Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemistry Biology 5,317-324.
    [32]Dogra, S.C., Eini, O., Rezaian, M.A., and Randles, J.W. (2009). A novel shaggy-like kinase interacts with the Tomato leaf curl virus pathogenicity determinant C4 protein. Plant Molecular Biology 71,25-38.
    [33]Donaldson, J.R., and Gratton, C. (2007). Antagonistic effects of soybean viruses on soybean aphid performance. Environmental Entomology 36,918-925.
    [34]Dry, I.B., Krake, L.R., Rigden, J.E., and Rezaian, M.A. (1997). A novel subviral agent associated with a geminivirus:the first report of a DNA satellite. Proceedings of the National Academy of Science U S A 94,7088-7093.
    [35]Duan, Y.P., Powell, C.A., Purcifull, D.E., Broglio, P., and Hiebert, E. (1997). Phenotypic variation in transgenic tobacco expressing mutated geminivirus movement/pathogenicity (BC1) proteins. Molecular Plant-Microbe Interactions 10,1065-1074.
    [36]Eagle, P.A., Orozco, B.M., and Hanley-Bowdoin, L. (1994). A DNA Sequence Required for Geminivirus Replication Also Mediates Transcriptional Regulation. The Plant Cell Online 6,1157-1170.
    [37]Evans, D., and Jeske, H. (1993). DNA B facilitates, but is not essential for, the spread of Abutilon mosaic virus in agroinoculated Nicotiana benthamiana. Virology 194,752-757.
    [38]Fauquet, C.M., Bisaro, D.M., Briddon, R.W., Brown, J.K., Harrison, B.D., Rybicki, E.P., Stenger, D.C., and Stanley, J. (2003). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Archives of Virology 148,405-421.
    [39]Fauquet, C.M., Briddon, R.W., Brown, J.K., Moriones, E., Stanley, J., Zerbini, M., and Zhou, X. (2008). Geminivirus strain demarcation and nomenclature. Archives of Virology 153,783-821.
    [40]Fontes, E., Luckow, V.A., and Hanley-Bowdoin, L. (1992). A Geminivirus Replication Protein Is a Sequence-Specific DNA Binding Protein. Plant Cell 4, 597-608.
    [41]Fontes, E.P., Eagle, P.A., Sipe, P.S., Luckow, V.A., and Hanley-Bowdoin, L. (1994). Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. Journal of Biological Chemistry 269,8459-8465.
    [42]Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261,754-756.
    [43]Galvao, R.M., Mariano, A.C., Luz, D.F., Alfenas, P.F., Andrade, E.C., Zerbini, F.M., Almeida, M.R., and Fontes, E.P. (2003). A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically. Journal of General Virology 84, 715-726.
    [44]Ghanim, M., Morin, S., and Czosnek, H. (2001). Rate of Tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the Whitefly Bemisia tabaci. Phytopathology 91,188-196.
    [45]Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43,205-227.
    [46]Goodman, R.M. (1977). Single-stranded DNA genome in a whitefly-transmitted plant virus. Virology 83,171-179.
    [47]Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Kontsedalov, S., Skaljac, M., Brumin, M., Sobol, I., Czosnek, H., Vavre, F., Fleury, F., et al. (2010). The transmission efficiency of Tomato yellow leaf vurl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Journal of Virology 84,9310-9317.
    [48]Guan, C., and Zhou, X. (2006). Phloem specific promoter from a satellite associated with a DNA virus. Virus Research 115,150-157.
    [49]Guo, W., Jiang, T., Zhang, X., Li, G., and Zhou, X. (2008). Molecular variation of satellite DNAβ molecules associated with Malvastrum yellow vein virus and their role in pathogenicity. Applied and Environmental Microbiology 74,1909-1913.
    [50]Gutierrez, C. (1999). Geminivirus DNA replication. Cellular and Molecular Life Sciences 56,313-329.
    [51]Gutierrez, C. (2000). DNA replication and cell cycle in plants:learning from geminiviruses. The EMBO Journal 19,792-799.
    [52]Hanley-Bowdoin, L., Settlage, S.B., Orozco, B.M., Nagar, S., and Robertson, D. (2000). Geminiviruses:models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35,105-140.
    [53]Hao, L., Wang, H., Sunter, G., and Bisaro, D.M. (2003). Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. The Plant Cell 15,1034-1048.
    [54]Harrison, B.D., Barker, H., Bock, K.R., Guthrie, E.J., Meredith, G., and Atkinson, M. (1977). Plant viruses with circular single-stranded DNA. Nature 270,760-762.
    [55]Hayes, R.J., Macdonald, H., Coutts, R.H.A., and Buck, K.W. (1988). Priming of complementary DNA synthesis in vitro by small DNA molecules tightly bound to virion DNA of Wheat dwarf virus. Journal of General Virology 69,1345-1350.
    [56]Heyraud-Nitschke, F., Schumacher, S., Laufs, J., Schaefer, S., Schell, J., and Gronenborn, B. (1995). Determination of the origin cleavage and joining domain of geminivirus Rep proteins. Nucleic Acids Res 23,910-916.
    [57]Hodge, S., and Powell, G. (2008). Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance? Environmental Entomology 37,1573-1581.
    [58]Hogenhout, S.A., Ammar el, D., Whitfield, A.E., and Redinbaugh, M.G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology 46,327-359.
    [59]Hormuzdi, S.G., and Bisaro, D.M. (1995). Genetic analysis of beet curly top virus: examination of the roles of L2 and L3 genes in viral pathogenesis. Virology 206, 1044-1054.
    [60]Hou, Y.M., Sanders, R., Ursin, V.M., and Gilbertson, R.L. (2000). Transgenic plants expressing geminivirus movement proteins:abnormal phenotypes and delayed infection by Tomato mottle virus in transgenic tomatoes expressing the Bean dwarf mosaic virus BV1 or BC1 proteins. Molecular Plant-Microbe Interactions 13,297-308.
    [61]Howe, G.A., and Jander, G. (2008). Plant immunity to insect herbivores. Annu Rev Plant Biol 59,41-66.
    [62]Huang, C.J., Zhang, T., Li, F.F., Zhang, X.Y., and Zhou, X.P. (2011). Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite. Journal of Zhejiang University-Science B 12,83-92.
    [63]Huang, J.F., and Zhou, X.P. (2006). Molecular characterization of two distinct Begomoviruses from Ageratum conyzoides and Malvastrum coromandelianum in China. Journal of Phytopathology 154,648-653.
    [64]Hussain, M., Mansoor, S., Iram, S., Fatima, A.N., and Zafar, Y. (2005). The nuclear shuttle protein of Tomato leaf curl New Delhi virus is a pathogenicity determinant. Journal of Virology 79,4434-4439.
    [65]Ilyina, T.V., and Koonin, E.V. (1992). Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20,3279-3285.
    [66]Inbar, M., Doostdar, H., Leibee, G.L., and Mayer, R.T. (1999). The role of plant rapidly induced responses in asymmetric interspecific interactions among insect herbivores. Journal of Chemical Ecology 25,1961-1979.
    [67]Inbar, M., and Gerling, D. (2008). Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annual Review of Entomology 55,431-448.
    [68]Iwakawa, H., Iwasaki, M., Kojima, S., Ueno, Y., Soma, T., Tanaka, H., Semiarti, E., Machida, Y, and Machida, C. (2007). Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. The Plant Journal 51,173-184.
    [69]Jeske, H. (2009). Geminiviruses. Current Topics in Microbiology and Immunology 331,185-226.
    [70]Jeske, H., Lutgemeier, M., and Preiss, W. (2001). DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. The EMBO Journal 20,6158-6167.
    [71]Jimenez, D.R., Yokomi, R.K., Mayer, R.T., and Shapiro, J.P. (1995). Cytology and physiology of silverleaf whitefly-induced squash silverleaf. Physiological and Molecular Plant Pathology 46,227-242.
    [72]Jiu, M., Zhou, X.P., Tong, L., Xu, J., Yang, X., Wan, F.H., and Liu, S.S. (2007). Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS One2, e182.
    [73]Johnson, S.N., Douglas, A.E., Woodward, S., and Hartley, S.E. (2003). Microbial impacts on plant-herbivore interactions:the indirect effects of a birch pathogen on a birch aphid. Oecologia 134,388-396.
    [74]Jose, J., and Usha, R. (2003). Bhendi yellow vein mosaic disease in India is caused by association of a DNA Beta satellite with a begomovirus. Virology 305, 310-317.
    [75]Jovel, J., Preiss, W, and Jeske, H. (2007). Characterization of DNA intermediates of an arising geminivirus. Virus Research 130,63-70.
    [76]Kaliappan, K., Choudhury, N.R., Suyal, G., and Mukherjee, S.K. (2011). A novel role for RAD54:this host protein modulates geminiviral DNA replication. The FASEB Journal.
    [77]Kaloshian, I., and Walling, L.L. (2005). Hemipterans as plant pathogens. Annual Review of Phytopathology 43,491-521.
    [78]Kempema, L.A., Cui, X., Holzer, F.M., and Walling, L.L. (2007). Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology 143, 849-865.
    [79]Kessler, A., and Baldwin, I.T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science 291,2141-2144.
    [80]Klinkenberg, F.A., and Stanley, J. (1990). Encapsidation and spread of African cassava mosaic virus DNA A in the absence of DNA B when agroinoculated to Nicotiana benthamiana. Journal of General Virology 71,1409-1412.
    [81]Kong, L.J., and Hanley-Bowdoin, L. (2002). A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. The Plant Cell 14, 1817-1832.
    [82]Koonin. E.V., and Ilyina, T.V. (1992). Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. Journal of General Virology 73 (Pt 10).2763-2766.
    [83]Krenz, B., Windeisen, V., Wege, C., Jeske, H., and Kleinow, T. (2010). A plastid-targeted heat shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401,6-17.
    [84]Lacatus, G., and Sunter, G (2009). The Arabidopsis PEAPOD2 transcription factor interacts with geminivirus AL2 protein and the coat protein promoter. Virology 392,196-202.
    [85]Lai J., Chen, H., Teng, K., Zhao, Q., Zhang, Z., Li, Y, Liang, L., Xia, R., Wu, Y., Guo, H., et al. (2009). RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. The Plant Journal 57,905-917.
    [86]Latham, J.R., Saunders, K., Pinner, M.S., and Stanley, J. (1997). Induction of plant cell division by beet curly top virus gene C4. The Plant Journal 11, 1273-1283.
    [87]Laufs, J., Jupin, I., David, C., Schumacher, S., Heyraud-Nitschke, F., and Gronenborn, B. (1995a). Geminivirus replication:genetic and biochemical characterization of Rep protein function, a review. Biochimie 77,765-773.
    [88]Laufs, J., Traut, W., Heyraud, F., Matzeit, V., Rogers, S.G., Schell, J., and Gronenborn, B. (1995b). In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proceedings of the National Academy of Science U S A 92,3879-3883.
    [89]Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K., and Wang, J. (2009). SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966-1967.
    [90]Li, Z., Xie, Y., and Zhou, X. (2005). Tobacco curly shoot virus DNAbeta Is Not Necessary for Infection but Intensifies Symptoms in a Host-Dependent Manner. Phytopathology 95,902-908.
    [91]Lin, T.-B., Schwartz, A., and Saranga, Y (1999). Photosynthesis and productivity of cotton under silverleaf white fly stress. Crop Science 39,174-184.
    [92]Lin, T.-B., Wolf, S., Schwartz, A., and Saranga, Y (2000). Silverleaf whitefly stress impairs sugar export from cotton source leaves. Physiologia Plantarum 109, 291-297.
    [93]Lin, W.C., Shuai, B., and Springer, P.S. (2003). The Arabidopsis LATERAL ORGAN BOUNDAPIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. The Plant Cell 15,2241-2252.
    [94]Liu, J., Li, M., Li, J.M., Huang, C.J., Zhou, X.P., Xu, F.C., and Liu, S.S. (2010). Viral infection of tobacco plants improves performance of Bemisia tabaci but more so for an invasive than for an indigenous biotype of the whitefly. Journal of Zhejiang University-Science B 11,30-40.
    [95]Lozano-Duran, R., Rosas-Diaz, T., Gusmaroli, G., Luna, A.P., Taconnat, L., Deng, X.W., and Bejarano, E.R. (2011). Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. The Plant Cell 23,1014-1032.
    [96]Luan, J.B., Li, J.M., Varela, N., Wang, Y.L., Li, F.F., Bao, YY, Zhang, C.X., Liu, S.S., and Wang, X.W. (2011). Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. The Journal of Virology 85,3330-3340.
    [97]Luque, A., Sanz-Burgos, A.P., Ramirez-Parra, E., Castellano, M.M., and Gutierrez, C. (2002). Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302, 83-94.
    [98]Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. (1990). Salicylic Acid:a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250,1002-1004.
    [99]Malik, P.S., Kumar, V., Bagewadi, B., and Mukherjee, S.K. (2005). Interaction between coat protein and replication initiation protein of Mung bean yellow mosaic India virus might lead to control of viral DNA replication. Virology 337, 273-283.
    [100]Mansoor, S., Briddon, R.W., Zafar, Y., and Stanley, J. (2003). Geminivirus disease complexes:an emerging threat. Trends in Plant Science 8,128-134.
    [101]Mansoor, S., Zafar, Y., and Briddon, R.W. (2006). Geminivirus disease complexes:the threat is spreading. Trends in Plant Science 11,209-212.
    [102]Maruthi, M.N., Colvin, J., Seal, S., Gibson, G., and Cooper, J. (2002). Co-adaptation between cassava mosaic geminiviruses and their local vector populations. Virus Research 86,71-85.
    [103]Mauck, K.E., De Moraes, C.M., and Mescher, M.C. (2010). Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Science U S A 107,3600-3605.
    [104]McGarry, R.C., Barron, YD., Carvalho, M.F., Hill, J.E., Gold, D., Cheung, E., Kraus, W.L., and Lazarowitz, S.G. (2003). A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. The Plant Cell 15, 1605-1618.
    [105]McGarvey, D.J., and Croteau, R. (1995). Terpenoid metabolism. The Plant Cell 7,1015-1026.
    [106]McGivern, D.R., Findlay, K.C., Montague, N.P., and Boulton, M.I. (2005). An intact RBR-binding motif is not required for infectivity of Maize streak virus in cereals, but is required for invasion of mesophyll cells. Journal of General Virology 86,797-801.
    [107]McKenzie, C.L. (2002). Effect of tomato mottle virus (ToMoV) on Bemisia tabaci biotype B (Homoptera:Aleyrodidae) oviposition and adult survivorship on healthy tomato. Florida Entomologist 55,367-368.
    [108]McKenzie, C.L., Shatters, R.G., Jr., Doostdar, H., Lee, S.D., Inbar, M., and Mayer, R.T. (2002). Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Archives of Insect Biochemistry and Physiology 49,203-214.
    [109]Mills-Lujan, K., and Deom, C.M. (2010). Geminivirus C4 protein alters Arabidopsis development. Protoplasma 239,95-110.
    [110]Morilla, G., Castillo, A.G., Preiss, W., Jeske, H., and Bejarano, E.R. (2006). A versatile transreplication-based system to identify cellular proteins involved in geminivirus replication. The Journal of Virology 80,3624-3633.
    [111]Nagar, S., Pedersen, T.J., Carrick, K.M., Hanley-Bowdoin, L., and Robertson, D. (1995). A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. The Plant Cell 7,705-719.
    [112]Nash, T.E., Dallas, M.B., Reyes, M.I., Buhrman, G.K., Ascencio-Ibanez, J.T. and Hanley-Bowdoin, L. (2011). Functional analysis of a novel motif conserved across geminivirus Rep proteins. The Journal of Virology 55,1182-1192.
    [113]Ng, J.C., and Falk, B.W. (2006). Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44,183-212.
    [114]Ohnesorge, S., and Bejarano, E.R. (2009). Begomovirus coat protein interacts with a small heat-shock protein of its transmission vector (Bemisia tabaci). Insect Molecular Biology 18,693-703.
    [115]Oliveira, M.R.V., Henneberry, T.J., and Anderson, P. (2001). History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection 20, 709-723.
    [116]Orozco, B.M., and Hanley-Bowdoin, L. (1996). A DNA structure is required for geminivirus replication origin function. The Journal of Virology 70,148-158.
    [117]Orozco, B.M., and Hanley-Bowdoin, L. (1998). Conserved sequence and structural motifs contribute to the DNA binding and cleavage activities of a geminivirus replication protein. The Journal of Biological Chemistry 273, 24448-24456.
    [118]Pascal, E., Goodlove, P.E., Wu, L.C., and Lazarowitz, S.G. (1993). Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. The Plant Cell 5,795-807.
    [119]Pieterse, C.M., and Dicke, M. (2007). Plant interactions with microbes and insects:from molecular mechanisms to ecology. Trends in Plant Science 12, 564-569.
    [120]Piroux, N., Saunders, K., Page, A., and Stanley, J. (2007). Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virology 362,428-440.
    [121]Preiss, W., and Jeske, H. (2003). Multitasking in replication is common among geminiviruses. Journal of Virology 77,2972-2980.
    [122]Qian, Y., and Zhou, X. (2005). Pathogenicity and stability of a truncated DNAbeta associated with Tomato yellow leaf curl China virus. Virus Research 109,159-163.
    [123]Qing, L., and Zhou, X. (2009). Trans-Replication of, and Competition Between, DNAβ Satellites in Plants Inoculated with Tomato yellow leaf curl China virus and Tobacco curly shoot virus. Phytopathology 99,716-720.
    [124]Rubinstein, G., and Czosnek, H. (1997). Long-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci:effect on the insect transmission capacity, longevity and fecundity. Journal of General Virology 78 (Pt 10),2683-2689.
    [125]Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. (1996). Systemic acquired resistance. The Plant Cell 8, 1809-1819.
    [126]Sarmento, R.A., Lemos, F., Bleeker, P.M., Schuurink, R.C., Pallini, A., Oliveira, M.G.A., Lima, E.R., Kant, M., Sabelis, M.W., and Janssen, A. (2011). A herbivore that manipulates plant defence. Ecology Letters 14,229-236.
    [127]Saunders, K., Bedford, I.D., Briddon, R.W., Markham, P.G., Wong, S.M., and Stanley, J. (2000). A unique virus complex causes Ageratum yellow vein disease. Proceedings of the National Academy of Science U S A 97,6890-6895.
    [128]Saunders, K., Bedford, I.D., Yahara, T., and Stanley, J. (2003). Aetiology: The earliest recorded plant virus disease. Nature 422,831.
    [129]Saunders, K., Norman, A., Gucciardo, S., and Stanley,J. (2004). The DNA beta satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (betaC1). Virology 324,37-47.
    [130]Saunders, K., Salim, N., Mali, V.R., Malathi, V.G, Briddon, R., Markham, P.G., and Stanley, J. (2002). Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus:evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293,63-74.
    [131]Scholthof, K.B., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., et al. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12,938-954.
    [132]Seo, S., Seto, H., Koshino, H., Yoshida, S., and Ohashi, Y. (2003). A diterpene as an endogenous signal for the activation of defense responses to infection with tobacco mosaic virus and wounding in tobacco. The Plant Cell 15, 863-873.
    [133]Settlage, S.B., Miller, A.B., and Hanley-Bowdoin, L. (1996). Interactions between geminivirus replication proteins. Journal of Virology 70,6790-6795.
    [134]Sharma, P., Ikegami, M., and Kon, T. (2010). Identification of the virulence factors and suppressors of posttranscriptional gene silencing encoded by Ageratum yellow vein virus, a monopartite begomovirus. Virus Research 149, 19-27.
    [135]Shen, Q., Liu, Z., Song, F., Xie, Q., Hanley-Bowdoin, L., and Zhou, X. (2011). Tomato S1SnRK1 protein interacts with and phosphorylates betaCl, a pathogenesis protein encoded by a geminivirus beta-satellite. Plant Physiology 157,1394-1406.
    [136]Shen, W., and Hanley-Bowdoin, L. (2006). Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1-and mammalian AMPK-activating kinases. Plant Physiology 142, 1642-1655.
    [137]Shen, W., Reyes, M.I., and Hanley-Bowdoin, L. (2009). Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiology 150,996-1005.
    [138]Shepherd, D.N., Martin, D.P., McGivern, D.R., Boulton, M.I., Thomson, J.A., and Rybicki, E.P. (2005). A three-nucleotide mutation altering the Maize streak virus Rep pRBR-interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR-Rep binding. Journal of General Virology 86,803-813.
    [139]Shimada-Beltran, H., and Rivera-Bustamante, R.F. (2007). Early and late gene expression in pepper huasteco yellow vein virus. Journal of General Virology 88,3145-3153.
    [140]Singh, D.K., Islam, M.N., Choudhury, N.R., Karjee, S., and Mukherjee, S.K. (2007). The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucleic Acids Res 35,755-770.
    [141]Singh, D.K., Malik, P.S., Choudhury, N.R., and Mukherjee, S.K. (2008). MYMIV replication initiator protein (Rep):Roles at the initiation and elongation steps of MYMIV DNA replication. Virology 380,75-83.
    [142]Spoel, S.H., and Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3,348-351.
    [143]Stanley, J., and Latham, J.R. (1992). A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190, 506-509.
    [144]Stanley, J., Latham, J.R., Pinner, M.S., Bedford, I., and Markham, P.G. (1992). Mutational analysis of the monopartite geminivirus beet curly top virus. Virology 191,396-405.
    [145]Stout, M.J., Thaler, J.S., and Thomma, B.P.H.J. (2006). Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annual Review of Entomology 51,663-689.
    [146]Sunter, G., and Bisaro, D.M. (1991). Transactivation in a geminivirus:AL2 gene product is needed for coat protein expression. Virology 180,416-419.
    [147]Sunter,G., and Bisaro, D.M. (1992). Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. The Plant Cell 4,1321-1331.
    [148]Sunter, G., Hartitz, M.D., and Bisaro, D.M. (1993). Tomato golden mosaic virus leftward gene expression:autoregulation of geminivirus replication protein. Virology 195,275-280.
    [149]van de Ven, W.T., LeVesque, C.S., Perring, T.M., and Walling, L.L. (2000). Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. The Plant Cell 12,1409-1423.
    [150]Varma, A., and Malathi, V.G. (2003). Emerging geminivirus problems:A serious threat to crop production. Annals of Applied Biology 142,145-164.
    [151]Voinnet, O., Pinto, Y.M., and Baulcombe, D.C. (1999). Suppression of gene silencing:a general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Science U S A 96,14147-14152.
    [152]von Arnim, A., and Stanley, J. (1992). Determinants of tomato golden mosaic virus symptom development located on DNA B. Virology 186,286-293.
    [153]Walling, L.L. (2000). The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19,195-216.
    [154]Walling, L.L. (2008). Avoiding effective defenses:strategies employed by phloem-feeding insects. Plant Physiology 146,859-866.
    [155]Wang, E., Wang, R., DeParasis, J., Loughrin, J.H., Gan, S., and Wagner, G.J. (2001). Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nature Biotechnology 19, 371-374.
    [156]Wang, H., Buckley, K.J., Yang, X., Buchmann, R.C., and Bisaro, D.M. (2005). Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. The Journal of Virology 79,7410-7418.
    [157]Wang, H., Hao, L., Shung, C.Y., Sunter, G., and Bisaro, D.M. (2003). Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. The Plant Cell 15,3020-3032.
    [158]Wang, X., Xie, Y., and Zhou, X. (2004). Molecular characterization of two distinct begomoviruses from Papaya in China. Virus Genes 29,303-309.
    [159]Wartig, L., Kheyr-Pour, A., Noris, E., De Kouchkovsky, F., Jouanneau, F., Gronenborn, B., and Jupin, I. (1997). Genetic analysis of the monopartite tomato yellow leaf curl geminivirus:roles of V1,,V2, and C2 ORFs in viral pathogenesis. Virology 228,132-140.
    [160]Whitham, S.A., Yang, C., and Goodin, M.M. (2006). Global impact: elucidating plant responses to viral infection. Molecular Plant-Microbe Interactions 19,1207-1215.
    [161]Wu, J.B., and Zhou, X.P. (2007). Siegesbeckia yellow vein virus is a distinct begomovirus associated with a satellite DNA molecule. Archives of Virology 152, 791-796.
    [162]Xie, Q., Suarez-Lopez, P., and Gutierrez, C. (1995). Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus:requirement for efficient viral DNA replication. The EMBO Journal 74,4073-4082.
    [163]Xie, Y, Zhou, X., and Li, G. (2003). Molecular characterization of Tomato yellow leaf curl China virus and its satellite DNA isolated from tobacco. Chinese Science Bulletin 48,766-770.
    [164]Xie, Y., Zhou, X., Li, Z., Zhang, Z., and Li, G. (2002). Identification of a novel DNA molecule associated with Tobacco leaf curl virus. Chinese Science Bulletin 47,1273-1276.
    [165]Xiong, Q., Fan, S., Guo, X., and Zhou, X. (2005). Stachytarpheta leaf curl virus is a novel monopartite begomovirus species. Archives of Virology 150, 2257-2270.
    [166]Yang, J.W., Yi, H.-S., Kim, H., Lee, B., Lee, S., Ghim, S.-Y., and Ryu, C.-M. (2011a). Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground micro flora. Journal of Ecology 99,46-56.
    [167]Yang, J.Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X., and Chua, N.H. (2008). βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes & Development 22,2564-2577.
    [168]Yang, X., Xie, Y., Raja, P., Li, S., Wolf, J.N., Shen, Q., Bisaro, D.M., and Zhou, X. (2011b). Suppression of methylation-mediated transcriptional gene silencing by betaCl-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathogens 7, e1002329.
    [169]Zarate, S.I., Kempema, L.A., and Walling, L.L. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology 143,866-875.
    [170]Zhang, P.J., Zheng, S.J., van Loon, J.J., Bo land, W., David, A., Mumm, R., and Dicke, M. (2009). Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proceedings of the National Academy of Science U S A 106,21202-21207.
    [171]Zhou, X., Xie, Y., Tao, X., Zhang, Z., Li, Z., and Fauquet, C.M. (2003). Characterization of DNAbeta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. Journal of General Virology 84,237-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700